实变与泛函期末试题答案

合集下载

(完整版)《实变函数与泛函分析基础》试卷及答案要点

(完整版)《实变函数与泛函分析基础》试卷及答案要点

试卷一:一、单项选择题(3分×5=15分)1、1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ⇒, 则()()n f x f x → (B) {}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))('x f 在],[b a 上L 可积 (D) ⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都有_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数. (填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________________________,则称()f x 为[],a b 上的有界变差函数。

泛函分析期末试题及答案

泛函分析期末试题及答案

泛函分析期末试题及答案一、选择题1. 下列哪个不是泛函分析的主要研究对象?A. 函数空间B. 向量空间C. 线性映射D. 点集答案:D2. 泛函是指将一个向量空间的元素映射到一个标量的函数。

以下哪个选项是泛函的定义?A. 函数空间B. 向量空间C. 线性映射D. 函数空间的对偶空间答案:C3. 在泛函分析中,范数是一种度量向量空间中向量大小的方法。

以下哪个选项是范数的定义?A. 函数空间B. 向量空间C. 线性映射D. 函数空间的对偶范数答案:B4. 下列哪个不是泛函分析中的基本定理?A. 嵌入定理B. 开铃定理C. Hahn-Banach定理D. Banach-Steinhaus定理答案:B5. 泛函分析中的内积是指满足一定条件的映射。

以下哪个选项是内积的定义?A. 函数空间B. 向量空间C. 线性映射D. 内积空间答案:D二、填空题1. 完成下列范数的定义:范数是一个实值函数,对于一个向量空间中的向量x,满足以下三个性质:(1) 正定性:||x|| ≥ 0,且当且仅当x=0时,||x|| = 0;(2) 齐次性:对于任意实数a,||ax|| = |a| · ||x||;(3) 三角不等式:对于任意两个向量x和y,||x+y|| ≤ ||x|| + ||y||。

2. 填写完整的Hahn-Banach定理的表述:设X是一个实或复数的线性空间,Y是X的一个线性子空间,f是定义在Y上的线性泛函,对于所有的y∈Y,有f(y) ≤ p(y),其中p是X上的一个次线性泛函,且满足p(y) ≤ p(x)对所有的x∈X成立,则存在一个定义在整个X上的线性泛函F,满足F(x) ≤ p(x)对所有的x∈X成立,并且在Y上,F和f的限制是相等的。

三、计算题1. 对于给定的函数空间C[0,1],计算函数f(x) = x^2在C[0,1]上的范数。

解答:根据范数的定义,范数是一个实值函数,对于一个向量空间中的向量x,满足以下三个性质:(1) 正定性:||x|| ≥ 0,且当且仅当x=0时,||x|| = 0;(2) 齐次性:对于任意实数a,||ax|| = |a| · ||x||;(3) 三角不等式:对于任意两个向量x和y,||x+y|| ≤ ||x|| + ||y||。

