安平县第一中学校2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安平县第一中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )
A .2
B .4
C .
D .
2. 如果向量满足,且,则的夹角大小为( ) A .30° B .45° C .75° D .135°
3. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( ) A .M ∪N
B .(∁U M )∩N
C .M ∩(∁U N )
D .(∁U M )∩(∁U N )
4. 在ABC ∆中,2
2
tan sin tan sin A B B A =,那么ABC ∆一定是( )
A .锐角三角形
B .直角三角形
C .等腰三角形
D .等腰三角形或直角三角形
5. (理)已知tan α=2,则=( )
A .
B .
C .
D .
6. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )
A .为直角三角形
B .为锐角三角形
C .为钝角三角形
D .前三种形状都有可能
7. 已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值等于( ) A .0.1 B .0.2 C .0.4 D .0.6 8. 已知函数()cos()3
f x x π
=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =
的图象( )
A .向右平移
2π个单位 B .向左平移2π
个单位 C. 向右平移23π个单位 D .左平移23
π
个单位
9. 已知直线l :2y kx =+过椭圆)0(122
22>>=+b a b
y a x 的上顶点B 和左焦点F ,且被圆
224x y +=截得的弦长为L ,若5
L ≥
e 的取值范围是( )
(A ) ⎥⎦

⎝⎛
550, ( B )
05⎛


, (C ) ⎥⎦⎤ ⎝⎛5530, (D ) ⎥⎦⎤ ⎝⎛5540, 10.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( )
A .{}|303x x x -<<>或
B . {}
|3003x x x -<<<<或
C .{}|33x x x <->或
D . {}|303x x x <-<<或 11.函数f (x )
=
,则f (﹣1)的值为( )
A .1
B .2
C .3
D .4
12
.已知向量=(1,n
),=(﹣1,n ﹣2
),若
与共线.则n 等于( ) A .1
B

C .2
D .4
二、填空题
13.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 . 14.在△ABC 中,若角A
为锐角,且=(2,3
),=(3,m ),则实数m 的取值范围是 .
15.设不等式组
表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2
的概率是 .
16.已知函数f (x )
=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +
),向量=(0,1),θn
是向量
与i
的夹角,则
+
+…
+= .
17.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1; ③若实数x ,y 满足x 2+y 2=1
,则
的最大值为

④若△ABC 为锐角三角形,则sinA <cosB .
⑤在△ABC 中,BC=5,G ,O 分别为△ABC
的重心和外心,且

=5,则△ABC 的形状是直角三角形.
18.过抛物线y 2=4x 的焦点作一条直线交抛物线于A ,B 两点,若线段AB 的中点M 的横坐标为2,则|AB|等
于 .
三、解答题
19.如图:等腰梯形ABCD ,E 为底AB 的中点,
AD=DC=CB=AB=2,沿ED 折成四棱锥A ﹣BCDE ,使
AC=

(1)证明:平面AED ⊥平面BCDE ; (2)求二面角E ﹣AC ﹣B 的余弦值.
20.(本小题满分12分)已知等差数列{n a }满足:n n a a >+1(*
∈N n ),11=a ,该数列的
前三项分别加上1,1,3后成等比数列,且1log 22-=+n n b a . (1)求数列{n a },{n b }的通项公式; (2)求数列{n n b a ⋅}的前项和n T .
21.数列{a n }满足a 1=
,a n ∈(﹣

),且tana n+1•cosa n =1(n ∈N *
).
(Ⅰ)证明数列{tan 2a n }是等差数列,并求数列{tan 2
a n }的前n 项和;
(Ⅱ)求正整数m ,使得11sina 1•sina 2•…•sina m =1.
22.过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程.
23.(本小题满分12分)
如图长方体ABCD-A1B1C1D1中,AB=16,
BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=4,D1F=8,过点E,F,C的平面α与长方体的面相交,交线围成一个四边形.
(1)在图中画出这个四边形(不必说明画法和理由);
(2)求平面α将长方体分成的两部分体积之比.
24.设函数f(x)=lnx﹣ax+﹣1.
(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)当a=时,求函数f(x)的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2﹣2bx﹣,若对于∀x1∈[1,2],∃x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.
安平县第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】C
【解析】解:由于q=2,



故选:C .
2. 【答案】B
【解析】解:由题意故,即
故两向量夹角的余弦值为=
故两向量夹角的取值范围是45°
故选B
【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.
3. 【答案】B 【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},
∴∁U M={0,1}, ∴N ∩(∁U M )={0,1}, 故选:B .
【点评】本题主要考查集合的子交并补运算,属于基础题.
4. 【答案】D 【解析】
试题分析:在ABC ∆中,2
2
tan sin tan sin A B B A =,化简得
22sin sin sin sin cos cos A B
B A A B
=,解得 sin sin sin cos sin cos cos cos B A
A A
B B A B =⇒=,即s i n 2s i n 2A B =,
所以22A B =或22A B π=-,即A B =或2
A B π
+=
,所以三角形为等腰三角形或直角三角形,故选D .
考点:三角形形状的判定.
【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2
A B π
+=是试
题的一个难点,属于中档试题. 5. 【答案】D
【解析】解:∵tan α=2,∴ =
=
=

