凤台县第二高级中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
凤台县第二高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为()
A.B.18 C.D.
2.已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为()A.M∪N B.(∁U M)∩N C.M∩(∁U N)D.(∁U M)∩(∁U N)
3.如图,程序框图的运算结果为()
A.6 B.24 C.20 D.120
4.已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是()A.M∪N B.M∩N C.∁I M∪∁I N D.∁I M∩∁I N
5.若a>0,b>0,a+b=1,则y=+的最小值是()
A.2 B.3 C.4 D.5
6.函数f(x)=3x+x的零点所在的一个区间是()
A .(﹣3,﹣2)
B .(﹣2,﹣1)
C .(﹣1,0)
D .(0,1)
7. 下面是关于复数的四个命题:
p 1:|z|=2, p 2:z 2=2i ,
p 3:z 的共轭复数为﹣1+i , p 4:z 的虚部为1. 其中真命题为( )
A .p 2,p 3
B .p 1,p 2
C .p 2,p 4
D .p 3,p 4
8. 设M={x|﹣2≤x ≤2},N={y|0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )
A .
B .
C .
D .
9. 设双曲线=1(a >0,b >0)的渐近线方程为y=
x ,则该双曲线的离心率为( )
A .
B .2
C .
D .
10.已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y+7=0相交于A ,B 两点,且
•=4,则实数a
的值为( )
A .
或﹣
B .
或3
C .
或5
D .3
或5
11.f ()=,则f (2)=( )
A .3
B .1
C .2
D .
12.设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )
A .-2或-1
B .1或2 C.1±或2 D .2±或-1
二、填空题
13.【常熟中学2018届高三10月阶段性抽测(一)】函数()2
1ln 2
f x x x =
-的单调递减区间为__________. 14.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 .
15.已知函数f (x )
=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +
),向量=(0,1),θn
是向量
与i
的夹角,则
+
+…
+= .
16.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .
17.已知1sin cos 3αα+=
,(0,)απ∈,则sin cos 7sin 12
ααπ-的值为 .
18.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×的值为_______.
【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.
三、解答题
19.(本小题满分12分)
已知函数(
)23
cos cos 2
f x x x x =++
. (1)当6
3x ππ⎡⎤
∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;
(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+ ⎪⎝⎭,若函数()g x 在区间236ππ⎡⎤
-⎢⎥⎣
⎦,上是增函数,求ω的最大值.
20.如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,.
求证:PC⊥BC;
(Ⅱ)求三棱锥C﹣DEG的体积;
(Ⅲ)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;否则,说明理由.
21.已知命题p:方程表示焦点在x轴上的双曲线.命题q:曲线y=x2+(2m﹣3)x+1与x轴交于不同的两点,若p∧q为假命题,p∨q为真命题,求实数m的取值范围.
22.(本小题满分10分)
已知圆P过点)0,1(A,)0,4(B.
C,求圆P的方程;
(1)若圆P还过点)2,6(
(2)若圆心P的纵坐标为,求圆P的方程.
23.根据下列条件求方程.
(1)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程
(2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.
24.在锐角△ABC中,角A、B、C的对边分别为a、b、c,且.
(Ⅰ)求角B的大小;
(Ⅱ)若b=6,a+c=8,求△ABC的面积.
凤台县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】D
【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:
故该几何体的表面积为:3×22
+3×()+=,
故选:D.
2.【答案】B
【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},
∴∁U M={0,1},
∴N∩(∁U M)={0,1},
故选:B.
【点评】本题主要考查集合的子交并补运算,属于基础题.
3.【答案】B
【解析】解:∵循环体中S=S×n可知程序的功能是:
计算并输出循环变量n的累乘值,
∵循环变量n的初值为1,终值为4,累乘器S的初值为1,
故输出S=1×2×3×4=24,
故选:B.
【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.
