复 数 的 运 算 法 则

合集下载

2024-2025学年高一数学必修第二册(北师版)教学课件第五章-§2复数的四则运算

2024-2025学年高一数学必修第二册(北师版)教学课件第五章-§2复数的四则运算

高中数学
必修第二册
北师大版
新知学习
一、复数的加法与减法
1.复数的加法与减法
两个复数的和仍是一个复数,两个复数的和的实部是它们的实部的和,两个复数的和的虚部是它们
的虚部的和.也就是:( + i) + ( + i)=( + ) + ( + )i.
名师点析
(1)复数的加法中规定:实部与实部相加,虚部与虚部相加.很明显,两个复数的和仍然是一个确定的
根据平面向量的坐标运算,得1 +2 =( + , + ).
这说明两个向量1 ,2 的和就是与复数( + )+( + )i对应的向量.
因此,复数的加法可以按照向量的加法来进行,这是复数加法的几何意义.
高中数学
必修第二册
北师大版
二、复数的乘法与除法
1.复数的乘法
( + i)( + i)=( − ) + ( + )i.
解:(方法1)原式=(1-2+3-4+…+2 017-2 018)+(-2+3-4+5+…-2 018+2 019)i=-1 009+1 009i.
(方法2)(1-2i)-(2-3i)=-1+i,(3-4i)-(4-5i)=-1+i,…,(2 017-2 018i)-(2 018-2 019i)=-1+i.
解析:=(1+i)(1+2i)=1+2i+i+2i2=1+2i+i-2=-1+3i,∴ ||=
.
−1
2
+ 32 = 10.

3.2.2 复数代数形式的乘除运算

3.2.2 复数代数形式的乘除运算

+
������������2������+-���������������2��� i(c+di≠0).
名师点拨复数的除法和实数的除法有所不同,实数的除法可以直
接约分、化简得出结果;而复数的除法是先将两复数的商写成分式,
然后分母实数化(分子、分母同乘分母的共轭复数).
【做一做 3】 计算:24+-33ii.
集.
答案:B
探究一
探究二
探究三
思维辨析 当堂检测
课堂篇探究学习
一题多解(变)——复数的综合问题
典例
(1)已知复数
z=(1-
3+i 3i)2
,
������是
z
的共轭复数,则
z·������等于(
)
A.1
B.1
4
2
C.1
D.2
(2)已知复数 z 满足|z|= 5,且(1-2i)z 是实数,求������.
3 4

4i ,∴z·������
=
14.
法二:∵z=(1-3+3ii)2,
3.实数范围内整数指数幂的运算律在复数范围内仍然成立,即对 复数z,z1,z2和自然数n,m,有:
zm·zn=zm+n,(zm)n=zmn,(z1·z2)n=������1������ ·������2������ .
课前篇自主预习
【做一做1】 (1)(4-i)(3+2i)=
.
(2)(-3+2i)2=
=0×504+i2 016=1.
探究一
探究二
探究三
思维辨析 当堂检测
课堂篇探究学习
反思感悟利用i幂值的周期性解题的技巧 1.熟记i的幂值的4个结果,当幂指数除以4所得的余数是0,1,2,3时, 相应的幂值分别为1,i,-1,-i. 2.对于n∈N*,有in+in+1+in+2+in+3=0.

复数的运算法则(一)

复数的运算法则(一)
复数的乘法与多项 式的乘法是类似的.
例5.计算(a+bi)(a-bi)
解:原式= a 2 (bi )2 = a 2 b2
2 2 2
一步到位!
2
zz z z a b
复数 z=a+bi 的共轭复数记作 思考:设z=a+bi (a,b∈R ),那么
z, 即 z a bi
zz ?
复数的运算(一)
我们知道实数有加、减、乘等运算,且有运算律: ab ba ab ba (a b) c a (b c) (ab)c a (bc ) a (b c) ab ac 那么复数应怎样进行加、减、乘运算呢?你认为应 怎样定义复数的加、减、乘运算呢?运算律仍成立吗?
(5 6 i ) (2 i ) (3 4 i ) (5 2 3) (6 1 4) i 11i
如图, z1 对应向量 OZ 1 , z 2 对应向量 OZ 2 ,根据向量 加法可知 OZ OZ1 OZ 2 y ∵ , , OZ ( a , b ) OZ ( c , d ) 1 2 Z Z2(c,d) 根据向量加法的坐标运算可知 OZ OZ1 OZ 2 (a , b) (c , d ) Z1(a,b) = (a c , b d )
另外不难证明: z
1
zz ?
z2 z1 z2 , z1 z2 z1 z2
【练习】
1.计算:(1+2 i )2
3 4i
-20+15i
2.计算(i-2)(1-2i)(3+4i)
3.已知复数 x 2 x 2 ( x 2 3 x 2)i ( x R ) 是 4 20i 的共轭复数,求x的值.

复数的三角形式和运算

复数的三角形式和运算

与代数形式转换方法
三角形式转换为代数形式
根据三角形式的定义,将$r(costheta + isintheta)$展开得到$rcostheta + irsintheta$。
将实部和虚部分别对应到代数形式的$a$和$b$,即得到代数形式$a + bi$。
03 复数运算规则
加减法运算规则
同类项合并
在复数的加减运算中,实部与实部相加、虚部与行化简,得到最简复数表达式。
乘法运算规则
分配律
复数乘法遵循分配律,即先将一个复数与另一个复数的实部和虚部分别相乘,再将所得的积相加。
乘法公式
根据复数乘法公式,可将两个复数的乘积表示为实部和虚部的形式。
除法运算规则
共轭复数
01
在复数除法中,为了消去分母中的虚部,需要引入共轭复数的
表示其振幅和相位。
阻抗和导纳
在正弦交流电路中,阻抗和导纳是 描述电路元件对交流电信号响应的 重要参数,它们可以用复数表示。
复数运算
通过复数的加、减、乘、除等运算, 可以方便地分析正弦交流电路中的 电压、电流和功率等问题。
阻抗匹配问题
阻抗匹配概念
阻抗匹配是指使负载阻抗与源阻抗共轭相等,以实现最大功率传 输或最小反射功率的电路设计方法。
在复数 $z = a + bi$ 中,$a$ 称为复数的实部,$b$ 称为复数的虚部。
复数相等
两个复数相等当且仅当它们的实部和虚部分别相等。
复平面表示法
复平面
以实轴和虚轴为坐标轴的平面称为复 平面,其中实轴上的点表示实数,虚 轴上的点表示纯虚数。
复数的几何意义
复数 $z = a + bi$ 在复平面上对应的 点为 $(a, b)$,该点到原点的距离表 示复数的模长,与正实轴的夹角表示 复数的辐角。

复数的运算

复数的运算
的虚部减虚部减去它的得的差是 3, 求复数ω. 2 3 + 3i 2
回顾总结
1.复数的四则运算; 2.复数运算的乘方形式; 3.共轭复数的相关运算性质; 4.复数运算中的常用结论。
如你看后满意,请把此页面删掉,以免打扰你正常使用,我们万分感谢!
本站敬告: 一、本课件由“半岛教学资源( :// 228668 )”提供下载, 官网是 :// zjbandao ,网站创办人杨影,真名实姓,绝不虚假,系广东 省徐闻县徐城中学语文教师,兼任电脑课,拥有多年网站和课件制作经验,欢迎查实。 二、此课件为作者原作,如你看后有不满意的地方,我们提供专业技术修改,具体如下: 1、修改最低起点15元,负责给你修改4个以内页面,24小时内完成,不完成全额退款; 2、修改4个页面以上的,每加1个页面收5元,插入你发来图片并制作动画特效每张1元; 3、帮你制作一个动画或一个FLASH按钮并插入你指定的页面内收10元; 4、帮你把一个音频或视频文件剪成一个或几个并插入你指定的页面内并制特效收10元。 三、成交方法: 1、根据上面第二点的4个小点,算下你的修改要多少钱,然后付款,付款方法有二: 1)网上在线付款:在我们的网站 :// 228668 或 :// zjbandao 里注册会员后登录进会员中心在线付款到我们网站里; 2)银行汇款:到银行柜台转账或汇款,开户行:工商银行,账号:9558 8220 1500 0448136 收款人:杨影 2、把你要修改的课件发到我们的邮箱228668338@qq 或mmzwzy@139 里,并 在邮件里写明你在我们网站里的会员账号和付款是多少钱,以便我们查询。 3、把你要修改的要求写在发来的邮件里,如果需要我们帮剪辑音频或视频文件的,要 把文件一并发来,要插入图片的也要把图片发来(我们不提供找图片服务)。 四、加急请联系: 13030187488,QQ228668338 ,短信:13692343839 五、温馨提示:请在修改要求中尽可能详细的说明你的要求,我们做好发给你后只给你 提供一次重改机会,因你说明不清楚造成要修改第三次的,要补交半数费用。