故选D .
6. 【答案】A
【解析】解:设A (x 1,x 12),B (x 2,x 22
),
将直线与抛物线方程联立得
, 消去y 得:x 2
﹣mx ﹣1=0,
根据韦达定理得:x 1x 2=﹣1,
由=(x 1,x 12),
=(x 2,x 22),
得到=x 1x 2+(x 1x 2)2=﹣1+1=0,



∴△AOB 为直角三角形. 故选A
【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.
7. 【答案】A
【解析】解:∵随机变量ξ服从正态分布N (2,o 2
),
∴正态曲线的对称轴是x=2 P (0<X <4)=0.8,
∴P (X >4)=(1﹣0.8)=0.1, 故选A .
8. 【答案】B
【解析】
试题分析:函数()cos ,3f x x π⎛⎫
=+
∴ ⎪⎝
⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫
=-+=+ ⎪ ⎪⎝⎭⎝⎭
,所以函数 ()cos 3f x x π⎛
⎫=+ ⎪⎝
⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到
5cos cos 326y x x πππ⎛⎫⎛
⎫=++=+ ⎪ ⎪⎝⎭⎝⎭
,故选B.
考点:函数()sin y A x ωϕ=+的图象变换.
9. 【答案】 B
【解析】依题意,2, 2.b kc ==
设圆心到直线l 的距离为d ,则L =解得216
5
d ≤。

又因为
d =,所以2116,15k ≤+解得2
14k ≥。

于是222
222211c c e a b c k ===++,所以240,5
e <≤解得0e <≤故选B . 10.【答案】B
【解析】
试题分析:因为()f x 为奇函数且()30f -=,所以()30f =,又因为()f x 在区间()0,+∞上为增函数且()30f =,所以当()0,3x ∈时,()0f x <,当()3,x ∈+∞时,()0f x >,再根据奇函数图象关于原点对称
可知:当()3,0x ∈-时,()0f x >,当(),3x ∈-∞-时,()0f x <,所以满足()0x f x ⋅<的x 的取值范围是:()3,0x ∈-或()0,3x ∈。

故选B 。

考点:1.函数的奇偶性;2.函数的单调性。

11.【答案】A
【解析】解:由题意可得f (﹣1)=f (﹣1+3)=f (2)=log 22=1 故选:A
【点评】本题考查分度函数求值,涉及对数的运算,属基础题.
12.【答案】A
【解析】解:∵向量=(1,n ),=(﹣1,n ﹣2),且与共线. ∴1×(n ﹣2)=﹣1×n ,解之得n=1
故选:A
二、填空题
13.【答案】[﹣1,﹣).
【解析】解:作出y=|x﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k∈[﹣
1,﹣).
故答案为:[﹣1,﹣).
【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.
14.【答案】.
【解析】解:由于角A为锐角,
∴且不共线,
∴6+3m>0且2m≠9,解得m>﹣2且m.
∴实数m的取值范围是.
故答案为:.
【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题.
15.【答案】.
【解析】解:到坐标原点的距离大于2的点,位于以原点O为圆心、半径为2的圆外
区域D:表示正方形OABC,(如图)
其中O为坐标原点,A(2,0),B(2,2),C(0,2).
因此在区域D内随机取一个点P,
则P点到坐标原点的距离大于2时,点P位于图中正方形OABC内,
且在扇形OAC的外部,如图中的阴影部分
∵S正方形OABC=22=4,S阴影=S正方形OABC﹣S扇形OAC=4﹣π•22=4﹣π
∴所求概率为P==
故答案为:
【点评】本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离大于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.
16.【答案】.
【解析】解:点An(n,)(n∈N+),向量=(0,1),θn是向量与i的夹角,
=,=,…,=,
∴++…+=+…+=1﹣=,
故答案为:.
【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题.17.【答案】:①②③
【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;
对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;
对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线
的斜率,其最大值为,③正确;
对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,
即π﹣A﹣B<,即A+B>,B>﹣A,
则cosB<cos(﹣A),
即cosB<sinA,故④不正确.
对于⑤在△ABC中,G,O分别为△ABC的重心和外心,
取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,
∵=|,