4.【答案】D
【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},
∴M∪N={1,2,3,6,7,8},
M∩N={3};
∁I M∪∁I N={1,2,4,5,6,7,8};
∁I M∩∁I N={2,7,8},
故选:D.
5.【答案】C
【解析】解:∵a>0,b>0,a+b=1,
∴y=+=(a+b)=2+=4,当且仅当a=b=时取等号.
∴y=+的最小值是4.
故选:C.
【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.
6.【答案】C
【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,
又f(﹣1)=﹣1<0,f(0)=30+0=1>0,
∴f(﹣1)f(0)<0,
可知:函数f(x)的零点所在的区间是(﹣1,0).
故选:C.
【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.
7.【答案】C
【解析】解:p
:|z|==,故命题为假;
1
p2:z2===2i,故命题为真;
,∴z的共轭复数为1﹣i,故命题p3为假;
∵,∴p4:z的虚部为1,故命题为真.
故真命题为p2,p4
故选:C.
【点评】本题考查命题真假的判定,考查复数知识,考查学生的计算能力,属于基础题.
8.【答案】B
【解析】解:A项定义域为[﹣2,0],D项值域不是[0,2],C项对任一x都有两个y与之对应,都不符.故选B.
【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题.
9.【答案】C
【解析】解:由已知条件知:;
∴;
∴;
∴.
故选C.
【点评】考查双曲线的标准方程,双曲线的渐近线方程的表示,以及c2=a2+b2及离心率的概念与求法.
10.【答案】C
【解析】解:圆x2
+y2+2x﹣4y+7=0,可化为(x+)2+(y﹣2)2=8.
∵•=4,∴2•2cos∠ACB=4
∴cos∠ACB=,
∴∠ACB=60°
∴圆心到直线的距离为,
∴=,
∴a=或5.
故选:C.
11.【答案】A
【解析】解:∵f()=,
∴f(2)=f()==3.
故选:A.
12.【答案】D
【解析】
试题分析:当公比1-=q 时,0524==S S ,成立.当1-≠q 时,24,S S 都不等于,所以
422
2
4==-q S S S , 2±=∴q ,故选D.
考点:等比数列的性质.
二、填空题
13.【答案】()0,1
【解析】
14.【答案】 .
【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,
其中4个点构成平行四边形的选法有3个,
∴4个点构成平行四边形的概率P==
.
故答案为:
.
【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.
15.【答案】 .
【解析】解:点An (n ,
)(n ∈N +
),向量=(0,1),θn 是向量
与i 的夹角,
=
,
=
,…, =,
∴
++…
+
=+…
+=1
﹣
=,
故答案为:
.
【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
16.【答案】1-1,3] 【解析】
试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈≤≤≤=1-1,3]
考点:集合运算 【方法点睛】
1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.
2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.
3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 17.
【答案】3
【解析】
7sin
sin sin cos cos sin 124343
43πππππππ⎛⎫
=+=
+ ⎪⎝
⎭
=
,
sin cos 7
3
sin 12
ααπ-∴==
, 故答案为
3
.
考点:1、同角三角函数之间的关系;2、两角和的正弦公式.
18.【答案】8
三、解答题
19.【答案】(1)332⎡⎤
⎢⎥⎣⎦
,;(2).
【解析】
试题分析:(1)化简()sin 226f x x π⎛
⎫=++ ⎪⎝⎭,结合取值范围可得1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭⇒值域为332⎡⎤⎢⎥⎣⎦,;(2)
易得()sin 22123x g x f x ωππω⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭和233363x πωππωππω⎡⎤+∈-++⎢⎥⎣⎦,,由()g x 在23
6ππ⎡⎤
-
⎢⎥⎣⎦,上是增函数⇒222Z 336322k k k ωππωππππππ⎡⎤⎡⎤
-
++⊆-++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,⇒ 22332
26
32k k ωππ
ππωππππ⎧-+≥-+⎪⎪⎨
⎪+≤+⎪⎩⇒534112k k ωω⎧≤-⎪⎨⎪≤+⎩⇒151212k -<<,Z k ∈⇒0k =⇒1ω≤⇒ω的最大值为.