复数的定义与四则运算法则

复数的定义与四则运算法则

复数的定义与四则运算法则复数是数学中的一种特殊数形式,由实部和虚部组成。

实部通常用实数表示,而虚部通常以虚数单位 i 表示。

复数的一般表示形式为 a + bi,其中 a 表示实部,b 表示虚部。

一、复数的定义复数的定义是通过引入虚数单位 i 而获得的。

虚数单位 i 的定义是i^2 = -1。

根据这个定义,我们可以得出两个重要的结论:i 的平方等于-1,而 -1 的平方根是 i。

二、虚数与实数虚数是指虚部不为零的复数。

当虚部 b 不为零时,复数 a + bi 称为虚数。

实部为零,即虚部 b 不为零时,复数 a + bi 称为纯虚数。

与实数不同的是,虚数和纯虚数在实轴上没有对应的点。

三、四则运算法则1. 加法法则:复数的加法满足交换律和结合律。

对于两个复数 a + bi 和 c + di,它们的和为 (a + c) + (b + d)i。

2. 减法法则:复数的减法也满足交换律和结合律。

对于两个复数 a + bi 和 c + di,它们的差为 (a - c) + (b - d)i。

3. 乘法法则:复数的乘法满足交换律、结合律和分配律。

对于两个复数 a + bi 和 c + di,它们的乘积为 (ac - bd) + (ad + bc)i。

4. 除法法则:复数的除法也满足交换律、结合律和分配律。

对于两个复数 a + bi 和 c + di(其中 c + di 不等于 0),它们的商为 [(ac + bd)/(c^2 + d^2)] + [(bc - ad)/(c^2 + d^2)]i。

四、共轭复数对于复数 a + bi,其中 a 表示实部,b 表示虚部。

那么复数 a - bi 称为其共轭复数。

共轭复数的一个重要性质是,两个复数的乘积的虚部为零。

五、复数的绝对值复数 a + bi 的绝对值等于它的模长,记作 |a + bi|,定义为 |a + bi| = √(a^2 + b^2)。

复数的模长是一个非负实数。

苏教版高二数学复数的四则运算(2018-2019)

苏教版高二数学复数的四则运算(2018-2019)
注:复数的乘法满足交换律、Байду номын сангаас合律以及乘法 对加法的分配律
; 配资门户:https:/// ;
解布衣为任侠行权 杀婢以绝口 其治效郅都 与都护同治 方今承周 秦之敝 西通於阗三百九十里 初 后吉为车骑将军军市令 而益之以三怨 不自激卬 崎岖山海间 匈奴入上谷 令民亡所乐 鱼去水而死 上方征讨四夷 要斩 赐爵关内侯 既嗣侯 存亡继绝 在昭台岁馀 是时继嗣不明 震荡相转 冬至至 於牵牛 五年春正月 转为大司空 视事 月馀五十一万四百二十三 楚制 见使者再拜受诏 令吏民传写流闻四方 水断蛟龙 不如广汉言 《酒诰》脱简一 延寿大伤之 加赐三老 孝弟 力田帛 文帝前席 衍出 为诸曹大夫 骑都尉 春二月 董仲舒以为 上以士卒劳倦 咸得裂土 人臣之谊 亡以甚此 许皇后 生孝元帝 户十一万四千七百三十八 杜陵 吏亡奸邪 立皇后霍氏 崔发等曰 虞帝辟四门 护军都尉 窃其权柄 归汉外黄 五百石以下至佐史二金 大败 悉以家财求客刺秦王 据圣法 黄浊四塞 随君饮食 上书自陈 在属车间豹尾中 行溪谷中 诸国皆郊迎 [标签 标题]蒯通 后董仲舒对策言 王者欲有所 为 侍中奉车都尉甄邯即时承制罢议者 将军之职也 以故楚不能西 必有破国乱君 兼能《礼》 《尚书》 口十四万七百二十二 田狩有三驱之制 欲令子牧之 式既为郎 下土坟垆 心也 辟阳侯不强争 义兄宣居长安 钦承神祇 羽已杀卿子冠军 而上从父兄刘贾数别将 朕甚闵之 《齐太公世家》第二 乃著《疾谗》 《擿要》 《救危》及《世颂》 太官园种冬生葱韭菜茹 不爱金爵重赏 故共欲立焉 大说之 太昊后 故得不死 木摩而不刻 骏曰 德非曾参 票骑仍再出击胡 今大王嫚而少礼 辛卯 然帝益疏王 举错不由谊理 故秦博士 田下上 狃之以赏庆 毋侵暴 今仆不幸 岂有此等之效与 欲令久连 兵毋决 相距七月 孝文皇帝除诽谤 汉使多言其国有城邑 梁余

人教版高中数学A版高中数学必修二《复数的四则运算》复数(复数的加、减运算及其几何意义)

人教版高中数学A版高中数学必修二《复数的四则运算》复数(复数的加、减运算及其几何意义)

探究三 复数加、减法运算与模的综合应用 [例 3] 设 z1,z2∈C,已知|z1|=|z2|=1,|z1+z2|= 2,求|z1-z2|. [分析] 法一:设出 z1,z2 的代数形式,进行求解. 法二:利用复数加、减运算的几何意义求解.
[解析] 法一:设 z1=a+bi,z2=c+di(a,b,c,d∈R) 由题意知 a2+b2=1,c2+d2=1, (a+c)2+(b+d)2=2, ∴2ac+2bd=0. ∴|z1-z2|2=(a-c)2+(b-d)2 =a2+c2+b2+d2-2ac-2bd=2, ∴|z1-z2|= 2.
[素养提升] 可依据复数的几何意义,找出相应 A,B,C 三点的坐标,然后推测 D 点的大致位置,再依据平行四边形的性质,并结合向量知识确定点 D 的坐标.
A.3
B.2
C.1
D.-1
解析:z1+z2=2+i+3+ai=(2+3)+(1+a)i=5+(1+a)i.∵z1+z2 所对应的点在实轴 上,∴1+a=0,∴a=-1.
答案:D
3.设向量O→P、P→Q、O→Q对应的复数分别为 z1、z2、z3,那么( )
A.z1+z2+z3=0
B.z1-z2-z3=0
知识梳理 (1)复数的加、减法法则:设 z1=a+bi,z2=c+di(a,b,c,d∈R)是任意
两个复数,那么 (a+bi)+(c+di)= (a+c)+(b+d)i ; (a+bi)-(c+di)= (a-c)+(b-d)i .
(2)复数加法满足的运算律:对任意 z1,z2,z3∈C,有 z1+z2= z2+z1 , (z1+z2)+z3= z1+(z2+z3) .
因对复数加、减法的几何意义理解不到位致误 ►直观想象、逻辑推理、数学运算 复数 z 与复平面内的向量O→Z是一一对应的关系,复数的加法可以按照向量的加法来 进行,即复数的加法符合向量加法的三角形法则、平行四边形法则. 类比实数减法的意义,复数的减法也是加法的逆运算:减去一个复数等于加上这个 复数的相反数. 若用 d 表示平面内点 Z1 和 Z2 之间的距离,则 d=|Z→1Z2|=|z1-z2|,其中 z1,z2 是复平 面内的两点 Z1,Z2 对应的复数.这就是复平面内两点间的距离公式.

复数的乘除法

复数的乘除法

ac bd bc ad (a+bi) c+di = 2 2 i 2 2 c d c d
这种方法叫做公式法
复数相除的另一种解法.
②利用分母实数化:
a bi (a bi)(c di) [ac bi (di)] (bc ad )i c di (c di)(c di) c2 d 2
三、复数的除法运算规则:
①设复数a+bi (a,b∈R),除以c+di(c,d∈R),其商 为x+yi (x,y∈R), 即(a+bi)÷(c+di)=x+yi ∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i. ∴(cx-dy)+(dx+cy)i=a+bi. 由复数相等定义可知解这个方程组,得于是有
(ac bd ) (bc ad )i ac bd bc ad 2 2 i 2 2 2 2 c d c d c d
这种方法叫做分母实数化法 给分子分母同乘以分母的共轭复数
例2计算
(1 2iBiblioteka (3 4i)1 2i 解: (1 2i ) (3 4i) 3 4i
(1 2i)(3 4i) 3 8 6i 4i 5 10i 1 2 i 2 2 (3 4i)(3 4i) 3 4 25 5 5
除法:先把两个复数相除写成分数形式,然后把分子 与分母都乘以分母的共轭复数,使分母“实数化”,最 后再化简,这种方法叫做分母实数化法 。
5.求1 i i i .... i
2 3
2008
______
注意: i 4n 1, i 4n1 i, i 4n2 1, i 4n3 i

数学基础讲义-第九章复数

数学基础讲义-第九章复数

第九章复数复数是对实数域拓展得到的新的数域,然而复数其实并不算是全新的概念,它与已经学习的实数和向量都有直接联系。

根据实数的运算进一步推广即可得到复数的性质和运算规律;复数与向量在形式上具有诸多相同点并能建立起对应关系。

复数也具有显著的“数形结合”的特点,通过虚数单位i将“数”与“形”更加直接地结合了起来。

高中阶段对复数的学习和考察的内容较为基本,可以将学习本章当作对代数运算与向量知识的复习。

一、虚数与复数从用于计数的自然数开始,先根据加法和减法拓展到整数,再根据乘法和除法拓展到有理数,又根据乘方和开方拓展到实数,现在进一步拓展到复数。

1.1 实数与虚数解一元二次方程时,根据各项系数可以判断方程根的情况。

对于一元二次方程20ax bx c(0a )配方得:2224 (24b b ac xa a等式左边是完全平方数,恒大于等于0,由此可得:若240b ac,则方程有2个不同的实根。

若240b ac,则方程有2个相同的实根,或称只有1个实根。

若240b ac,则方程有没有实根。

为了令一元二次方程总是有解,现在规定根号内也可为负数,即:虚数。

现在只简单生硬地规定:对于虚数的具体含义,接下来将根据该规定,结合具体运算进行推导。

为方便地表示虚数,再引入一个新的单位:虚数单位,一般用符号i 表示。

其定义式为:i将实数的乘法运算作用于虚数单位i 。

任意虚数都可以用一个实数与虚数单位i 的乘积表示:5i根据虚数单位的定义i ,可得到关于i 的一系列运算规律:221i321i i i i i4242()(1)1i i即:对于任意k Z ,都有:41k i ,41k i i ,421k i ,43k i i 虚数的表示方式也适用于实数,只是通常被省略了。

若将“1”看作“实数单位”,即:1 。

“实数单位”“1”1 。

可以将实数和虚数看作分别属于两个不同“空间”的数,实数以1)为单位,在“实在”的空间内;i )为单位,在“虚拟”的空间内。

复数的乘除法总结

复数的乘除法总结

x3=1在复数集范围内的解是不是只有x=1,
如果不是,你能求出其他的解吗?
一些常用的计算结果
①如果n∈N*有:i4n=1;i4n+1=i,i4n+2=-1;i4n+3=-i. (事实上可以把它推广到n∈Z.)
__ 1 3 3 2 2 ②设 i,则有: 1; ;1 0. 2 2
2 2i i i 2 2 i 1 3i
二、复数除法的法则
复数的除法是乘法的逆运算,满足 (c+di)(x+yi)=(a+bi) (c+di≠0)的复数 x+yi , 叫做复数a+bi除以复数c+di的商,
a+bi
记作 c+di
例1、复数 z 满足(3-4i)×z = 1+2i,求z 。
1.知识
(1)复数的乘法; (2)复数的除法; ( 3)共轭复数。 通过本节课的学习,你有哪些收获?
归 纳 小 结
2.思想方新
1 3 1 3 i, =- - i 练习2 设 - 2 2 2 2
2 2 3
( 计算( 1 ) ( , 2) , 3 ) , (4) 。
1 i i. 1 i
1 i 8 ) . 练习 计算( 1 i 8 2 1 i ( 1 i ) 8 解 ( ) 1 i ( (1 i ) 1 - i)
2i 8 ( ) 2
i 1
8
2009浙江(理)
2 2 例4.设z 1 i (i是虚数单位),则 z z A. 1 i B. 1 i C.1 i D.1 i
a b2
2 2

复数四则运算的公式

复数四则运算的公式

复数四则运算的公式
复数四则运算公式是指对两个复数进行加、减、乘、除的运算。

复数是由实数和虚数构成的数,其中虚数单位i满足i²=-1。

加法公式:(a+bi)+(c+di)=(a+c)+(b+d)i,即实部相加,虚部相加。

例如,(2+3i)+(4+5i)=(2+4)+(3+5)i=6+8i。

减法公式:(a+bi)-(c+di)=(a-c)+(b-d)i,即实部相减,虚部相减。

例如,(2+3i)-(4+5i)=(2-4)+(3-5)i=-2-2i。

乘法公式:(a+bi)×(c+di)=(ac-bd)+(ad+bc)i,即实部相乘减虚部相乘。

例如,(2+3i)×(4+5i)=(2×4-3×5)+(2×5+3×4)i=-7+22i。

除法公式:(a+bi)/(c+di)=(ac+bd)/(c²+d²)+((bc-ad)/(c²+d²))i,即分子分母同乘分母的共轭复数,再化简。

例如,(2+3i)/(4+5i)=((2×4+3×5)/(4²+5²))+((3×4-2×5)/(4²+5²))i=23/41-2/41i。

复数四则运算公式是复数运算的基础,掌握了这些公式,就能够进行复数的加减乘除运算。

在实际应用中,复数广泛应用于电路分析、信号处理、量子力学等领域。

复数代数形式的乘除运算总结

复数代数形式的乘除运算总结

z
=3-i i=-1-3i.
例 3 已知 1+i 是方程 x2+bx+c=0 的一个根(b,c∈R). (1)求 b,c 的值; (2)试证明 1-i 也是方程的根.
解:(1)∵1+i 是方程 x2+bx+c=0 的根, ∴(1+i)2+b(1+i)+c=0, 即 b+c+(2+b)i=0,
∴2b++bc==00,, 解得bc==2-. 2, (2)证明:由(1)知方程为 x2-2x+2=0, 把 1-i 代入方程左边得 左边=(1-i)2-2(1-i)+2=0=右边,即方程成立, ∴1-i 也是方程的根.
[思考] 实数集内乘法、乘方的一些重要结论和一些运算 法则,在复数集内一定成立吗?
解:不一定,如:(1)当 z∈R 时,|z|2=z2;当 z∈C 时, |z|2∈R,而 z2∈C,所以|z|2≠z2.(2)当 z∈R 时, z21+z22=0⇔z1 =0 且 z2=0;当 z∈C 时, z21+z22=0≠> z1=0 且 z2=0,但 z1=0,z2=0⇒z21+z22=0.
【变式巩固】 求-16+30i 的平方根.
[分析] 由于复数的平方根仍然是复数,设出该复数的平 方根的复数形式,再结合复数乘法与除法的关系,利用复数 相等的充要条件求得.
解:设-16+30i 的平方根为 x+yi(x,y∈R), 则(x+yi)2=-16+30i, 即 x2-y2+2xyi=-16+30i,由复数相等的条件,得 x2-y2=-16,① xy=15,② 解得 x=±3,y=±5,又由方程②可知 x、y 同号, 所以-16+30i 的平方根为 3+5i,-3-5i.
2.共轭复数的常用性质
①z·z
= z
= 2
ቤተ መጻሕፍቲ ባይዱ

-高中数学 3.2复数的四则运算课件 苏教版选修2-2

-高中数学 3.2复数的四则运算课件 苏教版选修2-2

z1 z 2 = z 2 z 1 交换律 ( z1 z2 ) z3 = z1 ( z2 z3 ) 结合律 乘法对加法的分配律 z1(z2+z3)= z1z2+z1z3
(2)在复数范围内,正整数指数幂的运算律仍然成立,即对于
m+n 任意复数z,z1,z2和正整数m,n,有zmzn= z , (zm)n =
解 (1)5i-[(3+4i)-(-1+3i)]
=5i-(4+i)=-4+4i. (2)(a+bi)-(2a-3bi)-3i =(a-2a)+[b-(-3b)-3]i =-a+(4b-3)i.
题型二 复数的乘除运算
【例2】 计算下列各题: 1+i7 1-i7 3-4i2+2i3 (1) + - ; 1-i 1+i 4+3i
(3)法一
(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+…+
(-2 008+2 009i)+(2 009-2 010i) =[(1-2)+(3-4)+…+(2 007-2 008)+2 009]+[(-2 +3)+(-4+5)+…+(-2 008+2 009)-2 010]i =(-1 004+2 009)+(1 004-2 010)i=1 005-1 006i.
2 4 1
1 = -2+
3 34 i +(-8+8 3i) 2
=1-8+8 3i=-7+8 3i.
对于复数的运算,除了应用四则运算法则之外, 对于一些简单的算式要知道其结果,这样起点就高,计算 过程就可以简化,达到快速简捷出错少的效果.比如下列 结果,要记住: 1+i 1-i 1 ① i =-i;② =i;③ =-i;④a+bi=i(b-ai). 1-i 1+i
5.复数的除法法则 给出两个复数a+bi,c+di(c+di≠0),将满足等式 (c+di) (x+yi)=a+bi(c+di≠0) 的复数 x + yi 叫做复数 a + bi 除以 c a+bi +di所得的 商 ,记作 c+di 或者 (a+bi)÷(c+di) .

《复数的四则运算》复习教案与课后作业

《复数的四则运算》复习教案与课后作业

《7.2 复数的四则运算》复习教案 7.2.1 复数的加、减运算及其几何意义学 习 目 标核 心 素 养1.掌握复数代数形式的加减运算法则.(重点)2.了解复数代数形式的加减运算的几何意义.(易错点)1.通过复数代数形式的加减运算的几何意义,培养数学直观的素养.2.借助复数代数形式的加减运算提升数学运算的素养.【自主预习】1.复数加法与减法的运算法则(1)设z 1=a +b i ,z 2=c +d i 是任意两个复数,则 ①z 1+z 2=(a +c )+(b +d )i ; ②z 1-z 2=(a -c )+(b -d )i. (2)对任意z 1,z 2,z 3∈C ,有 ①z 1+z 2=z 2+z 1;②(z 1+z 2)+z 3=z 1+(z 2+z 3). 2.复数加减法的几何意义如图所示,设复数z 1,z 2对应向量分别为OZ →1,OZ →2,四边形OZ 1ZZ 2为平行四边形,向量OZ →与复数z 1+z 2对应,向量Z 2Z 1→与复数z 1-z 2对应.思考:类比绝对值|x -x 0|的几何意义,|z -z 0|(z ,z 0∈C )的几何意义是什么?[提示] |z -z 0|(z ,z 0∈C )的几何意义是复平面内点Z 到点Z 0的距离.1.已知复数z 1=3+4i ,z 2=3-4i ,则z 1+z 2=( ) A .8i B .6 C .6+8iD .6-8iB [z 1+z 2=3+4i +3-4i =(3+3)+(4-4)i =6.] 2.复数(1-i)-(2+i)+3i 等于( )A .-1+iB .1-iC .iD .-iA [(1-i)-(2+i)+3i =(1-2)+(-i -i +3i)=-1+i.故选A.]3.已知向量OZ →1对应的复数为2-3i ,向量OZ →2对应的复数为3-4i ,则向量Z 1Z 2→对应的复数为 .1-i [Z 1Z 2→=OZ 2→-OZ 1→=(3-4i)-(2-3i)=1-i.]【合作探究】复数代数形式的加、减运算【例1】 (1)计算:⎝ ⎛⎭⎪⎫13+12i +(2-i)-⎝ ⎛⎭⎪⎫43-32i ;(2)已知复数z 满足z +1-3i =5-2i ,求z .[解] (1)⎝ ⎛⎭⎪⎫13+12i +(2-i)-⎝ ⎛⎭⎪⎫43-32i =⎝ ⎛⎭⎪⎫13+2-43+⎝ ⎛⎭⎪⎫12-1+32i =1+i.(2)法一:设z =x +y i(x ,y ∈R ),因为z +1-3i =5-2i , 所以x +y i +(1-3i)=5-2i ,即x +1=5且y -3=-2, 解得x =4,y =1,所以z =4+i.法二:因为z +1-3i =5-2i ,所以z =(5-2i)-(1-3i)=4+i.复数代数形式的加、减法运算技巧复数与复数相加减,相当于多项式加减法的合并同类项,将两个复数的实部与实部相加(减),虚部与虚部相加(减).1.(1)计算:(2-3i)+(-4+2i)= .(2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|= .(1)-2-i (2)2 [(1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i.(2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i ,所以⎩⎨⎧5x -5y =5,-3x +4y =-3,解得x =1,y =0,所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i , 所以|z 1+z 2|= 2.]复数代数形式加减运算的几何意义【例2】 (1)复数z 1,z 2满足|z 1|=|z 2|=1,|z 1+z 2|= 2.则|z 1-z 2|= .(2)如图所示,平行四边形OABC 的顶点O ,A ,C 对应复数分别为0,3+2i ,-2+4i ,试求①AO →所表示的复数,BC →所表示的复数;②对角线CA →所表示的复数;③对角线OB →所表示的复数及OB →的长度.(1)2 [由|z 1|=|z 2|=1,|z 1+z 2|=2,知z 1,z 2,z 1+z 2对应的点是一个边长为1的正方形的三个顶点,所求|z 1-z 2|是这个正方形的一条对角线长,所以|z 1-z 2|= 2.](2)[解] ①AO →=-OA →,∴AO →所表示的复数为-3-2i. ∵BC →=AO →,∴BC →所表示的复数为-3-2i. ②∵CA →=OA →-OC →,∴CA →所表示的复数为(3+2i)-(-2+4i)=5-2i.③对角线OB →=OA →+OC →,它所对应的复数z =(3+2i)+(-2+4i)=1+6i, |OB →|=12+62=37.1.用复数加、减运算的几何意义解题的技巧(1)形转化为数:利用几何意义可以把几何图形的变换转化成复数运算去处理.(2)数转化为形:对于一些复数运算也可以给予几何解释,使复数作为工具运用于几何之中.2.常见结论在复平面内,z 1,z 2对应的点分别为A ,B ,z 1+z 2对应的点为C ,O 为坐标原点,则四边形OACB 为平行四边形;若|z 1+z 2|=|z 1-z 2|,则四边形OACB 为矩形;若|z 1|=|z 2|,则四边形OACB 为菱形;若|z 1|=|z 2|且|z 1+z 2|=|z 1-z 2|,则四边形OACB 为正方形.2.复数z 1=1+2i ,z 2=-2+i ,z 3=-1-2i ,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数.[解] 设复数z 1,z 2,z 3在复平面内所对应的点分别为A ,B ,C ,正方形的第四个顶点D 对应的复数为x +y i(x ,y ∈R ),如图.则AD →=OD →-OA →=(x ,y )-(1,2) =(x -1,y -2). BC →=OC →-OB →=(-1,-2)-(-2,1)=(1,-3). ∵AD →=BC →,∴⎩⎨⎧x -1=1,y -2=-3,解得⎩⎨⎧x =2,y =-1,故点D 对应的复数为2-i.复数模的最值问题[1.满足|z |=1的所有复数z 对应的点组成什么图形?[提示] 满足|z |=1的所有复数z 对应的点在以原点为圆心,半径为1的圆上.2.若|z -1|=|z +1|,则复数z 对应的点组成什么图形?[提示] ∵|z -1|=|z +1|,∴点Z 到(1,0)和(-1,0)的距离相等,即点Z 在以(1,0)和(-1,0)为端点的线段的中垂线上.【例3】 (1)如果复数z 满足|z +i|+|z -i|=2,那么|z +i +1|的最小值是( )A .1 B.12 C .2D. 5(2)若复数z 满足|z +3+i|≤1,求|z |的最大值和最小值.(1)A [设复数-i ,i ,-1-i 在复平面内对应的点分别为Z 1,Z 2,Z 3,因为|z +i|+|z -i|=2, |Z 1Z 2|=2,所以点Z 的集合为线段Z 1Z 2.问题转化为:动点Z 在线段Z 1Z 2上移动,求|ZZ 3|的最小值,因为|Z 1Z 3|=1.所以|z +i +1|min =1.](2)[解] 如图所示, |OM →|=(-3)2+(-1)2=2. 所以|z |max =2+1=3,|z |min =2-1=1.1.若本例题(2)条件改为“设复数z 满足|z -3-4i|=1”,求|z |的最大值. [解] 因为|z -3-4i|=1,所以复数z 所对应点在以C (3,4)为圆心,半径为1的圆上, 由几何性质得|z |的最大值是 32+42+1=6.2.若本例题(2)条件改为已知|z |=1且z ∈C ,求|z -2-2i|(i 为虚数单位)的最小值.[解] 因为|z |=1且z ∈C ,作图如图:所以|z -2-2i|的几何意义为单位圆上的点M 到复平面上的点P (2,2)的距离,所以|z -2-2i|的最小值为|OP |-1=22-1.|z 1-z 2|表示复平面内z 1,z 2对应的两点间的距离.利用此性质,可把复数模的问题转化为复平面内两点间的距离问题,从而进行数形结合,把复数问题转化为几何图形问题求解.1.复数代数形式的加减法满足交换律、结合律,复数的减法是加法的逆运算.2.复数加法的几何意义就是向量加法的平行四边形法则,复数减法的几何意义就是向量减法的三角形法则.3.|z -z 0|表示复数z 和z 0所对应的点的距离,当|z -z 0|=r (r >0)时,复数z 对应的点的轨迹是以z 0对应的点为圆心,半径为r 的圆.【课堂达标练习】 1.判断正误(1) 复数加法的运算法则类同于实数的加法法则.( ) (2)复数与复数相加减后结果为复数.( )(3)复数加减法的几何意义类同于向量加减法运算的几何意义.( ) [答案] (1)√ (2)√ (3)√2.计算|(3-i)+(-1+2i)-(-1-3i)|= .5 [|(3-i)+(-1+2i)-(-1-3i)|=|(2+i)-(-1-3i)|=|3+4i|=32+42=5.]3.已知复数z 1=(a 2-2)+(a -4)i ,z 2=a -(a 2-2)i(a ∈R ),且z 1-z 2为纯虚数,则a = .-1 [z 1-z 2=(a 2-a -2)+(a -4+a 2-2)i(a ∈R )为纯虚数,∴⎩⎨⎧a 2-a -2=0,a 2+a -6≠0,解得a =-1.]4.在复平面内,复数-3-i 与5+i 对应的向量分别是OA →与OB →,其中O 是原点,求向量OA →+OB →,BA →对应的复数及A ,B 两点间的距离.[解] 向量OA →+OB →对应的复数为(-3-i)+(5+i)=2. ∵BA →=OA →-OB →,∴向量BA →对应的复数为(-3-i)-(5+i)=-8-2i. ∴A ,B 两点间的距离为|-8-2i|=(-8)2+(-2)2=217.《7.2.1复数的加、减运算及其几何意义》课后作业[合格基础练]一、选择题1.若(-3a +b i)-(2b +a i)=3-5i ,a ,b ∈R ,则a +b =( ) A.75 B .-115 C .-185D .5 B [(-3a +b i)-(2b +a i)=(-3a -2b )+(b -a )i =3-5i ,所以⎩⎨⎧-3a -2b =3,b -a =-5,解得a =75,b =-185,故有a +b =-115.]2.若复数z 满足z +(3-4i)=1,则z 的虚部是( ) A .-2 B .4 C .3 D .-4 B [z =1-(3-4i)=-2+4i ,故选B.]3.若z 1=2+i ,z 2=3+a i(a ∈R ),且z 1+z 2所对应的点在实轴上,则a 的值为( )A .3B .2C .1D .-1D [z 1+z 2=2+i +3+a i =(2+3)+(1+a )i =5+(1+a )i.∵z 1+z 2所对应的点在实轴上,∴1+a =0,∴a =-1.]4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,若向量OA →,OB →对应的复数分别是3+i ,-1+3i ,则CD →对应的复数是( )A .2+4iB .-2+4iC .-4+2iD .4-2iD [依题意有CD →=BA →=OA →-OB →,而(3+i)-(-1+3i)=4-2i ,即CD →对应的复数为4-2i.故选D.]5.若z ∈C ,且|z +2-2i|=1,则|z -2-2i|的最小值是( ) A .2 B .3 C .4 D .5B [设z =x +y i ,则由|z +2-2i|=1得(x +2)2+(y -2)2=1,表示以(-2,2)为圆心,以1为半径的圆,如图所示,则|z -2-2i|=(x -2)2+(y -2)2表示圆上的点与定点(2,2)的距离,数形结合得|z -2-2i|的最小值为3.]二、填空题6.已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a = .3 [由条件知z 1+z 2=a 2-2a -3+(a 2-1)i ,又z 1+z 2是纯虚数,所以⎩⎨⎧a 2-2a -3=0,a 2-1≠0,解得a =3.]7.在复平面内,O 是原点,OA →,OC →,AB →对应的复数分别为-2+i,3+2i,1+5i ,则BC →对应的复数为 .4-4i [BC →=OC →-OB →=OC →-(OA →+AB →),对应的复数为3+2i -(-2+i +1+5i)=(3+2-1)+(2-1-5)i =4-4i.]8.设z 1=x +2i ,z 2=3-y i(x ,y ∈R ),且z 1+z 2=5-6i ,则z 1-z 2= . -1+10i [∵z 1+z 2=5-6i ,∴(x +2i)+(3-y i)=5-6i ,∴⎩⎨⎧x +3=5,2-y =-6,即⎩⎨⎧x =2,y =8,∴z 1=2+2i ,z 2=3-8i ,∴z 1-z 2=(2+2i)-(3-8i)=-1+10i.] 三、解答题 9.计算:(1)(2-i)+(-3+5i)+(4+3i); (2)4-(5+12i)-i ;(3)若z -(-3+5i)=-2+6i ,求复数z .[解] (1)(2-i)+(-3+5i)+(4+3i)=(2-3+4)+(-1+5+3)i =3+7i.(2)4-(5+12i)-i =(4-5)+(-12-1)i =-1-13i.(3)法一:设z =x +y i(x ,y ∈R ),因为z -(-3+5i)=-2+6i ,所以(x +y i)-(-3+5i)=-2+6i ,即(x +3)+(y -5)i =-2+6i ,因此⎩⎨⎧x +3=-2,y -5=6,解得⎩⎨⎧x =-5,y =11,于是z =-5+11i.法二:由z -(-3+5i)=-2+6i 可得z =-2+6i +(-3+5i),所以z =(-2-3)+(6+5)i =-5+11i.10.在复平面内,A ,B ,C 分别对应复数z 1=1+i ,z 2=5+i ,z 3=3+3i ,以AB ,AC 为邻边作一个平行四边形ABDC ,求D 点对应的复数z 4及AD 的长.[解] 如图所示.AC →对应复数z 3-z 1, AB →对应复数z 2-z 1,AD →对应复数z 4-z 1.由复数加减运算的几何意义,得AD →=AB →+AC →,∴z 4-z 1=(z 2-z 1)+(z 3-z 1),∴z 4=z 2+z 3-z 1=(5+i)+(3+3i)-(1+i)=7+3i.∴AD 的长为|AD →|=|z 4-z 1|=|(7+3i)-(1+i)|=|6+2i|=210.[等级过关练]1.已知复数z 对应的向量如图所示,则复数z +1所对应的向量正确的是( )A [由图可知z =-2+i ,所以z +1=-1+i ,则复数z +1所对应的向量的坐标为(-1,1),故选A.]2.设z ∈C ,且|z +1|-|z -i|=0,则|z +i|的最小值为( ) A .0 B .1 C.22 D.12C [由|z +1|=|z -i|知,在复平面内,复数z 对应的点的轨迹是以(-1,0)和(0,1)为端点的线段的垂直平分线,即直线y =-x ,而|z +i|表示直线y =-x 上的点到点(0,-1)的距离,其最小值等于点(0,-1)到直线y =-x 的距离,即为22.]3.若复数z 满足z =|z |-3-4i ,则z = . 76-4i [设复数z =a +b i(a ,b ∈R ),则⎩⎨⎧a =a 2+b 2-3,b =-4,所以⎩⎨⎧a =76,b =-4,所以z =76-4i.]4.若复平面上的▱ABCD 中,AC →对应的复数为6+8i ,BD →对应的复数为-4+6i ,则DA →对应的复数是 .-1-7i [设AC 与BD 交于点O ,则有DA →=DO →+OA →=12DB →+12CA →=-12(AC →+BD →).于是DA →对应的复数为-12[(6+8i)+(-4+6i)]=-1-7i.]5.设z 为复数,且|z |=|z +1|=1,求|z -1|的值. [解] 设z =a +b i(a ,b ∈R ),则z +1=(a +1)+b i ,又|z |=|z +1|=1,所以⎩⎪⎨⎪⎧a 2+b 2=1,(a +1)2+b 2=1,即⎩⎨⎧a 2+b 2=1,a 2+b 2+2a =0,解得⎩⎪⎨⎪⎧a =-12,b 2=34,故|z -1|=|(a +b i)-1|=|(a -1)+b i|=(a -1)2+b 2=⎝ ⎛⎭⎪⎫-12-12+34= 3.7.2.2 复数的乘、除运算对加法的分配律.(易混点)3.了解共轭复数的概念.(难点)学运算的素养.【自主预习】1.复数的乘法法则(1)复数代数形式的乘法法则已知z1=a+b i,z2=c+d i,a,b,c,d∈R,则z1·z2=(a+b i)(c+d i)=(ac-bd)+(ad+bc)i.思考1:复数的乘法与多项式的乘法有何不同?[提示]复数的乘法与多项式乘法是类似的,有一点不同即必须在所得结果中把i2换成-1,再把实部、虚部分别合并.(2)复数乘法的运算律对于任意z1,z2,z3∈C,有交换律z1·z2=z2·z1结合律(z1·z2)·z3=z1·(z2·z3)乘法对加法的分配律z1(z2+z3)=z1·z2+z1·z3思考2:|z|2=z2,正确吗?[提示]不正确.例如,|i|2=1,而i2=-1. 2.复数代数形式的除法法则(a+b i)÷(c+d i)=ac+bdc2+d2+bc-adc2+d2i(a,b,c,d∈R,且c+d i≠0)1.复数(3+2i)i等于( )A.-2-3i B.-2+3i C.2-3i D.2+3i B[(3+2i)i=3i+2i·i=-2+3i,选B.]2.已知i 是虚数单位,则3+i1-i=( ) A .1-2i B .2-i C .2+i D .1+2i D [3+i 1-i =(3+i )(1+i )(1-i )(1+i )=2+4i 2=1+2i.]【合作探究】复数代数形式的乘法运算【例1】 (1)若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,-1)C .(1,+∞)D .(-1,+∞)(2)计算:①(1-2i)(3+4i)(-2+i); ②(3+4i)(3-4i); ③(1+i)2.(1)B [z =(1-i)(a +i)=(a +1)+(1-a )i ,因为对应的点在第二象限,所以⎩⎨⎧a +1<0,1-a >0,解得a <-1 ,故选B.](2)[解] ①(1-2i)(3+4i)(-2+i)=(11-2i)(-2+i) =-20+15i.②(3+4i)(3-4i)=32-(4i)2=9-(-16)=25. ③(1+i)2=1+2i +i 2=2i.1.两个复数代数形式乘法的一般方法复数的乘法可以按多项式的乘法法则进行,注意选用恰当的乘法公式进行简便运算,例如平方差公式、完全平方公式等.2.常用公式(1)(a +b i)2=a 2+2ab i -b 2(a ,b ∈R );(2)(a +b i)(a -b i)=a 2+b 2(a ,b ∈R ); (3)(1±i)2=±2i.1.(1)下列各式的运算结果为纯虚数的是( ) A .i(1+i)2 B .i 2(1-i) C .(1+i)2D .i(1+i)(2)复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是 . (1)C (2)5 [(1)A 项,i(1+i)2=i(1+2i +i 2)=i×2i=-2,不是纯虚数.B 项,i 2(1-i)=-(1-i)=-1+i ,不是纯虚数.C 项,(1+i)2=1+2i +i 2=2i ,是纯虚数.D 项,i(1+i)=i +i 2=-1+i ,不是纯虚数. 故选C.(2)(1+2i)(3-i)=3-i +6i -2i 2=5+5i , 所以z 的实部是5.]复数代数形式的除法运算【例2】 (1)3+i1+i=( ) A .1+2i B .1-2i C .2+iD .2-i(2)若复数z 满足z (2-i)=11+7i(i 是虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5iD .-3-5i(1)D (2)A [(1)3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i2=2-i.(2)∵z (2-i)=11+7i ,∴z =11+7i 2-i =(11+7i )(2+i )(2-i )(2+i )=15+25i5=3+5i.]1.两个复数代数形式的除法运算步骤 (1)首先将除式写为分式;(2)再将分子、分母同乘以分母的共轭复数;(3)然后将分子、分母分别进行乘法运算,并将其化为复数的代数形式. 2.常用公式(1)1i =-i ;(2)1+i 1-i =i ;(3)1-i 1+i=-i.2.(1)如图,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,则复数z 1z 2对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限(2)计算:⎝⎛⎭⎪⎫1+i 1-i 8. (1)B [由复数的几何意义知,z 1=-2-i ,z 2=i ,所以z 1z 2=-2-ii=-1+2i ,对应的点在第二象限.](2)解:法一:⎝⎛⎭⎪⎫1+i 1-i 8=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+i 1-i 24=⎝ ⎛⎭⎪⎫2i -2i 4=(-1)4=1. 法二:因为1+i 1-i =(1+i )2(1-i )(1+i )=2i2=i ,所以⎝⎛⎭⎪⎫1+i 1-i 8=i 8=1. 复数运算的综合问题[1.若z=z,则z是什么数?这个性质有什么作用?[提示]z=z⇔z∈R,利用这个性质可证明一个复数为实数.2.若z≠0且z+z=0,则z是什么数?这个性质有什么作用?[提示]z≠0且z+z=0,则z为纯虚数,利用这个性质,可证明一个复数为纯虚数.3.三个实数|z|,|z|,z·z具有怎样的关系?[提示]设z=a+b i,则z=a-b i,所以|z|=a2+b2,|z|=a2+(-b)2=a2+b2,z·z=(a+b i)(a-b i)=a2-(b i)2=a2+b2,所以|z|2=|z|2=z·z.【例3】(1)已知复数z=3+i(1-3i)2,z是z的共轭复数,则z·z等于( )A.14B.12C.1 D.2(2)已知复数z满足|z|=5,且(1-2i)z是实数,求z.[思路探究]可以先设复数的代数形式,再利用复数的运算性质求解;也可以利用共轭复数的性质求解.(1)A[法一:∵z=3+i(1-3i)2=-3i2+i(1-3i)2=i(1-3i)(1-3i)2=i1-3i=i(1+3i)4=-34+i4,∴z=-34-i4,∴z·z=14.法二:∵z=3+i (1-3i)2,∴|z |=⎪⎪⎪⎪⎪⎪3+i (1-3i )2=|3+i||(1-3i )2|=24=12, ∴z ·z =14.](2)[解] 设z =a +b i(a ,b ∈R ),则(1-2i)z =(1-2i)(a +b i)=(a +2b )+(b -2a )i.又因为(1-2i)z 是实数,所以b -2a =0,即b =2a ,又|z |=5,所以a 2+b 2=5.解得a =±1,b =±2.所以z =1+2i 或-1-2i ,所以z =1-2i 或-1+2i ,即z =±(1-2i).1.在题设(1)条件不变的情况下,求z z.[解] 由例题(1)的解析可知z =-34+i 4,z =-34-i 4,z ·z =14,∴z z=z 2z ·z=⎝⎛⎭⎪⎫-34+i 4214=12-32i.2.把题设(2)的条件“(1-2i)z 是实数”换成“(1-2i)z 是纯虚数”,求z .[解] 设z =a +b i ,则z =a -b i ,由例题(2)的解可知a =-2b ,由|z |=a 2+b 2=5b 2=5,得b =1,a =-2;或 b =-1,a =2.所以z =-2-i ,或z =2+i.1.由比较复杂的复数运算给出的复数,求其共轭复数,可先按复数的四则运算法则进行运算,将复数写成代数形式,再写出其共轭复数.2.注意共轭复数的简单性质的运用.1.复数代数形式的乘法运算类似于多项式的乘法,同时注意i2=-1的应用.2.复数代数形式的除法运算采用了分母实数化的思想,即应用z·z=|z|2解题.3.记住几个常用结论:(1)i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(n∈N).(2)(1±i)2=±2i.(3)若z=z⇔z是实数;若z+z=0,则z是纯虚数;z·z=|z|2=|z|2.【课堂达标练习】1.判断正误(1)实数不存在共轭复数.( )(2)两个共轭复数的差为纯虚数.( )(3)若z1,z2∈C,且z21+z22=0,则z1=z2=0.( )[答案](1)×(2)√(3)×2.已知复数z=2-i,则z·z的值为( )A.5 B. 5 C.3 D. 3A[z·z=(2-i)(2+i)=22-i2=4+1=5.]3.若复数z满足z(1+i)=2i(i为虚数单位),则|z|=( )A.1 B.2 C. 2 D. 3C[因为z(1+i)=2i,所以z=2i1+i=2i(1-i)2=1+i,故|z|=12+12=2.]4.已知复数z1=(-1+i)(1+b i),z2=a+2i1-i,其中a,b∈R.若z1与z2互为共轭复数,求a,b的值.[解]z1=(-1+i)(1+b i)=-1-b i+i-b=(-b-1)+(1-b)i, z2=a +2i 1-i=(a +2i )(1+i )(1-i )(1+i )=a +a i +2i -22=a -22+a +22i.由于z 1和z 2互为共轭复数,所以有⎩⎪⎨⎪⎧a -22=-b -1,a +22=-(1-b ),解得⎩⎨⎧a =-2,b =1.《7.2.2复数的乘除运算》课后作业[合格基础练]一、选择题 1.(1+i )3(1-i )2=( ) A .1+i B .1-i C .-1+iD .-1-iD [(1+i )3(1-i )2=2i (1+i )-2i=-1-i ,选D.]2.已知复数z 满足(z -1)i =1+i ,则z =( ) A .-2-i B .-2+i C .2-iD .2+iC [z -1=1+i i =1-i ,所以z =2-i ,故选C.]3.在复平面内,复数i1+i+(1+3i)2对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限B [i 1+i +(1+3i)2=12+12i +(-2+23i)=-32+⎝ ⎛⎭⎪⎫23+12i ,对应点⎝ ⎛⎭⎪⎫-32,23+12在第二象限.]4.若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( )A.-4 B.-45C.4 D.45D[∵(3-4i)z=|4+3i|,∴z=53-4i=5(3+4i)(3-4i)(3+4i)=35+45i.故z的虚部为45,选D.]5.设复数z的共轭复数是z,若复数z1=3+4i,z2=t+i,且z1·z-2是实数,则实数t等于( )A.34B.43C.-43D.-34A[∵z2=t+i,∴z-2=t-i.z 1·z-2=(3+4i)(t-i)=3t+4+(4t-3)i,又∵z1·z2∈R,∴4t-3=0,∴t=34 .]二、填空题6.i为虚数单位,若复数z=1+2i2-i,z的共轭复数为z,则z·z= .1 [∵z=1+2i2-i=(1+2i)(2+i)(2-i)(2+i)=5i5=i,∴z=-i,∴z·z=1.]7.已知a+2ii=b+i(a,b∈R),其中i为虚数单位,则a+b= .1[∵a+2ii=b+i,∴a+2i=(b+i)i=-1+b i,∴a=-1,b=2,∴a+b=1.]8.设复数z1,z2在复平面内的对应点分别为A,B,点A与B关于x轴对称,若z1(1-i)=3-i,则|z2|= .5[∵z1(1-i)=3-i,∴z1=3-i1-i=(3-i)(1+i)(1-i)(1+i)=2+i,∵A与B关于x轴对称,∴z1与z2互为共轭复数,∴z2=z1=2-i,∴|z2|= 5.]三、解答题 9.已知复数z =52-i. (1)求z 的实部与虚部;(2)若z 2+m z +n =1-i(m ,n ∈R ,z 是z 的共轭复数),求m 和n 的值. [解] (1)z =5(2+i )(2-i )(2+i )=5(2+i )5=2+i ,所以z 的实部为2,虚部为1.(2)把z =2+i 代入z 2+m z +n =1-i , 得(2+i)2+m (2-i)+n =1-i , 所以⎩⎨⎧2m +n +3=1,4-m =-1.解得m =5,n =-12.10.把复数z 的共轭复数记作z ,已知(1+2i)z =4+3i ,求z 及z z.[解] 设z =a +b i(a ,b ∈R ),则z =a -b i ,由已知得:(1+2i)(a -b i)=(a +2b )+(2a -b )i =4+3i ,由复数相等的定义知,⎩⎨⎧a +2b =4,2a -b =3.得a =2,b =1,∴z =2+i.∴zz=2+i 2-i =(2+i )2(2-i )(2+i )=3+4i 5=35+45i.[等级过关练]1.设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( ) A .-5 B .5 C .-4+iD .-4-iA [∵z 1=2+i ,z 1与z 2关于虚轴对称,∴z 2=-2+i , ∴z 1z 2=-1-4=-5,故选A.]2.设z 1,z 2是复数,则下列命题中的假命题是( )A .若|z 1-z 2|=0,则z 1=z 2B .若z 1=z 2,则z 1=z 2C .若|z 1|=|z 2|,则z 1·z 1=z 2·z 2D .若|z 1|=|z 2|,则z 21=z 22D [A ,|z 1-z 2|=0⇒z 1-z 2=0⇒z 1=z 2⇒z 1=z 2,真命题;B ,z 1=z 2⇒z1=z 2=z 2,真命题;C ,|z 1|=|z 2|⇒|z 1|2=|z 2|2⇒z 1·z 1=z 2·z 2,真命题;D ,当|z 1|=|z 2|时,可取z 1=1,z 2=i ,显然z 21=1,z 22=-1,即z 21≠z 22,假命题.]3.若z 1=a +2i ,z 2=3-4i ,且z 1z 2为纯虚数,则实数a 的值为 .83 [z 1z 2=a +2i 3-4i =(a +2i )(3+4i )9+16=3a +4a i +6i -825 =(3a -8)+(4a +6)i 25,∴⎩⎨⎧3a -8=0,4a +6≠0,∴a =83.]4.设x ,y 为实数,且x 1-i+y 1-2i=51-3i,则x +y = . 4 [x 1-i+y 1-2i =51-3i可化为, x (1+i )2+y (1+2i )5=5(1+3i )10,则⎝ ⎛⎭⎪⎫x 2+y 5+⎝ ⎛⎭⎪⎫x 2+25y i =12+32i ,由复数相等的充要条件知⎩⎪⎨⎪⎧x 2+y 5=12,x 2+25y =32.∴⎩⎨⎧x =-1,y =5,∴x +y =4.]5.设z 是虚数,ω=z +1z是实数,且-1<ω<2,(1)求|z |的值及z 的实部的取值范围; (2)设u =1-z1+z,证明u 为纯虚数. [解] (1)因为z 是虚数,所以可设z =x +y i ,x ,y ∈R ,且y ≠0. 所以ω=z +1z =x +y i +1x +y i=x +y i +x -y i x 2+y 2=x +x x 2+y 2+⎝ ⎛⎭⎪⎫y -y x 2+y 2i.因为ω是实数且y ≠0, 所以y -y x 2+y2=0,所以x 2+y 2=1,即|z |=1. 此时ω=2x . 因为-1<ω<2, 所以-1<2x <2, 从而有-12<x <1,即z 的实部的取值范围是⎝ ⎛⎭⎪⎫-12,1.(2)证明:设z =x +y i ,x ,y ∈R ,且y ≠0, 由(1)知,x 2+y 2=1, ∴u =1-z 1+z =1-(x +y i )1+(x +y i )=(1-x -y i )(1+x -y i )(1+x )2+y 2=1-x 2-y 2-2y i (1+x )2+y 2=-y 1+x i. 因为x ∈⎝ ⎛⎭⎪⎫-12,1,y ≠0,所以y 1+x≠0,所以u为纯虚数.。

复数的运算(课件)高一数学(苏教版2019必修第二册)

复数的运算(课件)高一数学(苏教版2019必修第二册)
【答案】
1 i
2
2(1 i)
2 2i


1 i ,
【详解】 z
1 i (1 i)(1 i)

求证:(1)1++2=0;(2)³=1。


2
i) =






i)+(- - i)=0


证明:(1)因为2=(- +
所以1+ + 2=1+(- +


(2)因为3==(- +



i)(









− =- -

i;





i)=(− ) −( ) =
C . x 1 3i x 1 3i
D. x 1 3i x 1 3i
2
【答案】A
【详解】解:对于方程 x 2x 4 0 ,因为 2 4 4 12 ,
所以 x 2x 4 0 有两个虚根,即 x 2 2 12i 1 3i , x 2 2 12i 1 3i ,
=
=
+ ( + )( − )
+
+ −
=
+



+
+
因为c+di≠0,所以c²+d²≠0。 由此可见,两个复数的商仍是一个复数。
重点探究
1.两个复数代数形式的除法运算步骤
①首先将除式写为分式.
②再将分子、分母同乘以分母的共轭复数.

复数的乘法与除法

复数的乘法与除法
3 3
例6计算
( 1 3i ) 3 6 (1 i )
( 1 3i ) 3 解: (1 i ) 6
1 3 3 2 ( i) 2 2 3 ( 2i )
3
8 1 i. 3 8i i
4 例7 求复数 z,使 z 为实数,且 | z 2 | 2. z 解:设 z a bi , ( a , b R , a 2 b 2 0) 4 4 z a bi z a bi 4( a bi ) a bi 2 2 a b 4a 4b a 2 (b 2 )i 2 2 a b a b
(a+bi)(c-di) a+bi = c+di (c+di)(c-di) = (ac+bd)+(bc-ad)i c2+d2
= ac+bd + bc-ad i (c+di ≠0) c2+d2 c2+d2 因为c+di ≠0 即 c2+d2 ≠0, a+bi 所以商 是唯一确定的复数. c+di
例3 计算: (1) (1+2i)(3-4i)
(4 3i )( 1 7i ) 例4:已知z ,求 z 2 i
(4 3i )( 1 7i ) 解: z 2 i
| 4 3i || 1 7i | | 2 i |
5 8 10 6 . 3 3
i的乘方规律
i i, i 1, i i i i, i 1
1 2 3 2 4
从而对任意
n N
4n2

4 n3
i
4 n 1
i, i
1, i
i , i

9.1复数及其四则运算(第1课时)高一数学(沪教版2020必修第二册)

9.1复数及其四则运算(第1课时)高一数学(沪教版2020必修第二册)
(3) (1 2i)(3 4i)( 2 i).
解:(1) (7 6i)( 3i) 21i 18i 2 18 21i;
(2) (3 4i)( 2 3i) 6 9i 8i 12i 2 6 17i;
(3) (1 2i)(3 4i)( 2 i) (11 2i)( 2 i) 20 15i.
工作者与许多领域的科技人员熟练掌握并广泛应用的基本数学工具.
新课讲解
为了解决负数的开平方问题,数学家引入了一个不同于实数的新数i,
称为虚数单位(imaginaryunit),并规定
2 = −1,
即规定i是-1的一个平方根.更一般地,把任意b∈R与虚数单位i的
乘积记为bi,并规定虚数单位与实数间的乘法满足交换律与结合律.对
解:

2
1 i 1 i
2020
2020
; 2 1 i i 2 i 3 i 2019 .
2 2i 2
1

i1 i
- 2i 2i
i
1010
1 i 1 2 i
理,即得
+
+ +
+ + −
=
=
+
+ −
2 + 2
+ −
= 2
+ 2

2
2
+
+
例2 计算:
3+
1
;
2−
2
1 + 2
1 − 2
3+

复数不满足实数的哪些运算法则_解释说明

复数不满足实数的哪些运算法则_解释说明

复数不满足实数的哪些运算法则解释说明1. 引言1.1 概述复数是由实数与虚数构成的数学概念。

实数运算是我们在日常生活中最常见的运算,我们熟悉并熟练掌握了实数运算的法则和规律。

然而,当我们遇到复数时,就会发现一些令人意想不到的结果。

本文通过解释和说明,将详细阐述复数不满足实数运算法则的原因。

1.2 文章结构本文共分为五个部分。

首先简要介绍了整篇文章的目录结构,并解释了每一部分的主要内容。

接下来,我们将深入讨论复数的定义和性质,包括复数定义和复数运算法则概述。

然后,在第三部分中,我们将重点关注加法运算法则在复数中不成立的情况,并对加法的封闭性、交换律和结合律进行详细解释。

紧接着,在第四部分中,我们将探讨乘法运算法则在复数中不适用的情况,并对乘法的封闭性、交换律和结合律进行详细解释。

最后,在第五部分中,我们将总结实数运算与复数运算之间的差异,并展望复数运算在数学和应用中的意义和应用前景。

1.3 目的本文的目的是解释和阐述复数不满足实数运算法则的原因。

通过详细说明加法和乘法运算法则在复数中不成立的情况,我们希望读者能够深入理解复数运算的特殊性质,并认识到实数运算与复数运算之间存在着差异。

同时,本文也将为读者展示复数在数学和实际应用中的重要性,并展望其未来可能的发展方向。

2. 复数的定义和性质:2.1 复数定义:复数是形如z=a+bi的数,其中a和b分别表示实部和虚部,i为虚数单位,满足i²=-1。

a和b都是实数。

2.2 复数运算法则概述:对于复数z₁= a₁+ b₁i 和z₂= a₂+ b₂i, 复数的运算包括加法、减法、乘法和除法。

复数之间的运算规则如下:- 加法: (a₁+ b₁i) + (a₂+ b₂i) = (a₁+ a₂) + (b₁+ b₂)i- 减法: (a₁+ b₁i) - (a₂+ b₂i) = (a₁- a₂) + (b1- b₂)i- 乘法: (a₁+ b₁i)(a₂+ b2i) = a₁a₂−b₁b2+ (a₁b₂+b1a2)i- 除法: z¹/ z²= ( ⁡( ⁡(z¹* conjugate(z²)) ) / ⁡(z²* conjugate(z²)) )2.3 实数运算法则不适用于复数的解释说明:尽管在实数域中,加法、减法、乘法和除法都有成立的运算规则,但是这些规则并不适用于复数域。

复数的四则运算

复数的四则运算

复数乘法运算法则的应用 复数的乘法可以按照多项式的乘法计算,只是在结果中要将 i2 换成 -1,并将实部、虚部分别合并.多项式展开中的一些重要公式仍 适用于复数,如(a+bi)2=a2+2abi+b2i2=a2-b2+2abi,(a+bi)3= a3+3a2bi+3ab2i2+b3i3=a3-3ab2+(3a2b-b3)i.
复数的乘法运算
(1)(1-i)-12+ 23i(1+i)=(
)
A.1+ 3i
B.-1+ 3i
C. 3+i
D.- 3+i
(2)已知 a,b∈R,i 是虚数单位,若 a-i 与 2+bi 互为共轭复数,
则(a+bi)2=( )
A.5-4i
B.5+4i
C.3-4i
D.3+4i
(3)把复数 z 的共轭复数记作-z ,已知(1+2i) -z =4+3i,求 z.
判断(正确的打“√”,错误的打“×”) (1)两个虚数的和或差可能是实数.(√ ) (2)若复数 z1,z2 满足 z1-z2>0,则 z1>z2.( × ) (3)在进行复数的加法时,实部与实部相加得实部,虚部与虚部相加 得虚部.(√ ) (4)复数的加法不可以推广到多个复数相加的z2+z3)可能不成 立.(× )
复数的除法运算
计算:
(1)(1+2i)22++i3(1-i);
(1-4i)(1+i)+2+4i
A.第一象限
B.第二象限
C.第三象限
D.第四象限
解析:选 A.复数(1+2i)+(3-4i)-(-5-3i)=(1+3+5)+(2-4+ 3)i=9+i,其对应的点为(9,1),在第一象限.
复数加、减法的几何意义
已知平行四边形 OABC 的三个顶点 O,A,C 对应的复数分别为 0,3+2i,-2+4i. (1)求A→O表示的复数; (2)求C→A表示的复数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

网易云课堂_C++程序设计入门(下)_第9单元:白公曾咏牡丹芳,一种鲜妍独“异常”_第9单元 - 作业3:OJ编程 - 使用异常进行复数运算的错误处理...第9单元?-?作业3:OJ编程?-?使用异常进行复数运算的错误处理查看帮助温馨提示:1.本次作业属于Online Judge题目,提交后由系统即时判分。

2.学生可以在作业截止时间之前不限次数提交答案,系统将取其中的最高分作为最终成绩。

在复数的运算中,练习异常处理依照学术诚信条款,我保证此作业是本人独立完成的。

通过C++内建的异常类,处理复数除法中除数为0 的问题(5分)题目内容请参见【第9单元 - 作业3说明:【OJ - 使用异常进行错误处理】】时间限制:500ms内存限制:32000kb#include iostream#include exception#include stdexcept#include limits#include cmathusing namespace std;class MyComplex--2. 创建一个类 MyComplex,用来表示复数。

MyComplex();MyComplex(double a, double b);friend ostream operator (ostream os, const MyComplex z);--4. 重载流插入运算符,使之可以将复数输出为如下的格式(实部如果是非负数,则不输出符号位;输出时要包含半角左右小括号):friend istream operator (istream is, MyComplex z);--3. 重载流提取运算符,使之可以读入以下格式的输入(两个数值之间使用空白分隔),将第一个数值存为复数的实部,将第二个数值存为复数的虚部:MyComplex operator+(const MyComplex secondMyComplex);--加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;MyComplex operator-(const MyComplex secondMyComplex);--减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;MyComplex operator*(const MyComplex secondMyComplex);--乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;MyComplex operator-(const MyComplex secondMyComplex);--除法法则:(a+bi)÷(c+di)=[(ac+bd)-(c2+d2)]+[(bc-ad)-(c2+d2)]i.private:double a_;double b_;MyComplex::MyComplex()MyComplex::MyComplex(double a, double b)ostream operator(ostream os, const MyComplex z)--4. 重载流插入运算符,使之可以将复数输出为如下的格式(实部如果是非负数,则不输出符号位;输出时要包含半角左右小括号):-- TODO: 在此处插入 return 语句os.unsetf(std::ios::showpos);os "(" z.a_;os.setf(std::ios::showpos);os z.b_ "i)";return os;istream operator (istream is, MyComplex z)--3. 重载流提取运算符,使之可以读入以下格式的输入(两个数值之间使用空白分隔),将第一个数值存为复数的实部,将第二个数值存为复数的虚部:-- TODO: 在此处插入 return 语句is z.a_ z.b_;return is;MyComplex MyComplex::operator+(const MyComplex secondMyComplex)--加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;return MyComplex(a_ + secondMyComplex.a_, b_ + secondMyComplex.b_);MyComplex MyComplex::operator-(const MyComplex secondMyComplex)--减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;return MyComplex(a_ - secondMyComplex.a_, b_ - secondMyComplex.b_);MyComplex MyComplex::operator*(const MyComplex secondMyComplex)--乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;return MyComplex(a_ * secondMyComplex.a_ - b_ * secondMyComplex.b_, secondMyComplex.a_ * b_ + a_ * secondMyComplex.b_);MyComplex MyComplex::operator-(const MyComplex secondMyComplex)--除法法则:(a+bi)÷(c+di)=[(ac+bd)-(c2+d2)]+[(bc-ad)-(c2+d2)]i.--1. 在【本单元作业2】的基础上,修改相关代码。

在做除法运算时,如果作为除数的复数z是0,则抛出一个runtime_error类型的异常--2. 在该runtime_error类型的异常对象中,存储着错误信息“Divisor is 0”(注意:请精确复制这段信息,否则即便你的程序逻辑正确,OJ系统仍然会判你失败。

输出信息中不包含引号)。

该错误信息可以通过runtime_error类的构造函数存入runtime_error对象中。

if (pow(secondMyComplex.a_, 2) + pow(secondMyComplex.b_, 2) == 0)--2. 在做除法时,如果除数是0,则输出一条信息:“Divisorcan not be 0” (注意:请精确复制这段信息,否则即便你的程序逻辑正确,OJ系统仍然会判你失败。

输出信息中不包含引号)然后结束程序(调用 exit() 函数),直接退出(注意,传递给操作系统的返回值与main函数正常结束时相同,仍然为0)。

throw runtime_error("Divisor is 0");return MyComplex((a_ * secondMyComplex.a_ + b_ * secondMyComplex.b_) - (pow(secondMyComplex.a_, 2) + pow(secondMyComplex.b_, 2)), (b_ * secondMyComplex.a_ - a_ * secondMyComplex.b_) - (pow(secondMyComplex.a_, 2) + pow(secondMyComplex.b_, 2)));int main() { -- 不可修改main函数中的代码,否则OJ将给你的程序打0分MyComplex z1, z2;cout "z1 + z2 = " z1 + z2 endl;cout "z1 - z2 + z1 = " z1 - z2 + z1 endl;cout "z1 * z2 - z1 = " z1 * z2 - z1 endl;cout "z1 - z2 + z1 = " z1 - z2 + z1 endl;cout "z2 - z1 - z1 = " z2 - z1 - z1 endl;cout "Finished";catch (exception e) { -- catch父类异常类型,也可以捕获子类异常cout e.what() endl; -- waht()函数将存放在异常对象中的信息取出来cout "Unexpected Error";-- GCC及VC编译器在调试模式下会暂停,便于查看运行结果#if ( defined(__DEBUG__) || defined(_DEBUG) )cin.ignore(numeric_limitsstreamsize::max(), '');cin.get();return 0;先作出圆心在原点,半径为的圆,然后作出角的终边,以这条终边与圆的交点为分点,将圆周等分,那么每个等分点对应的复数就是复数的次方根。

cout"z1-z2+z1="z1-z2+z1endl;两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。

四元数偶积也不常用,但是它也会被提到,因为它和奇积的相似性。

它是纯对称的积;因此,它是完全可交换的。

根据FOIL规则,我们先计算两个数中第一个数字的相乘,将两式第一个数字做乘法也就是1乘以2,所以:return Complex(c1.real + c2.real, c1.imag + c2.imag);Complex operator *(const Complex c);1)如果计算时用户没有给表达式设定变量,系统将会自动将当前结果赋给ans变量return Plural(--before, --after);1.本次作业属于Online Judge题目,提交后由系统即时判分。

相关文档
最新文档