则,


又BC=5
则有
由余弦定理可得cosC<0,
即有C为钝角.
则三角形ABC为钝角三角形;⑤不正确.
故答案为:①②③
18.【答案】6.
【解析】解:由抛物线y2=4x可得p=2.
设A(x1,y1),B(x2,y2).
∵线段AB的中点M的横坐标为2,∴x1+x2=2×2=4.
∵直线AB过焦点F,
∴|AB|=x1+x2+p=4+2=6.
故答案为:6.
【点评】本题考查了抛物线的过焦点的弦长公式、中点坐标公式,属于基础题.
三、解答题
19.【答案】
【解析】(1)证明:取ED的中点为O,
由题意可得△AED为等边三角形,
,,
∴AC2=AO2+OC2,AO⊥OC,
又AO⊥ED,ED∩OC=O,AO⊥面ECD,又AO⊆AED,
∴平面AED⊥平面BCDE;…
(2)如图,以O为原点,OC,OD,OA分别为x,y,z轴,建立空间直角坐标系,则E(0,﹣1,0),A(0,0,),C(,0,0),B(,﹣2,0),
,,,
设面EAC的法向量为,
面BAC的法向量为
由,得,∴,
∴,
由,得,∴,
∴,
∴,
∴二面角E﹣AC﹣B的余弦值为.…
2016年5月3日
20.【答案】(1)12-=n a n ,n
n b 21=;(2)n n
n T 2323+-=. 【解析】
试题分析:(Ⅰ1)设d 为等差数列{}n a 的公差,且0>d ,利用数列的前三项分别加上3,1,1后成等比数列,
求出d ,然后求解n b ;(2)写出n
n n T 21
2...232321321-+
+++=
利用错位相减法求和即可. 试题解析:解:(1)设d 为等差数列{}n a 的公差,0>d ,
由11=a ,d a +=12,d a 213+=,分别加上3,1,1后成等比数列,] 所以)24(2)2(2
d d +=+ 0>d ,∴2=d
∴122)1(1-=⨯-+=n n a n
又1log 22--=n n b a ∴n b n -=2log ,即n
n b 21
=
(6分)
考点:数列的求和. 21.【答案】
【解析】(Ⅰ)证明:∵对任意正整数n ,a n ∈(﹣

),且tana n+1•cosa n =1(n ∈N *
).
故tan2a n+1==1+tan2a n,
∴数列{tan2a n}是等差数列,首项tan2a1=,以1为公差.
∴=.
∴数列{tan2a n}的前n项和=+=.
(Ⅱ)解:∵cosa n>0,∴tana n+1>0,.
∴tana n=,,
∴sina1•sina2•…•sina m=(tana1cosa1)•(tana2•cosa2)•…•(tana m•cosa m)
=(tana2•cosa1)•(tana3cosa2)•…•(tana m•cosa m﹣1)•(tana1•cosa m)
=(tana1•cosa m)==,
由,得m=40.
【点评】本题考查了等差数列的通项公式及其前n项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.
22.【答案】
【解析】解:由题意可知过焦点的直线方程为y=x﹣,联立,
得,
设A(x1,y1),B(x2,y2)
根据抛物线的定义,得|AB|=x1+x2+p=4p=8,
解得p=2.
∴抛物线的方程为y2=4x.
【点评】本题给出直线与抛物线相交,在已知被截得弦长的情况下求焦参数p的值.着重考查了抛物线的标准方程和直线与圆锥曲线位置关系等知识,属于中档题.
23.【答案】
【解析】解:
(1)交线围成的四边形EFCG (如图所示). (2)∵平面A 1B 1C 1D 1∥平面ABCD , 平面A 1B 1C 1D 1∩α=EF , 平面ABCD ∩α=GC , ∴EF ∥GC ,同理EG ∥FC . ∴四边形EFCG 为平行四边形, 过E 作EM ⊥D 1F ,垂足为M , ∴EM =BC =10,
∵A 1E =4,D 1F =8,∴MF =4. ∴GC =EF =EM 2+MF 2=
102+42=116,
∴GB =
GC 2-BC 2=
116-100=4(事实上Rt △EFM ≌Rt △CGB ).
过C 1作C 1H ∥FE 交EB 1于H ,连接GH ,则四边形EHC 1F 为平行四边形,由题意知,B 1H =EB 1-EH =12-8=4=GB .
∴平面α将长方体分成的右边部分由三棱柱EHG -FC 1C 与三棱柱HB 1C 1­GBC 两部分组成. 其体积为V 2=V 三棱柱EHG -FC 1C +V 三棱柱HB 1C 1­GBC =S △FC 1C ·B 1C 1+S △GBC ·BB 1 =12×8×8×10+1
2
×4×10×8=480, ∴平面α将长方体分成的左边部分的体积V 1=V 长方体-V 2=16×10×8-480=800. ∴V 1V 2=800480=53
, ∴其体积比为53(3
5也可以).
24.【答案】
【解析】解:函数f (x )的定义域为(0,+∞),(2分)
(Ⅰ)当a=1时,f (x )=lnx ﹣x ﹣1,∴f (1)=﹣2,,
∴f ′(1)=0,∴f (x )在x=1处的切线方程为y=﹣2(5分)
(Ⅱ)
=
(6分)
令f′(x)<0,可得0<x<1,或x>2;令f'(x)>0,可得1<x<2
故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+∞).
(Ⅲ)当时,由(Ⅱ)可知函数f(x)在(1,2)上为增函数,
∴函数f(x)在[1,2]上的最小值为f(1)=(9分)
若对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,等价于g(x)在[0,1]上的最小值不大于f(x)在(0,
e]上的最小值(*)(10分)
又,x∈[0,1]
①当b<0时,g(x)在[0,1]上为增函数,与(*)矛盾
②当0≤b≤1时,,由及0≤b≤1得,
③当b>1时,g(x)在[0,1]上为减函数,,
此时b>1(11分)
综上,b的取值范围是(12分)
【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查恒成立问题,解题的关键是将对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,转化为g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值.。

相关文档
最新文档