实变与泛函期末试题答案

实变与泛函期末试题答案

实变与泛函期末试题答案06-07第二学期《实变函数与泛函分析》期末考试参考答案1. 设()f x 是),(+∞-∞上的实值连续函数, 则对于任意常数a , })(|{a x f x E >=是一开集, 而})(|{a x f x E ≥=总是一闭集. (15分) 证明 (1) 先证})(|{a x f x E >=为开集. (8分)证明一设E x ∈0,则a x f >)(0,由)(x f 在),(+∞-∞上连续,知0>?δ,使得),(00δδ+-∈x x x 时,a x f >)(, 即E x U ?),(0δ,故0x 为E 的内点. 由0x 的任意性可知,})(|{a x f x E >=是一开集.证明二 })(|{a x f x E >=可表为至多可数的开区间的并(由证明一前半部分), 由定理可知E 为开集.(2) 再证})(|{a x f x E ≥=是一闭集. (7分)证明一设0x E '∈, 则0x 是E 的一个聚点, 则E ?中互异点列},{n x 使得)(0∞→→n x x n . ………………………..2分由E x n ∈知a x f n ≥)(, 因为f 连续, 所以a x f x f x f n n n n ≥==∞→∞→)(lim )lim ()(0,即 E x ∈0.……………………………………………………………………………………6分由0x 的任意性可知,})(|{a x f x E ≥=是一闭集. …………………………………7分证明二对})(|{a x f x E ≥=, {|()}E x f x a E ??=?,……………………… 5分知 E E E E =?= ,E 为闭集. …………………………………………………… 7分证明三由(1)知,})(|{a x f x E >=为开集, 同理})(|{a x f x E <=也为开集, 所以})(|{a x f x CE ≥=闭集, 得证.2. 证明Egorov 定理:设,{()}n m E f x <∞是E 上一列..e a 收敛于一个..e a 有限的函数)(x f 的可测函数, 则对0>?δ, 存在子集E E ?δ, 使)}({x f n 在δE 上一致收敛, 且.)\(δδ<="" e="" m="" p="">证明任选一列自然数}{i n ,与此相应作E 的子集1111[{}][,][||,],i i k i i i E n E n E f f k n i i ∞∞====-<≥则)(x f n 必在}][{i n E 上一致收敛于)(x f .事实上,对0ε?>,选0,i 使01,i ε<则当0i n n >时,对一切00101[{}][,][,],o i i k i i x E n E n E f f k n i ∈?=-<≥都有 01()()n f x f x i ε-<<. ……………………… 6分所以, 0>?δ, 若能适当的选取}{i n , 使(\[{}])i m E E n δ<, 则令[{}]i E E n δ=即可.利用引理, 0,(\[,])0()m E E n n εε?>→→∞. 故对任给的0δ>, 对1,i ε=1,2,3,i =, i n ?,使得1(\[,])2i i m E E n i δ<,取}],[{i n E E =δ所以)}({x f n 在δE 上一致收敛.且……………………………………… 12分1111(\)(\[{}])(\[,])(\[,])i i i i i i i m E E m E E n m E E n mE E n δ∞∞=====111(\[,]),2i i i i m E E n i δδ∞∞==≤<=∑∑……………………………. 15分结论得证.3.证明勒贝格控制收敛定理:设(1) {})(x f n 是可测集E 上的可测函数列;(2) a.e.)()(x F x f n ≤于E ,n =1,2,…,)(x F 在E 上可积分; (3) )()(xf x f n ?, 则)(x f 在E 上可积分,且 ?=EEn ndx x f dx x f )()(lim. (15分)证明证明一由于)()(x f x f n ?,根据Rieze 定理,存在子列{})(x f i n a.e.收敛于)(x f .由于()()a.e.n f x F x ≤于E ,从而a.e.)()(x F x f i n ≤于E ,得 a.e.)()(x F x f ≤于E .因为)(x F 可积,可得到)(x f 在E 上是可积的,且每个)(x f n 在E 上是可积的. …………… ..2分下证lim ()()n Enf x dx f x dx =??.我们分两步证明:(1) 先设mE <+∞.对任何0ε>,因为()F x 在E 上可积,由勒贝格积分的绝对连续性,知存在0δ>,使当e E ?且me δ<时有()4eF x dx ε,使当n N ≥时有[]n mE f f σδ-≥<,其中02mEεσ=>.所以当n N ≥时,[]()4n E f f F x dx σε-≥<,………….………………… ..6分因此-EE n dx x f dx x f )()(=(()())n Ef x f x dx -?()()n Ef x f x dx ≤-?=[][]()()()()n n n n E f f E f f f x f x dx f x f x dx σσ-≥-<-+-?≤[][](()())()()n n n n E f f E f f f x f x dx f x f x dx σσ-≥-<++-?[]2()[]n n E f f F x dx mE f f σσσ-≥≤+-<?24mE εσ<?+?=22εεε+= ………………………….……….………………… ..9分这就证明了当mE <+∞时,成立lim ()()n EEnf x dx f x dx =??.(2)设mE =+∞.因()F x 在E 上可积,由非负可测函数L 积分的定义[](lim ()(),kk E E k F x dx F x dx →∞=?[]()()),kk E E F x dx F x dx ≤?? 知对任何0ε>,存在,k E E ?k mE <+∞,使得[]()()4kk EEF x dx F x dx ε<+?,所以dx x F kE E ?-)(=??-EE dx xF dx x F k)()(≤()[()]kk EE F x dx F x dx -?4ε<..……………… .11分另一方面,在k E 上的可测函数列{}n f f -满足:()()2()..n f x f x F x a e -≤于,1,2,k E n =,()()0n f x f x -?(从)()(x f x f n ?),故在k E 上利用(1)的结论(从(1)有lim ()()n EEnf x dx f x dx =??,所以由()()0n f x f x -?,得lim ()()0n Enf x f x dx -=?),知存在正整数N ,使当n N ≥时,()()2kn E f x f x dx ε-<, (13)(注意: 上一步若直接由(1)得到亦正确) 因此()()n EEf x dx f x dx -≤?-En dx x f x f )()(()()()()kkn n E E E f x f x dx f x f x dx -=-+-?2()2kE EF x dx ε-≤+242εεε证毕.证明二由)()(x f x f n ?及黎斯定理 ,存在子列{} )(x f i n a.e.收敛于)(x f . 因为a.e.)()(x F x f n ≤于E ,所以a.e.)()(x F x f i n ≤于E ,因此a.e.)()(x F x f ≤于E .由)(x F 可积,得到每个)(x f n 和)(x f 都是L 可积的. (2) 因为)(x F 在E 上可积,即[]?∞→=EE k k dx xF dx x F k)(lim )(,所以0>?ε,存在0>k ,使得[]?+<e< p="">E k dx xF dx x F k5)()(ε,因此dx x F kE E ?-)(=??-EE dx xF dx x F k)()())()()](([x F x F x F k k ≤=()()5kk E E F x dx F x dx ε≤-<.…………………6分由绝对连续性,0>?δ,使得E e ?,δ<=""><edx x F 5)(ε,对此δ,由)()(x f x f n ?(在E 上,从而在k E 上),所以存在0>N ,使得当N n ≥时,δε<??+≥-)1(5k n k mE f f mE ,……………………10分当N n ≥时,记n H =+≥-)1(5k n k mE f f E ε,所以从δ<n<="" mh="" p="">H dx x F 5)(ε. 因为)()()(n k k n n n H E E E H H E H E --=-= ,所以当N n ≥时-EEn dx x f dx x f )()(=[]?-En dx x f x f )()(≤-En dx x f x f )()(=?--nk H E n dx x f x f )()(+--kE E n dx x f x f )()(+?-nH n dx x f x f )()(([]5(1)k n k n k E H E f f mE ε-=-<+)≤k k mE mE )1(5+ε+2?-k E E dx x F )(+2?n H dx x F )(<εεε52525++ =ε.…………………………………………………………………………...................15分这证明了?=EEn ndx x f dx x f )()(lim.4.证明康托尔(Cantor)集合的测度为零. (10分) 证明证明一 Cantor 集[]??-= )98,97()92,91()32,31(1,0P ,………....................4分所以[]?+++-=?+++-= 3223232311 27492311,0m mP …………………................8分.0 3211311 3232321311 3322=-?-=++++-= …………………..............10分证明二去掉过程进行到第n 步时,剩下2n个长度为3n -的闭区间,n I 这些区间的总长为22()033n nn =→ (当n →∞时),……………….....4分故,0)32(*→≤n P m ………………………….............8分因此*0,m P = 即0.mP =……………………………………………….……….............10分 5.证明1(0,)lim 11nnndtt t n ∞=??+. (15分)证明当)1,0(∈t 时,2,11111≥≤+n tt n t nn ;……………………………..........2分当),1[+∞∈t 时,1121111112nnn n t t t t t nn =-??+++??+222124,2112n t t n n n t n--≤=<>--.………………............4分+∞∈∈=),,1[,4),1,0(,1t t t tt F 令则当2>n 时,有,)(111t F tn t nn ≤??? ?+………………………………..............6分且+∞∞=+=),0(12164)(dt tt dtdt t F , 即)(t F 在()∞,0上Lebesgue 可积. ……………………….…………………………..........8分又因为tn n ne t n t -∞→??→+111,所以由Lebesgue 控制收敛定理得………...........12分原式=+∞+∞-+∞→==,0(),0(111limdt e t n t dt t n n n .………………............15分6. 证明Banach 不动点定理:设X 是完备的度量空间, T 是X 上的压缩映射, 那么T 有且只有一个不动点. (15分) 证明设0x 为X 中的任一点,令,,,,01021201x T Tx x x T Tx x Tx x n n n =====-. (3)分下面证明点列{}∞=1n n x 是X 中的柯西点列.因为11(,)(,)m m m m d x x d Tx Tx +-=112(,)(,)m m m m d x x d Tx Tx αα---≤= 21210(,)(,),m m m d x x d x x αα--≤≤≤所以当m n >时,1121(,)(,)(,)(,)m n m m m m n n d x x d x x d x x d x x +++-≤+++1101()(,)m m n d x x ααα+-≤+++011(,),1n mmd x x ααα--=-又因为,10<<α所以,11<--mn α从而 )(),(1),(10m n x x d x x d m n m >-≤,αα.,0),(,,→∞→∞→n m x x d n m 时所以当即{}∞=1n n x 是X 中的柯西点列, …………...8分由X 的完备性知,存在x X ∈,使x x m →.因为…………..................................................10分(,)(,)(,)m m d x Tx d x x d x Tx ≤+1(,)(,)0,m m m d x x d x x α→∞-≤+→ 故(,)0d x Tx =,即x Tx =,所以x 为T 的不动点. ………..................................................12分下证其唯一性.如果又有X x ∈~,使x x T ~~=,则)~,()~,()~,(x x d x T Tx d x x d α≤=,因1<α,故0)~,(=x x d ,即x x ~=,得证. ………....................................................................15分7. 设0mE >, 又设E 上可积函数(),()f x g x 满足()()f x g x <, 试证:()d ()d EEf x xg x x <?. (5分)证明因为()()0g x f x ->, 所以[()()]d 0Eg x f x x -≥?…………………………………3分若[()()]d 0Eg x f x x -=?,则()()0g x f x -=, a.e. …………………………………………….…………………………5分与题设矛盾, 故得()d ()d EEf x xg x x <?.8. 设()f x 在[,]a b 上可导, 证明: ()f x 的导函数()f x '在[,]a b 上可测. (10分) 证明补充定义()()f x f b =(x b >时), 则()f x 在[,)a b 上可导, 对任意N n ∈, 令1()()(),[,)1n f x f x n g x x a b n+-=?∈..………………3分由f 连续, 知每个n g 连续,故可测. …………………………….…………………………5分由f 的可导性知()lim (),[,)n n f x g x x a b →∞'=?∈…….………………7分因此()f x '作为一列可测函数的极限在[,)a b 上必可测, 故在[,]a b 上亦可测….………10分</e<>。

《实变函数及泛函分析基础》试卷及答案(可编辑修改word版)

《实变函数及泛函分析基础》试卷及答案(可编辑修改word版)

《实变函数及泛函分析基础》试卷及答案(可编辑修改word版)ob 得分试卷⼀:⼀、单项选择题(3 分×5=15 分)1、1、下列各式正确的是()∞ ∞∞ ∞(A ) lim A n = ? ? A k ; (B ) lim A n = ? ? A k ; n →∞n =1 k =n n →∞n =1 k =n∞ ∞∞ ∞(C ) lim A n = ? ? A k ; (D ) lim A n = ? ? A k ;n →∞n =1 k =nn →∞n =1 k =n2、设 P 为 Cantor 集,则下列各式不成⽴的是()(A ) P = c (B) mP = 0 (C) P '= P(D) P = P3、下列说法不正确的是()(A) 凡外侧度为零的集合都可测(B )可测集的任何⼦集都可测 (C) 开集和闭集都是波雷⽿集(D )波雷⽿集都可测 4、设{ f n (x )} 是 E 上的a .e . 有限的可测函数列,则下⾯不成⽴的是()(A )若 f n (x ) ? f (x ) , 则 f n (x ) → f (x )(B) sup { f n (x )} 是可测函数n(C ) i nf { f n (x )} 是可测函数;(D )若 f n (x ) ? nf (x ) ,则 f (x ) 可测5、设 f(x)是[a , b ] 上有界变差函数,则下⾯不成⽴的是()(A) f (x ) 在[a , b ] 上有界(B) f (x ) 在[a , b ] 上⼏乎处处存在导数(C ) f '(x ) 在[a , b ] 上 L 可积 (D)af '(x )dx = f (b ) - f (a )⼆. 填空题(3 分×5=15 分)1、(C s A ? C s B ) ? ( A - ( A - B )) =2、设 E 是[0,1]上有理点全体,则 E '=, E =, E = .3 、设 E 是R n 中点集,如果对任⼀点集T 都有得分,则称E 是L 可测的4、f (x) 可测的条件是它可以表成⼀列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设 f (x) 为[a, b]上的有限函数,如果对于[a, b]的⼀切分划,使f (x) 为, 则称[a, b]上的有界变差函数。

(完整)实变与泛函期末试题答案

(完整)实变与泛函期末试题答案

06-07第二学期《实变函数与泛函分析》期末考试参考答案1. 设()f x 是),(+∞-∞上的实值连续函数, 则对于任意常数a , })(|{a x f x E >=是一开集, 而})(|{a x f x E ≥=总是一闭集. (15分)证明 (1) 先证})(|{a x f x E >=为开集. (8分)证明一 设E x ∈0,则a x f >)(0,由)(x f 在),(+∞-∞上连续,知0>∃δ,使得),(00δδ+-∈x x x 时,a x f >)(, 即E x U ⊂),(0δ,故0x 为E 的内点。

由0x 的任意性可知,})(|{a x f x E >=是一开集.证明二 })(|{a x f x E >=可表为至多可数的开区间的并(由证明一前半部分), 由定理可知E 为开集.(2) 再证})(|{a x f x E ≥=是一闭集。

(7分)证明一 设0x E '∈, 则0x 是E 的一个聚点, 则E ∃中互异点列},{n x 使得)(0∞→→n x x n . ………………………..2分由E x n ∈知a x f n ≥)(, 因为f 连续, 所以a x f x f x f n n n n ≥==∞→∞→)(lim )lim ()(0,即E x ∈0.……………………………………………………………………………………6分由0x 的任意性可知,})(|{a x f x E ≥=是一闭集. …………………………………7分 证明二 对})(|{a x f x E ≥=, {|()}E x f x a E ∂⊂=⊂,……………………… 5分 知E E E E =∂= ,E 为闭集。

…………………………………………………… 7分 证明三 由(1)知,})(|{a x f x E >=为开集, 同理})(|{a x f x E <=也为开集, 所以})(|{a x f x CE ≥=闭集, 得证。

实变函数论与泛函分析课后答案

实变函数论与泛函分析课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(i n f s u p =≥∈x mA nm N b χ ,即)(in f l i m x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

(完整)《实变函数与泛函分析基础》试卷及答案,推荐文档

(完整)《实变函数与泛函分析基础》试卷及答案,推荐文档

试卷一:一、单项选择题(3分×5=15分)1、1、下列各式正确的是( )(A ); (B );1lim n k n n k n A A ∞∞→∞===⋃⋂1lim n k n k n n A A ∞∞==→∞=⋂⋃(C ); (D );1lim n k n n k n A A ∞∞→∞===⋂⋃1lim n k n k n n A A ∞∞==→∞=⋂⋂2、设P 为Cantor 集,则下列各式不成立的是( )(A ) c (B) (C) (D) =P 0mP =P P ='PP = 3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测4、设是上的有限的可测函数列,则下面不成立的是( ){}()n f x E ..a e (A )若, 则 (B) 是可测函数()()n f x f x ⇒()()n f x f x →{}sup ()n nf x (C )是可测函数;(D )若,则可测{}inf ()n n f x ()()n f x f x ⇒()f x 5、设f(x)是上有界变差函数,则下面不成立的是( )],[b a (A) 在上有界 (B) 在上几乎处处存在导数)(x f ],[b a )(x f ],[b a (C )在上L 可积 (D) )('x f ],[b a ⎰-=ba a fb f dx x f )()()('二. 填空题(3分×5=15分)1、_________()(())s s C A C B A A B ⋃⋂--=2、设是上有理点全体,则=______,=______,=______.E []0,1'E o E E 3、设是中点集,如果对任一点集都有E n R T _________________________________,则称是可测的E L 得 分得 分4、可测的________条件是它可以表成一列简单函数的极限函数. )(x f (填“充分”,“必要”,“充要”)5、设为上的有限函数,如果对于的一切分划,使()f x [],a b [],a b _____________________________________________________,则称为 ()f x 上的有界变差函数。

泛函分析之期末考习题解答-实变函数与泛函分析概要第二册

泛函分析之期末考习题解答-实变函数与泛函分析概要第二册

泛函分析之期末考习题解答-实变函数与泛函分析概要第⼆册赋范线性空间E E 局部紧证:→不妨设E 为实n 维赋范线性空间,则E 与R n 拓扑同构⽽R n 中任意有界闭集是紧的,由紧集上的连续函数定理知E 的任意有界闭⼦集是紧的,即E 局部紧←设E ⽆限维但任意有界闭⼦集是紧的S 是E 中的单位球⾯:S={x:||x||=1}则S 是E 中的紧集由⾥斯定理:x1∈S,?x2∈S,ST,||x2-x1||≥1/2,?x3∈S,ST,||x3-xi||≥1/2,(i=1.2)……类推,由E ⽆限维,故可取S 中的⼀个系列元素x1,x2…xk…ST,||xk-xl||≥1/2,显然{xk}⽆收敛⼦列,⽭盾X 是完备的距离空间,T:X→X,?x,y ∈X,ρ(Tx,Ty)≤θρ(x,y),0≤θ<1,则T 中存在唯⼀不动点x`,ST,Tx`=x`,&&x`可⽤迭代法求出证:x0∈X,Set,x1=Tx0,…,xn+1=xn…则ρ(x1,x2)≤θρ(x0,x1)…ρ(xn,xn+p)≤(θn +θn+1+…+θn +p )ρ(x0,Tx0)=θn ρ(x0,Tx0)/(1-θ)→0则{xn}是基本点列,⼜因为X 完备,故{xn}收敛于某x`∈Xρ(Tx,Ty)≤θρ(x,y)知T 连续,xn+1=xn 令n→∞得x`=Tx`即x`是不动点设另有不动点y`∈X,则ρ(x`,y`)≤θρ(x`,y`)得ρ(x`,y`)=0即x`=y`闭图像定理:T 是E 到E1的闭算⼦,E,E1都是B 空间,则T 有界证:E,E1是B 空间,则E ⊕E1也是B 空间,||(x,y)||=||x||+||y||设G 是E ⊕E1的闭⼦空间,则G 也是B 空间定义:T`:G→E,T`(x,Tx)=x,则T 为双射再者由||T`(x,Tx)||=||x||≤||x||+||Tx||=||(x,Tx)||知T`有界故T`有有界逆算⼦T~,则?x ∈E,(x,Tx)=T~x→||(x,Tx)||≤||T~||||x||→||Tx|||T~||≤||x||即T 有界P669.(a)略(b)提⽰:设A={多项式全体},每个函数都有傅⽴叶展开式11.(a)略(b)提⽰:同胚即找双射,距离之间存在双射,要连续的17.证明第三节例题六的空间L ∞[a,b]是完备的距离空间证:取基本点列{x n }∈L ∞[a,b]ε>0,?N ∈Ν,m,n≥N 时||x m -x n ||<ε故?[a,b]中的Lebesgue 集{Emn}ST||x m -x n ||=SUP{x m -x n |x ∈[a,b]/Emn}Set E=∪Emn ?[a,b],则x ∈[a,b]/E,m,n≥N 时|x m -x n |≤SUP{x m -x n |x ∈[a,b]/E}≤||x m -x n ||<ε故x ∈[a,b]/E 时,{xn}是实基本列,必收敛于某实数x显然x 可测,令m→∞则n≥N 时|x-x n |<ε在x ∈[a,b]/E 成⽴x-x n ∈L ∞[a,b]故x ∈L ∞[a,b]&&|x-x n |≤SUP{x-x n |x ∈[a,b]/E}≤ε即x n 按L ∞[a,b]的距离收敛于x,即L ∞[a,b]完备34.证明lp 中的⼦集A 准紧的充要条件是:(a)?k>0,ST,?x={ξ1,ξ2…ξn…}∈A,∑∞1||p n ξ(b)?ε>0,?N>0,ST,m>N 时,?x ∈A,∑∞1||p n ξ<ε(a).证:→A 准紧,则A 全有界,则A 有界可分(对应定理4.1,4.2)←?k>0,ST,?x={ξ1,ξ2…ξn…}∈A,∑∞1||p n ξ由准紧的定义,A 中每个点列必含有收敛⼦列,故A 准紧注:A 准紧的充要条件是A 有界+A 等度连续(b).命题与(a)等价P1241.V[a,b]是定义在[a,b]的有界变差函数全体,线性运算与C[a,b]相同,定义范数:||x||=|x(a)|+V a b (x),证明V[a,b]按||·||是不可分B 空间证:V[a,b]是线性空间,易证范数满⾜范数公理,故只要证完备性即可取V[a,b]中的基本列{xn(t)},?ε>0,?N ∈Ν,m,n≥N 时||x m -x n ||<ε易知xn(t)⼀致收敛,令Lim xn(t)=x(t),以下证其是有界变差函数设Δt>0,因为xn 右连续(有界变差的条件之⼀)且|x(t)-x(t+Δt)|≤|x(t)-xn(t)|+|xn(t)-xn(t+Δt)|+|x(t+Δt)-xn(t+Δt)|故x 右连续。

实变函数与泛函分析课后习题答案

实变函数与泛函分析课后习题答案

实变函数与泛函分析课后习题答案。

1.设f(x) = x^2 - 2x + 1,求f(x)的最小值。

解:要求f(x)的最小值,可以通过求导来找到极小值点。

首先对f(x)求导得到f'(x) = 2x - 2。

令f'(x) = 0,可以得到2x - 2 = 0,解得x = 1。

再对f(x)求二阶导数得到f''(x) = 2,由于f''(x)大于0,所以x = 1是f(x)的极小值点。

将x = 1代入f(x)得到f(1) = 1^2 - 2(1) + 1 = 0。

所以f(x)的最小值为0。

2.设f(x) = e^x,求f(x)的泰勒级数展开式。

解:泰勒级数展开式可以表示函数在某一点附近的近似值。

对于函数f(x) = e^x,可以通过求导得到其各阶导数。

首先求f(x)的一阶导数:f'(x) = e^x。

再求f(x)的二阶导数:f''(x) = e^x。

依次求得f(x)的各阶导数为:f'(x) = e^x,f''(x) = e^x,f'''(x) =e^x。

通过观察可以发现,f(x)的各阶导数都等于e^x,所以f(x)的泰勒级数展开式为:f(x) = f(0) + f'(0)x + f''(0)(x^2/2!) + f'''(0)(x^3/3!) + 。

代入f(x) = e^x的导数值可以得到:f(x) = e^0 + e^0x + e^0(x^2/2!) + e^0(x^3/3!) + 。

化简得到:f(x) = 1 + x + x^2/2! + x^3/3! + 。

所以f(x)的泰勒级数展开式为1 + x + x^2/2! + x^3/3! + 。

3.证明函数f(x) = x^2在区间[-1, 1]上是连续的。

解:要证明函数f(x) = x^2在区间[-1, 1]上是连续的,需要证明对于任意给定的ε > 0,存在δ > 0,使得当|x - x0| < δ时,|f(x) - f(x0)| < ε。

实变函数与泛函分析答案

实变函数与泛函分析答案

山东农业大学数学与应用数学专业考试必备!! 一、5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交 (ii )i n i i n i B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交. (ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i ni A B 11==⋃⊂⋃,现在来证:i n i i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i n i i n i B A 11===则)()()()()(11111111111i n i n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|min 0且则 i ni i i i i i B B A A x 11100=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i n i i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明:(i )})(|{a x f x E >=}1)({1n a x f n +≥∞= (ii))(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E na x f x E n }1)(|{1n a x f x E n +≥∞= 反过来,{N n na x f x x E x n ∈∃+≥∈∀∞=},1)(|{1,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=10.证明:3R 中坐标为有理数的点是可数的。

泛函分析期末考试题库及答案

泛函分析期末考试题库及答案

泛函分析期末考试题库及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是泛函分析中的基本概念?A. 线性空间B. 线性算子C. 微分方程D. 范数答案:C2. 希尔伯特空间中的内积满足的性质不包括以下哪一项?A. 线性B. 对称性C. 正定性D. 可逆性答案:D3. 以下哪个是紧算子的性质?A. 有界B. 可逆C. 连续D. 可微答案:A4. 以下哪个定理是泛函分析中的基本定理?A. 泰勒定理B. 格林定理C. 里斯表示定理D. 牛顿-莱布尼茨定理答案:C二、填空题(每题5分,共20分)1. 在泛函分析中,一个线性空间的基是一组线性______的向量。

答案:无关2. 一个线性算子是______的,如果它将一个有界集映射到一个有界集。

答案:有界3. 一个线性算子是______的,如果它将一个紧集映射到一个紧集。

答案:紧4. 一个线性算子是______的,如果它在某个线性空间上是连续的。

答案:连续三、简答题(每题10分,共30分)1. 简述什么是线性空间,并给出其基本性质。

答案:线性空间是一个集合,其中的元素称为向量,满足加法和数乘两种运算,并且满足加法交换律、加法结合律、数乘分配律等性质。

2. 解释什么是紧算子,并给出一个例子。

答案:紧算子是一个线性算子,它将任意有界序列映射到一个收敛序列。

例如,考虑在L^2空间上的算子K,定义为K(f)(x) =∫f(t)sin(x-t)dt,它是一个紧算子。

3. 描述什么是希尔伯特空间,并说明其与欧几里得空间的关系。

答案:希尔伯特空间是一个完备的内积空间,它允许无限维向量的存在。

希尔伯特空间是欧几里得空间的推广,其中欧几里得空间是有限维的希尔伯特空间。

四、计算题(每题15分,共30分)1. 给定线性算子A: L^2(0,1) → L^2(0,1),定义为A(f)(x) =∫₀^x f(t)dt,证明A是一个紧算子。

答案:略2. 考虑在L^2(-1,1)上的算子B,定义为B(f)(x) = xf(x),证明B是一个有界算子,并求出其范数。

《实变函数与泛函分析基础》试卷及答案

《实变函数与泛函分析基础》试卷及答案

试卷一:一、单项选择题(3分×5=15分)1、1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P ='(D) P P =ο3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ⇒, 则()()n f x f x → (B) {}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))('x f 在],[b a 上L 可积 (D) ⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都有_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数. (填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________________________,则称()f x 为[],a b 上的有界变差函数。

实变函数与泛函分析4.2部分习题答案

实变函数与泛函分析4.2部分习题答案

习题4.24.2.2、设,,a b p 是实数,并且1p ≥。

证明不等式()()11p p pta t b t a t b +-≤+-,01t ≤≤特别地,令12t =,有()12p p p p a b a b -+≤+。

证:(ⅰ)若,0a b ≥函数()pf x x =在[)0,+∞上为凸函数∴当,0a b ≥时会成立()()()()()11f ta t b tf a t f b +-≤+- 即:()()()11pp p ta t bta t b +-≤+-(ⅱ)若,a b 都为负数,那么,a b --都为正数,则满足(ⅰ),即:()()()()()11pppta t b t a t b ---≤-+--式子两边取绝对值可得()()11pp pta t bt a t b +-≤+-(ⅲ)若,a b 异号,那么假设0a ≥,那么0b -≥,则()()()()()1111p p p pp p ta t b ta t b ta t b t a t b +-≤--≤+--=+-综上所述:()()11pp pta t bt a t b +-≤+-,01t ≤≤当12t =时,11112222p p p a b a b +≤+,即:()12p p p p a b a b -+≤+4.2.3、设(]0,1C 表示在半开半闭区间(]0,1上处处连续并且有界的函数()x t 的全体。

对于每个(]0,1x C ∈,令()01sup t x x t <≤=,证明:(ⅰ)x 是](0,1C 空间上的范数,](0,1C 按成一赋范线性空间;(ⅱ)在](0,1C 中点列{}n x 按范数收敛于0x 的充要条件是(){}n x t 在](0,1上均匀收敛于()0x t 。

证:(ⅰ)在(]0,1C 中的相加和数乘为:()()()()x y t x t y t +=+,()()()x t x t αα=((](],0,1,0,1,x y C t R α∈∈∈)因此,对于(],0,1x y C ∈,(]0,1t ∈,R α∈,有(1)显然有0x ≥,(]0,1x C ∈ (2)()()()()010101sup sup sup t t t x x t x t x t x ααααα<≤<≤<≤===⋅=⋅(3)()()()()010101sup sup sup t t t x y x t y t x t y t x y <≤<≤<≤+=+≤+=+(4)令0x =,即()01sup 0t x t <≤=,也就是()0x t =,即x 为(]0,1C 中零元素综上所述:x 是](0,1C 空间上的范数,](0,1C 按成一赋范线性空间(ⅱ)对于{}n x 及(]0,1x C ∈,n x x →,即为()()00010sup 0n n t x x x t x t <≤-→⇔-→⇔()n x t 在(]0,1上均匀收敛于()0x t4.2.6、R 是线性空间,p 是R 上的函数,如果满足 (ⅰ)()0p x ≥,()0p x =等价于0x =; (ⅱ)()()()p x y p x p y +≤+;(ⅲ)()()p x p x -=,并且()0lim 0n n p x αα→=,()()0lim 0n n p x p x α→=(,n αα是数),称p 是准范数,(),R p 为赋准范空间。

实变函数与泛函分析基础》习题解答

实变函数与泛函分析基础》习题解答

α∈Γ
α∈Γ
U ⇔ x ∈ f −1(Cα ) . α∈Γ

x ∈ f −1(C − D) ⇔ f (x) ∈C − D ⇔ f (x) ∈C


f (x) ∈ D ⇔ x ∈ f −1(C) ,且 x ∈ f −1(D) ⇔ x ∈ f −1(C) − f −1(D) .
③ f −1(C C ) = f −1(Y − C) = f −1(Y ) − f −1(C) = [ f −1(C)]C .
α∈Γ
α∈Γ
α∈Γ
α∈Γ
U U U U U Bα ⊂ ( Aα U Bα ) ,所以 ( Aα ) U ( Bα ) ⊂ ( Aα U Bα ) .
α∈Γ
α∈Γ
α∈Γ
α∈Γ
α∈Γ
∩ ∩ ② 因 ∀ α ∈ Γ : ( Aα ) ∩ ( Bα ) ⊂ Aα ∩ Bα , 所 以
α∈Γ
α∈Γ
∩ ∩ ∩ ∩ ∩ ( Aα ) ∩ ( Bα ) ⊂ ( Aα ∩ Bα ) . 另 方 面 : 因 ( Aα ∩ Bα ) ⊂ Aα ,
(4) ⇒ (1) : 因 { f (x1)} = f ( X ) − f ( X −{x}) , 所 以
f (x1) ∈ f ( X −{x}) .故 x ≠ x1时 f (x) ≠ f (x1) .
5.
y
=
π tan
x.
2
6. N (0,0,1), A(ξ ,η,ζ ), B(x, y,0) , A 为 单 位 球 面 上 的 点 , 即
④ x ∈ A ⇒ f (x) ∈ f ( A) ⇒ x ∈ f −1[ f ( A)] .
⑤ y ∈ f [ f −1(C)] ⇒ ∃ x ∈ f −1(C) : f (x) = y ⇒ y = f (x) ∈ C .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

06-07第二学期《实变函数与泛函分析》期末考试参考答案1. 设()f x 是),(+∞-∞上的实值连续函数, 则对于任意常数a , })(|{a x f x E >=是一开集, 而})(|{a x f x E ≥=总是一闭集. (15分) 证明 (1) 先证})(|{a x f x E >=为开集. (8分)证明一 设E x ∈0,则a x f >)(0,由)(x f 在),(+∞-∞上连续,知0>∃δ,使得),(00δδ+-∈x x x 时,a x f >)(, 即E x U ⊂),(0δ,故0x 为E 的内点. 由0x 的任意性可知,})(|{a x f x E >=是一开集.证明二 })(|{a x f x E >=可表为至多可数的开区间的并(由证明一前半部分), 由定理可知E 为开集.(2) 再证})(|{a x f x E ≥=是一闭集. (7分)证明一 设0x E '∈, 则0x 是E 的一个聚点, 则E ∃中互异点列},{n x 使得)(0∞→→n x x n . ………………………..2分由E x n ∈知a x f n ≥)(, 因为f 连续, 所以a x f x f x f n n n n ≥==∞→∞→)(lim )lim ()(0,即E x ∈0.……………………………………………………………………………………6分由0x 的任意性可知,})(|{a x f x E ≥=是一闭集. …………………………………7分 证明二 对})(|{a x f x E ≥=, {|()}E x f x a E ∂⊂=⊂,……………………… 5分 知E E E E =∂=Y ,E 为闭集. …………………………………………………… 7分 证明三 由(1)知,})(|{a x f x E >=为开集, 同理})(|{a x f x E <=也为开集, 所以})(|{a x f x CE ≥=闭集, 得证.2. 证明Egorov 定理:设,{()}n mE f x <∞是E 上一列..e a 收敛于一个..e a 有限的函数)(x f 的可测函数, 则对0>∀δ, 存在子集E E ⊂δ, 使)}({x f n 在δE 上一致收敛, 且.)\(δδ<E E m (15分)证明 任选一列自然数}{i n ,与此相应作E 的子集1111[{}][,][||,],i i k i i i E n E n E f f k n i i ∞∞====-<≥I I则)(x f n 必在}][{i n E 上一致收敛于)(x f .事实上,对0ε∀>,选0,i 使01,i ε<则当0i n n >时,对一切00101[{}][,][,],o i i k i i x E n E n E f f k n i ∈⊂=-<≥都有 01()()n f x f x i ε-<<. ……………………… 6分所以, 0>∀δ, 若能适当的选取}{i n , 使(\[{}])i m E E n δ<, 则令[{}]i E E n δ=即可.利用引理, 0,(\[,])0()m E E n n εε∀>→→∞. 故对任给的0δ>, 对1,iε=1,2,3,i =L , i n ∃,使得1(\[,])2i i m E E n i δ<,取}],[{i n E E =δ所以)}({x f n 在δE 上一致收敛.且……………………………………… 12分1111(\)(\[{}])(\[,])(\[,])i i i i i i i m E E m E E n m E E n m E E n δ∞∞=====I U111(\[,]),2i i i i m E E n i δδ∞∞==≤<=∑∑……………………………. 15分结论得证.3.证明勒贝格控制收敛定理:设(1) {})(x f n 是可测集E 上的可测函数列;(2) a.e.)()(x F x f n ≤于E ,n =1,2,…,)(x F 在E 上可积分; (3) )()(x f x f n ⇒, 则)(x f 在E 上可积分,且 ⎰⎰=EEn ndx x f dx x f )()(lim. (15分)证明证明一 由于)()(x f x f n ⇒,根据Rieze 定理,存在子列{})(x f i n a.e.收敛于)(x f .由于()()a.e.n f x F x ≤于E ,从而 a.e.)()(x F x f i n ≤于E ,得 a.e.)()(x F x f ≤于E .因为)(x F 可积,可得到)(x f 在E 上是可积的,且每个)(x f n 在E 上是可积的. …………… ..2分下证lim ()()n EEnf x dx f x dx =⎰⎰.我们分两步证明:(1) 先设mE <+∞.对任何0ε>,因为()F x 在E 上可积,由勒贝格积分的绝对连续性,知存在0δ>,使当e E ⊂且me δ<时有()4eF x dx ε<⎰. …………………………… ..4分 又因为)()(x f x f n ⇒,所以存在0N >,使当n N ≥时有[]n mE f f σδ-≥<,其中02mEεσ=>.所以当n N ≥时,[]()4n E f f F x dx σε-≥<⎰,………….………………… ..6分因此⎰⎰-EE n dx x f dx x f )()(=(()())n Ef x f x dx -⎰()()n Ef x f x dx ≤-⎰=[][]()()()()n n n n E f f E f f f x f x dx f x f x dx σσ-≥-<-+-⎰⎰≤[][](()())()()n n n n E f f E f f f x f x dx f x f x dx σσ-≥-<++-⎰⎰[]2()[]n n E f f F x dx mE f f σσσ-≥≤+-<⎰24mE εσ<⋅+⋅=22εεε+= ………………………….……….………………… ..9分这就证明了当mE <+∞时,成立lim ()()n EEnf x dx f x dx =⎰⎰.(2)设mE =+∞.因()F x 在E 上可积,由非负可测函数L 积分的定义[](lim ()(),kk E E k F x dx F x dx →∞=⎰⎰[]()()),kk E E F x dx F x dx ≤⎰⎰ 知对任何0ε>,存在,k E E ⊂k mE <+∞,使得[]()()4kk EEF x dx F x dx ε<+⎰⎰,所以dx x F kE E ⎰-)(=⎰⎰-EE dx xF dx x F k)()(≤()[()]kk EE F x dx F x dx -⎰⎰4ε<..……………… .11分 另一方面,在k E 上的可测函数列{}n f f -满足:()()2()..n f x f x F x a e -≤于,1,2,k E n =L , ()()0n f x f x -⇒(从)()(x f x f n ⇒),故在k E 上利用(1)的结论(从(1)有lim ()()n EEnf x dx f x dx =⎰⎰,所以由()()0n f x f x -⇒,得lim ()()0n Enf x f x dx -=⎰),知存在正整数N ,使当n N ≥时,()()2kn E f x f x dx ε-<⎰, (13)(注意: 上一步若直接由(1)得到亦正确) 因此()()n EEf x dx f x dx -≤⎰⎰⎰-En dx x f x f )()(()()()()kkn n E E E f x f x dx f x f x dx -=-+-⎰⎰2()2kE EF x dx ε-≤+⎰242εεε<⋅+= (15)证毕.证明二 由)()(x f x f n ⇒及黎斯定理 ,存在子列{})(x f i n a.e.收敛于)(x f . 因为a.e.)()(x F x f n ≤于E ,所以a.e.)()(x F x f i n ≤于E ,因此a.e.)()(x F x f ≤于E .由)(x F 可积,得到每个)(x f n 和)(x f 都是L 可积的. (2)因为)(x F 在E 上可积,即[]⎰⎰∞→=EE k k dx xF dx x F k)(lim )(,所以0>∀ε,存在0>k ,使得[]⎰⎰+<EE k dx xF dx x F k5)()(ε,因此dx x F kE E ⎰-)(=⎰⎰-EE dx xF dx x F k)()())()()](([x F x F x F k k ≤=()()5kk E E F x dx F x dx ε≤-<⎰⎰.…………………6分由绝对连续性,0>∃δ,使得E e ⊂,δ<me 时,有⎰<edx x F 5)(ε,对此δ,由)()(x f x f n ⇒(在E 上,从而在k E 上),所以存在0>N ,使得当N n ≥时,δε<⎥⎦⎤⎢⎣⎡+≥-)1(5k n k mE f f mE ,……………………10分当N n ≥时,记n H =⎥⎦⎤⎢⎣⎡+≥-)1(5k n k mE f f E ε,所以从δ<n mH ,有 ⎰<nH dx x F 5)(ε. 因为)()()(n k k n n n H E E E H H E H E --=-=Y Y Y ,所以当N n ≥时⎰⎰-EEn dx x f dx x f )()(=[]⎰-En dx x f x f )()(≤⎰-En dx x f x f )()(=⎰--nk H E n dx x f x f )()(+⎰--kE E n dx x f x f )()(+⎰-nH n dx x f x f )()(([]5(1)k n k n k E H E f f mE ε-=-<+)≤k k mE mE )1(5+ε+2⎰-k E E dx x F )(+2⎰n H dx x F )(<εεε52525++ =ε.…………………………………………………………………………...................15分这证明了⎰⎰=EEn ndx x f dx x f )()(lim.4.证明康托尔(Cantor)集合的测度为零. (10分) 证明证明一 Cantor 集[]⎥⎦⎤⎢⎣⎡-=K Y Y Y )98,97()92,91()32,31(1,0P ,………....................4分 所以[]⎪⎪⎭⎫⎝⎛+++-=⎪⎭⎫⎝⎛+++-=K K 3223232311 27492311,0m mP …………………................8分.0 3211311 3232321311 3322=-⨯-=⎪⎪⎭⎫ ⎝⎛++++-=K …………………..............10分 证明二 去掉过程进行到第n 步时,剩下2n个长度为3n -的闭区间,n I 这些区间的总长为22()033n nn =→ (当n →∞时),……………….....4分 故,0)32(*→≤n P m ………………………….............8分因此*0,m P = 即0.mP =……………………………………………….……….............10分 5.证明1(0,)lim 11nnndtt t n ∞=⎛⎫+ ⎪⎝⎭⎰. (15分)证明 当)1,0(∈t 时,2,11111≥≤⋅⎪⎭⎫ ⎝⎛+n tt n t nn;……………………………..........2分当),1[+∞∈t 时,1121111112nnn n t t t t t nn =⋅-⎛⎫+++⋯⋯+ ⎪⎝⎭222124,2112n t t n n n t n--≤=<>--.………………............4分⎪⎪⎩⎪⎪⎨⎧+∞∈∈=),,1[,4),1,0(,1)(2t t t tt F 令 则当2>n 时,有,)(111t F tn t nn ≤⎪⎭⎫ ⎝⎛+………………………………..............6分且⎰⎰⎰+∞∞=+=),0(12164)(dt tt dtdt t F , 即)(t F 在()∞,0上Lebesgue 可积. ……………………….…………………………..........8分又因为tn n ne t n t -∞→−−→−⋅⎪⎭⎫ ⎝⎛+111,所以由Lebesgue 控制收敛定理得………...........12分 原式=⎰⎰+∞+∞-+∞→==⎪⎭⎫ ⎝⎛+),0(),0(111limdt e t n t dt t n n n .………………............15分6. 证明Banach 不动点定理:设X 是完备的度量空间, T 是X 上的压缩映射, 那么T 有且只有一个不动点. (15分) 证明 设0x 为X 中的任一点,令ΛΛ,,,,01021201x T Tx x x T Tx x Tx x n n n =====-. …………………...3分下面证明点列{}∞=1n n x 是X 中的柯西点列.因为11(,)(,)m m m m d x x d Tx Tx +-=112(,)(,)m m m m d x x d Tx Tx αα---≤=21210(,)(,),m m m d x x d x x αα--≤≤≤L所以当m n >时,1121(,)(,)(,)(,)m n m m m m n n d x x d x x d x x d x x +++-≤+++L1101()(,)m m n d x x ααα+-≤+++L011(,),1n mmd x x ααα--=-又因为,10<<α所以,11<--mn α从而 )(),(1),(10m n x x d x x d m n m >-≤,αα.,0),(,,→∞→∞→n m x x d n m 时所以当即{}∞=1n n x 是X 中的柯西点列, …………...8分 由X 的完备性知,存在x X ∈,使x x m →.因为…………..................................................10分(,)(,)(,)m m d x Tx d x x d x Tx ≤+1(,)(,)0,m m m d x x d x x α→∞-≤+−−−→ 故(,)0d x Tx =,即x Tx =,所以x 为T 的不动点. ………..................................................12分下证其唯一性.如果又有X x ∈~,使x x T ~~=,则)~,()~,()~,(x x d x T Tx d x x d α≤=,因1<α,故0)~,(=x x d ,即x x ~=,得证. ………....................................................................15分7. 设0mE >, 又设E 上可积函数(),()f x g x 满足()()f x g x <, 试证:()d ()d EEf x xg x x <⎰⎰. (5分)证明 因为()()0g x f x ->, 所以[()()]d 0Eg x f x x -≥⎰…………………………………3分若[()()]d 0Eg x f x x -=⎰,则()()0g x f x -=, a.e. …………………………………………….…………………………5分 与题设矛盾, 故得()d ()d EEf x xg x x <⎰⎰.8. 设()f x 在[,]a b 上可导, 证明: ()f x 的导函数()f x '在[,]a b 上可测. (10分) 证明 补充定义()()f x f b =(x b >时), 则()f x 在[,)a b 上可导, 对任意N n ∈, 令1()()(),[,)1n f x f x n g x x a b n+-=∀∈..………………3分 由f 连续, 知每个n g 连续,故可测. …………………………….…………………………5分 由f 的可导性知()lim (),[,)n n f x g x x a b →∞'=∀∈…….………………7分因此()f x '作为一列可测函数的极限在[,)a b 上必可测, 故在[,]a b 上亦可测….………10分。

相关文档
最新文档