考点:三角函数的图象与性质.
20.【答案】
【解析】解:(I)证明:∵PD⊥平面ABCD,∴PD⊥BC,
又∵ABCD是正方形,∴BC⊥CD,∵PDICE=D,
∴BC⊥平面PCD,又∵PC⊂面PBC,∴PC⊥BC.
(II)解:∵BC⊥平面PCD,
∴GC是三棱锥G﹣DEC的高.
∵E是PC的中点,∴.
∴.
(III)连接AC,取AC中点O,连接EO、GO,延长GO交AD于点M,则PA∥平面MEG.
下面证明之:
∵E为PC的中点,O是AC的中点,∴EO∥平面PA,
又∵EO ⊂平面MEG ,PA ⊄平面MEG ,∴PA ∥平面MEG , 在正方形ABCD 中,∵O 是AC 中点,∴△OCG ≌△OAM ,
∴
,∴所求AM 的长为.
【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想.
21.【答案】
【解析】解:∵方程表示焦点在x 轴上的双曲线,
∴
⇒m >2
若p 为真时:m >2,
∵曲线y=x 2
+(2m ﹣3)x+1与x 轴交于不同的两点,
则△=(2m ﹣3)2
﹣4>0⇒m >或m
,
若q 真得:或,
由复合命题真值表得:若p ∧q 为假命题,p ∨q 为真命题,p ,q 命题一真一假 若p 真q 假:;
若p 假q 真:
∴实数m 的取值范围为:
或
.
【点评】本题借助考查复合命题的真假判定,考查了双曲线的标准方程,关键是求得命题为真时的等价条件.
22.【答案】(1)04752
2
=++-+y x y x ;(2)4
25)2()25(2
2=
-+-y x . 【解析】
试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程02
2
=++++F Ey Dx y x ,将三点代入,求解圆的方程;(2)AB 的垂直平分线过圆心,所以圆心的横坐标为2
5
,圆心与圆上任一点连线段为半径,根据圆心与半径求圆的标准方程.
试题解析:(1)设圆P 的方程是02
2
=++++F Ey Dx y x ,则由已知得
⎪⎩
⎪⎨⎧=+-+-+=++++=++++0
26)2(60
04040001222
222F E D F D F D ,解得⎪⎩⎪⎨⎧==-=475F E D . 故圆P 的方程为04752
2
=++-+y x y x .
(2)由圆的对称性可知,圆心P 的横坐标为25
241=+,故圆心)2,2
5(P , 故圆P 的半径25)20()251(||2
2=-+-==AP r ,
故圆P 的标准方程为4
25)2()25(2
2=-+-y x .
考点:圆的方程 23.【答案】
【解析】解:(1
)易知椭圆
+
=1的右焦点为(2,0),
由抛物线y 2
=2px
的焦点(,0
)与椭圆
+=1的右焦点重合,
可得p=4,
可得抛物线y 2
=8x 的准线方程为x=﹣2.
(2
)椭圆
+=1的焦点为(﹣4,0)和(4,0),
可设双曲线的方程为
﹣
=1(a ,b >0),
由题意可得c=4,即a 2+b 2
=16,
又
e==2, 解得a=2,b=2
,
则双曲线的标准方程为
﹣
=1.
【点评】本题考查圆锥曲线的方程和性质,主要是抛物线的准线方程和双曲线的方程的求法,注意运用待定系数法,考查运算能力,属于基础题.
24.【答案】
【解析】解:(Ⅰ)由
2bsinA=a
,以及正弦定理,得
sinB=,
又∵B 为锐角,
∴B=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
(Ⅱ)由余弦定理b2=a2+c2﹣2accosB,
∴a2+c2﹣ac=36,
∵a+c=8,
∴ac=,
∴S△ABC==.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣。