2018届河南省郑州市高中毕业班第一次质量检测(模拟)文科数学试题(图片版)

合集下载

河南省郑州市第一中学2018届高三12月月考数学(文)试题(解析版)

河南省郑州市第一中学2018届高三12月月考数学(文)试题(解析版)

河南省郑州市第一中学2018届高三上学期诊断试题数学(文科)本试卷共23小题,满分150分.考试用时120分钟.注意事项:1.本试卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分.答卷前考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试题上无效.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,(为虚数单位),则()A. B. C. D.【答案】C【解析】,则,所以,由于,因此,故选择C.2.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法.干支是天干和地支的总称.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、午、亥十二个符号叫地支.把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”.2016年是干支纪年法中的丙申年,那么2017年是干支纪年法中的()A. 丁酉年B. 戊未年C. 乙未年D. 丁未年【答案】A【解析】按照天干、地支匹配顺序,若2016年为丙申年,则2017年为丁酉年,故选择A. 3.点在直线上,则直线的倾斜角为()A. B. C. D.【答案】C【解析】【分析】点在直线l:ax﹣y+1=0上,a=,即直线的斜率为可得直线的倾斜角.【详解】∵点在直线l:ax﹣y+1=0上,∴,∴a=,即直线的斜率为,直线l的倾斜角为60°.故选:C.【点睛】本题考查直线的倾斜角,考查学生的计算能力,比较基础.4.定义函数,则的最小值为()A. B. C. D.【答案】C【解析】根据题中定义的函数可知,则该函数图像如下图由上图可知函数的最小值为,故选择C.5.已知数列的通项,数列的前项和为,若这两个数列的公共项顺次构成一个新数列,则满足的的最大整数值为()A. 335B. 336C. 337D. 338【答案】A【解析】由可知数列为等差数列,通项公式,又因为,由题意可知,通项公式,所以即,解得,所以的最大整数值为335,故选择A. 6.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】B【解析】试题分析:由三视图可知,该几何体是由正三棱柱截取一部分所得,故体积为.考点:三视图.7.如图,给出抛物线和其对称轴上的四个点、、、,则抛物线的焦点是()A. B. C. D.【答案】B【解析】【分析】分别作出准线方程,根据抛物线的定义,即可判断焦点的位置.【详解】如图可知:分别做P,Q,R,S关于y轴的对称点,分别过对称点做x轴的垂线,根据抛物线的定义,抛物线上的点到焦点的距离与点到准线的距离相等,分别判断,可知Q为抛物线的焦点,故选:B.【点睛】本题考查抛物线的定义,考查数形结合思想,属于基础题.8.点在圆上运动,则的取值范围是()A. B.C. D.【答案】D【解析】当时,显然;当时,,设,则问题转化为求的取值范围,将看作圆上动点与原点连线的斜率,如下图,或,则或,所以或综上所述:.9.已知、为单位圆上不重合的两定点,为此单位圆上的动点,若点满足,则点的轨迹为()A. 椭圆B. 双曲线C. 抛物线D. 圆【答案】D【解析】设,,,,设单位圆圆心为,则根据可有:,所以点为的重心,根据重心坐标公式有,整理得,所以点的轨迹为圆,故选择D.点睛:求轨迹方程是解析几何中的重要内容,是高考命题的热点和重点.主要考查学生的数形结合思想、等价转化思想、逻辑推理能力、分类讨论及创新思维,属于较高的能力考查.求轨迹方程常用的方法有:直接法、定义法、几何法、相关点法、参数法、交轨法、点差法等.本题主要是考查几何法中的三角形重心的向量表示及重心坐标公式,然后根据相关点法可以求出点的轨迹方程.10.点、分别是双曲线的左、右焦点,点在双曲线上,则的内切圆半径的取值范围是()A. B. C. D.【答案】A【解析】如图所示,设的内切圆圆心为,内切圆与三边分别相切于点,根据圆的切线可知:,,,又根据双曲线定义,即,所以,即,又因为,所以,,所以点为右顶点,即圆心,考虑点在无穷远时,直线的斜率趋近于,此时方程为,此时圆心到直线的距离为,解得,因此内切圆半径,所以选择A.11.如图,将边长为2的正沿着高折起,使,若折起后、、、四点都在球的表面上,则球的表面积为()A. B. C. D.【答案】B【解析】将折叠后的三棱锥置于正三棱柱中,如下图所示,是边长为1的正三角形,,外接球球心为,在中,,,,所以,则球的表面积为,故选择B.点睛:解决关于外接球的问题关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用.对于特殊类型的问题,我们可以将其还原为规则的几何题,如正方体、正四棱柱、长方体、正三棱柱等等,还原后球心的位置比较明显,很容易建立方程,从而求出外接球的半径,计算得到球的体积、表面积.12.已知函数,下面是关于此函数的有关命题,其中正确的有()①函数是周期函数;②函数既有最大值又有最小值;③函数的定义域为,且其图象有对称轴;④对于任意的,(是函数的导函数)A. ②③B. ①③C. ②④D. ①②③【答案】A【解析】函数定义域为,当或时,,又,,,,……时,,且均为变号零点.又因为函数满足,所以函数关于直线对称,函数图像如下图,故②③正确.点睛:本题考查函数的综合知识:①函数对于定义域内任意实数,存在非零常数,满足,则函数为周期函数;②函数对于定义域内任意实数满足,则函数关于直线对称,特别地当时,函数关于直线对称;③在函数定义域内,存在常数使得,则叫做函数的零点.第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.我国古代“伏羲八卦图”的部分与二进制和十进制的互化关系如下表,依据表中规律,、处应分别填写__________.【答案】110,6【解析】【分析】由二进制转化为十进制的方法,我们只要依次累加各位数字上的数×该数位的权重,即可得到结果.【详解】由八卦图,可得A处是110,110(2)=0+1×2+1×22=2+4=6.故答案为110,6.【点睛】二进制转换为十进制的方法是依次累加各位数字上的数×该数位的权重,属于基础题.14.已知,将其绕原点逆时针旋转后又伸长到原来的2倍得向量,则________.【答案】【解析】设向量逆时针旋转后得到的向量为,根据题意有,解得,所以,又,所以15.点是正方体的体对角线上靠近点的四等分点,在正方体随机取一点,则点满足的概率为________.【答案】【解析】设正方体棱长为4,以为原点建立空间直角坐标系,则,则,设,根据条件,即,整理得:,所以点的轨迹是以为球心,为半径的球的体积的,体积为,所以根据几何概型,所求概率为.点睛:应用几何概型求概率问题的时,首先要建立相应的几何模型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量.(1)一般地,一个连续变量可以建立与长度有关的几何概型,只需把这个变量放在数轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型.16.设表示不超过实数的最大整数,例如,,则点集所覆盖的面积为________.【答案】12【解析】由于且均为整数,当或时围成的是4个面积为1小正方形,当或时围成的是8个面积为1的小正方形,所以面积为12.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数.(Ⅰ)求的单调递增区间;(Ⅱ)在锐角中,内角、、、所对的边分别是、、,且,,求的最大面积.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(1)本问考查三角恒等变换公式,首先根据两角和正弦展开,然后根据二倍角公式化为正弦型函数,,然后可以求出递增区间;(2)本问考查正、余弦定理及重要不等式的应用,首先根据求出,根据余弦定理,即,根据重要不等式可以得到,于是可以求出的最大值,即可以求出面积的最大值.试题解析:(1),令,得.∴的单调递增区间为.(2)由,得,∴,∴,∴,又∵,∴,∴.∴,当且仅当时取“=”.∴.考点:1.三角恒等变换公式;2.正弦型函数性质;3.余弦定理;4.三角形面积公式.18.如图,已知三棱锥中,为的中点,为的中点,且为正三角形.(1)求证:平面;(2)求证:平面平面.【答案】(1)见解析(2)见解析【解析】试题分析:(1)本问考查线面平行判定定理,根据题中条件,易得,在分别强调面外、面内这两个条件,即可以证明线面平行;(2)本问主要考查证明面面平行,根据面面平行判定定理,应先证明线面垂直,根据题中条件,应设法证明,根据题中条件分析可证出平面,所以得到,于是根据线面垂直判定定理可得平面,于是平面平面.试题解析:(1)∵分别为的中点,∴,又平面平面,∴平面.(2)∵为的中点,为正三角形,∴.由(1)知,∴.又,且,∴平面.∵平面,∴.又,且,∴平面.而平面,∴平面平面.考点:1.线面平行;2.面面垂直.19.根据环境保护部《环境空气质量指数(AQI)技术规定》,空气质量指数(AQI)在201~300之间为重度污染;在301~500之间为严重污染.依据空气质量预报,同时综合考虑空气污染程度和持续时间,将空气重污染分为4个预警级别,由轻到重依次为预警四级、预警三级、预警二级、预警一级,分别用蓝、黄、橙、红颜色标示,预警一级(红色)为最高级别.(一)预警四级(蓝色):预测未来1天出现重度污染;(二)预警三级(黄色):预测未来1天出现严重污染或持续3天出现重度污染;(三)预警二级(橙色):预测未来持续3天交替出现重度污染或严重污染;(四)预警一级(红色):预测未来持续3天出现严重污染.某城市空气质量监测部门对近300天空气中PM2.5浓度进行统计,得出这300天中PM2.5浓度的频率分布直方图如图.将PM2.5浓度落入各组的频率视为概率,并假设每天的PM2.5浓度相互独立.(Ⅰ)求当地监测部门发布颜色预警的概率;(Ⅱ)据当地监测站数据显示未来4天将出现3天严重污染,求监测部门发布红色预警的概率.【答案】(Ⅰ) 0.2;(Ⅱ).【解析】试题分析:(1)观察频率分布直方图,根据题意空气质量指数为重度污染和严重污染的频率为,所以当地发布颜色预警的概率为0.2;(2 )本问考查古典概型,主要是理解题意并根据题意写出基本事件空间,再根据题中描述预警一级(红色);预测未来持续3天出现严重污染,确定发生红色预警所包含的事件,从而求出概率.试题解析:(1)根据频率分布直方图,可知出现空气重污染的频率是,所以当地监测部门发布颜色预警的概率是0.2.(2)记严重污染为,其他情况为,未来4天中出现3天严重污染的所有情况有,共4种,发布红色预警所包含的基本事件为,共2种,所以监测部门发布红色预警的概率.考点:1.频率分布直方图;2.古典概型.20.已知椭圆的离心率为,左、右焦点分别为、,是上一点,,且.(Ⅰ)求椭圆的方程;(Ⅱ)当过点的动直线与椭圆相较于不同两点,时,在线段上取点,且满足,证明点总在某定直线上,并求出该定直线.【答案】(Ⅰ) ;(Ⅱ)证明见解析,直线方程为.【解析】试题分析:(1)本问主要考查求椭圆标准方程,由,可得,所以,则在中,,,再根据余弦定理及,可以求出的值,于是可以求出椭圆的方程;(2)本问主要考查直线与椭圆的综合应用,分析题意可知直线的斜率显然存在,故设直线方程为,再联立直线方程与椭圆方程,消去未知数得到关于的一元二次方程,根据韦达定理表示出两点横坐标之和及横坐标之积,于是设点,将题中条件转化为横坐标的等式,于是可以得出满足的方程,即可以证明总在一条直线上.试题解析:(1)由已知得,且,在中,由余弦定理得,解得.则,所以椭圆的方程为.(2)由题意可得直线的斜率存在,设直线的方程为,即,代入椭圆方程,整理得,设,则.设,由得(考虑线段在轴上的射影即可),所以,于是,整理得,(*)又,代入(*)式得,所以点总在直线上.考点:1.椭圆标准方程;2.直线与椭圆位置关系.点睛:圆锥曲线中的定点、定值、定直线问题时高考中的常考题型,难度一般较大,常常把直线、圆及圆锥曲线等知识结合在一起,注重数学思想方法的考查,尤其是函数思想、分类讨论思想的考查.求定值问题常见的方法:(1)从特殊点入手,求出定值,再证明这个值与变量无关,(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.定点问题的常见解法:(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求定点,(2)从特殊位置入手,找出定点,再证明该点符合题意.21.已知函数.(Ⅰ)若在区间上单调递增,求实数的取值范围;(Ⅱ)若存在唯一整数,使得成立,求实数的取值范围.【答案】(Ⅰ) ;(Ⅱ).【解析】试题分析:(1)本问考查利用导数研究函数单调性,由函数在区间上单调递增,则在上恒成立,即在上恒成立,采用参变分离的方法,将问题转化为在上恒成立,设函数,于是只需满足即可,问题转化为求函数的最小值;(2)存在唯一整数,使得,即,于是问题转化为存在唯一一个整数使得函数图像在直线下方,于是可以画出两个函数图像,结合图像进行分析,确定函数在时图像之间的关系,通过比较斜率大小来确定的取值范围.试题解析:(1)函数的定义域为,,要使在区间上单调递增,只需,即在上恒成立即可,易知在上单调递增,所以只需即可,易知当时,取最小值,,∴实数的取值范围是.(2)不等式即,令,则,在上单调递增,而,∴存在实数,使得,当时,,在上单调递减;当时,,在上单调递增,∴.,画出函数和的大致图象如下,的图象是过定点的直线,由图可知若存在唯一整数,使得成立,则需,而,∴.∵,∴.于是实数的取值范围是.考点:1.利用导数研究函数极值;2.函数、导数的综合应用;3.数形结合思想方法.点睛:导数是高考中的高频考点,同时也是初等数学与高等数学的重要衔接.利用导数研究函数单调性,利用导数研究函数极值,导数几何意义等内容,使函数内容更加丰富,更加充盈.解题时,注意函数与方程思想、数形结合思想、分类讨论思想、等价转化思想的应用,另外,还要能够将问题进行合理的转化,尤其是“恒成立”问题和“有解”问题的等价转化,可以简化解题过程.还有在求参数取值范围时,可以考虑到分离参数方法或分类讨论的方法,同时数形结合也是解题时必备的工具.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.选题4—4;坐标系与参数方程已知曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直线坐标系,直线的参数方程为(为参数).(Ⅰ)判断直线与曲线的位置关系,并说明理由;(Ⅱ)若直线与曲线相较于、两点,且,求直线的斜率.【答案】(Ⅰ) 相交,理由见解析;(Ⅱ).【解析】试题分析:(1)由,又直线过点,且该点到圆心的距离为直线与曲线相交;(2)先当验证直线的斜率不存在时,直线过不成立直线必有斜率, 设其方程为圆心到直线的距离的斜率为.试题解析:(1)因为,所以,所以曲线的直角坐标方程为,即,因为直线过点,且该点到圆心的距离为,所以直线与曲线相交.(2)当直线的斜率不存在时,直线过圆心,则直线必有斜率, 设其方程为,即,圆心到直线的距离,解得,所以直线的斜率为.考点:坐标系与参数方程.【方法点睛】参数方程与普通方程的互化:把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法,常见的消参方法有:代入消参法;加减消参法;平方和(差)消参法;乘法消参法;混合消参法等.把曲线C的普通方程化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.注意方程中的参数的变化范围.23.选修4—5:不等式选讲已知,不等式成立.(Ⅰ)求满足条件的实数的集合;(Ⅱ)若,,,不等式恒成立,求的最小值.【答案】(Ⅰ) ;(Ⅱ)6.【解析】【分析】(Ⅰ)求出f(x)的分段函数的形式,求出f(x)的范围,求出T即可;(Ⅱ)根据基本不等式的性质求出m+n的最小值即可.【详解】(Ⅰ)令,则,由于,不等式成立,因此.(Ⅱ)当,,时,不等式恒成立等价于恒成立,由题意知,,根据基本不等式得,所以,从而,当且仅当时取等号,再根据基本不等式得,当且仅当时取等号,所以的最小值为6.【点睛】本题考查了绝对值不等式的性质,考查基本不等式的性质以及分类讨论思想,转化思想,是一道中档题.。

2018届河南省郑州市高三上学期第一次质量预测文科数学试题及答案

2018届河南省郑州市高三上学期第一次质量预测文科数学试题及答案

郑州市2018届高三上学期第一次质量预测试题数学(文)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,考试时间120分钟,满分150分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.第I 卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}|2,|A x x B x x m =>=<,且A B R = ,那么m 的值可以是 A .0 B .1 C .2 D .32.复数1iz i+=(i 是虚数单位)在复平面内对应的点在 A. 第一象限 B .第二象限 C .第三象限 D .第四象限3. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒 物,也称为可入肺颗粒物,右图是据某地某日早7点至晚8 点甲、乙两个 2.5PM 监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是 A .甲 B .乙C .甲乙相等D .无法确定4.如图,某几何体的正视图和俯视图都是矩形,侧视 图是平行四边形,则该几何体的体积为A .B .C .D .5.已知曲线23ln 4x y x =-的一条切线的斜率为2,则切点的横坐标为 A.3 B. 2 C .1 D .126.已知各项不为0的等差数列{}n a 满足2478230a a a -+=,数列{}n b 是等比数列,且77b a =,则212b b 等于A .1B .2C .4D .87.若1sin()34πα-=,则cos(2)3πα+A.78- B .14- C .14 D .788.已知抛物线22(0)y px p =>,过其焦点且斜率为-1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为-2,则该抛物线的准线方程为A .x=lB .2x =C .1x =-D .2x =-9.设函数())cos(2)()2f x x x πϕϕϕ=+++<,且其图象关于直线0x =对称,则A .()y f x =的最小正周期为π,且在(0,)2π上为增函数 B .()y f x =的最小正周期为2π,且在(0,)4π上为增函数 C .()y f x =的最小正周期为π,且在(0,)2π上为减函数 D .()y f x =的最小正周期为2π,且在(0,)4π上为减函数10.双曲线22221(0,0)x y a b a b+=>>的左、右焦点分别是1F 、2F ,过1F 作倾斜角为30 的直线交双曲线右支于M 点,若2MF ⊥x 轴,则双曲线的离心率为B D 11.已知向量a 是与单位向量夹角为60 的任意向量,则对任意的正实数t,的最小值是A. 0B.12D. 112. 定义在R 上的函数32()(0)f x ax bx cx a =++≠的单调增区间为(-1,1),若方程23(())2()0a f x bf x c ++=恰有4个不同的实根,则实数a 的值为.A .12 B .12- C .1 D .-1第Ⅱ卷本卷包括必考题和选考题两部分.第13—21题为必考题,每个试题考生都必须作答,第22—24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.设,x y 满足约束条件1,3,0,x y x y y -≥-⎧⎪+<⎨⎪>⎩, 则z x y =-的取值范围为________.14.执行右面的程序框图,若输出的78S =,则输入的整 数p 的值为__________.15.已知三棱柱111ABC A B C -的侧棱垂直于底面,各顶 点都在同一球面上,若12,2,1AA AB AC ===.60BAC ∠= ,则此球的表面积等于_________.16.整数数列{}n a 满足21()n n n a a a n N *++=-∈,若此数列的前800项的和是2018,前813项的和是2000,则其前2018项的和为__________.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知函数()sin(2)(0,0)f x A x A ϕϕπ=+><<,当3x π=-时取得最小值-4.(I)求函数()f x 的解析式;(Ⅱ)若等差数列{}n a 前n 项和为n S ,且24(0),()6a f a f π==,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T . 18.(本小题满分12分)郑州市为了缓解城市交通压力,大力发展公共交通,提倡多坐公交少开车,为了调查市民乘公交车的候车情况,交通主管部门从在某站台等车的45名候车乘客中随机抽取15人,按照他们的候车时间(单位:分钟)作为样本分成6组,如下表所示:(I)估计这45名乘客中候车时间少于12分钟的人数;(Ⅱ)若从上表第四、五组的5人中随机抽取2人做进一步的问卷调查,求抽到的2人恰好来自不同组的概率.19.(本小题满分12分)在三棱柱111ABC A B C -中,侧面11ABB A 为矩形,11,AB AA ==D 为1AA 的中点,BD 与1AB 交于点O ,CO ⊥侧面11ABB A . (I)证明:1BC AB ⊥;(Ⅱ)若OC OA =,求三棱锥1C ABC -的体积. 20.(本小题满分12分)已知△ABC 的两顶点坐标(1,0),(1,0)A B -,圆E 是△ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,1CP =(从圆外一点到圆的两条切线段长相等),动点C 的轨迹为曲线M .(I)求曲线M 的方程;(Ⅱ)设直线BC 与曲线M 的另一交点为D ,当点A 在 以线段CD 为直径的圆上时,求直线BC 的方程.21.(本小题满分12分) 已知函数(1)()ln ,()k x f x x x g x x-==. (I)当k e =时,求函数()()()h x f x g x =-的单调区间和极值;; (Ⅱ) 若()()f x g x ≥恒成立,求实数k 的值。

2018年河南省高考数学一诊试卷(文科)

2018年河南省高考数学一诊试卷(文科)

2018年河南省高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈R|3≤32﹣x<27},B={x∈Z|﹣3<x<1},则A∩B中元素的个数为()A.0 B.1 C.2 D.32.(5分)已知a∈R,复数z=,若=z,则a=()A.1 B.﹣1 C.2 D.﹣23.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个4.(5分)在△ABC中,角A,B,C的对边分别为a,b,c.若A=,=2sinAsinB,且b=6,则c=()A.2 B.3 C.4 D.65.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为()A.128π平方尺B.138π平方尺 C.140π平方尺 D.142π平方尺6.(5分)定义[x]表示不超过x的最大整数,(x)=x﹣[x],例如[2.1]=2,(2.1)=0.1,执行如图所示的程序框图,若输入的x=5.8,则输出的z=()A.﹣1.4 B.﹣2.6 C.﹣4.6 D.﹣2.87.(5分)若对于任意x∈R都有f(x)+2f(﹣x)=3cosx﹣sinx,则函数f(2x)图象的对称中心为()A.(k∈Z)B.(k∈Z)C.(k ∈Z)D.(k∈Z)8.(5分)设x,y满足约束条件,若z=﹣ax+y取得最大值的最优解不唯一,则实数a的值为()A.2或﹣3 B.3或﹣2 C.﹣或D.﹣或29.(5分)函数f(x)=的部分图象大致是()A.B.C.D.10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12+2B.20+6+2C.20+6+2D.20+12+2 11.(5分)过抛物线y2=2px(p>0)的焦点F作斜率大于0的直线l交抛物线于A,B两点(A在B的上方),且l与准线交于点C,若,则=()A.B.C.3 D.212.(5分)已知函数f(x)=e x+x2+lnx与函数g(x)=e﹣x+2x2﹣ax的图象上存在关于y轴对称的点,则实数a的取值范围为()A.(﹣∞,﹣e]B.C.(﹣∞,﹣1]D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,|+|=|﹣|,||=2,则•=14.(5分)一只蜜蜂在一个正方体箱子里面自由飞行,若蜜蜂在飞行过程中始终保持在该正方体内切球范围内飞行,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为.15.(5分)若α∈(﹣,0),sin(α+)=﹣,则=.16.(5分)设F1,F2分别是双曲线的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m,18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知等差数列{a n}的公差不为零,a1=3,且a2,a5,a14成等比数列.(1)求数列{a n}的通项公式;(2)若b n=(﹣1)n﹣1a n a n+1,求数列{b n}的前2n项和S2n.18.(12分)从某校高中男生中随机选取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图,如图所示.(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);(2)若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,求这2人中至少有1人体重在[70,80)内的概率.19.(12分)如图,在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.(1)求证:B1C∥平面A1DE;(2)若AC=3BC=6,△AB1C为等边三角形,求四棱锥A1﹣B1C1ED的体积.20.(12分)如图,椭圆W:+=1(a>b>0)的焦距与椭圆Ω:+y2=1的短轴长相等,且W与Ω的长轴长相等,这两个椭圆的在第一象限的交点为A,直线l经过Ω在y轴正半轴上的顶点B且与直线OA(O为坐标原点)垂直,l与Ω的另一个交点为C,l与W交于M,N两点.(1)求W的标准方程:(2)求.21.(12分)已知函数f(x)=x﹣lnx.(1)若曲线y=f(x)在x=x0处的切线经过坐标原点,求x0及该切线的方程;(2)设g(x)=(e﹣1)x,若函数F(x)=的值域为R,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数),设直线l1与l2的交点为P,当k变化时,P的轨迹为曲线C1.(1)求出曲线C1的普通方程;(2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为ρsin(θ+)=4,点Q为曲线C1的动点,求点Q到直线C2的距离的最小值.[选修4-5:不等式选讲]23.已知f(x)=|x+a|(a∈R).(1)若f(x)≥|2x+3|的解集为[﹣3,﹣1],求a的值;(2)若∀x∈R,不等式f(x)+|x﹣a|≥a2﹣2a恒成立,求实数a的取值范围.2018年河南省高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈R|3≤32﹣x<27},B={x∈Z|﹣3<x<1},则A∩B中元素的个数为()A.0 B.1 C.2 D.3【解答】解:∵A={x∈R|3≤32﹣x<27}={x∈R|﹣1<x≤1},B={x∈Z|﹣3<x<1}={﹣2,﹣1,0},∴A∩B={0}.∴A∩B中元素的个数为1.故选:B.2.(5分)已知a∈R,复数z=,若=z,则a=()A.1 B.﹣1 C.2 D.﹣2【解答】解:z===+a﹣1=(a﹣1)﹣(a+1)i,则=(a﹣1)+(a+1)i,∵=z,∴a+1=0,得a=﹣1,故选:B.3.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个【解答】解:由该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据的折线图,得:在A中,最低气温与最高气温为正相关,故A正确;在B中,10月的最高气温不低于5月的最高气温,故B正确;在C中,月温差(最高气温减最低气温)的最大值出现在1月,故C正确;在D中,最低气温低于0℃的月份有3个,故D错误.故选:D.4.(5分)在△ABC中,角A,B,C的对边分别为a,b,c.若A=,=2sinAsinB,且b=6,则c=()A.2 B.3 C.4 D.6【解答】解:△ABC中,A=,b=6,∴a2=b2+c2﹣2bccosA,即a2=36+c2﹣6c①;又=2sinAsinB,∴=2ab,即cosC==,∴a2+36=4c2②;由①②解得c=4或c=﹣6(不合题意,舍去);∴c=4.故选:C.5.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为()A.128π平方尺B.138π平方尺 C.140π平方尺 D.142π平方尺【解答】解:∵今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,∴构造一个长方体,其长、宽、高分别为7尺、5尺、8尺,则这个这个四棱锥的外接球就是这个长方体的外接球,∴这个四棱锥的外接球的半径R==(尺),∴这个四棱锥的外接球的表面积为S=4π×R2==138π(平方尺).故选:B.6.(5分)定义[x]表示不超过x的最大整数,(x)=x﹣[x],例如[2.1]=2,(2.1)=0.1,执行如图所示的程序框图,若输入的x=5.8,则输出的z=()A.﹣1.4 B.﹣2.6 C.﹣4.6 D.﹣2.8【解答】解:模拟程序的运行,可得x=5.8y=5﹣1.6=3.4x=5﹣1=4满足条件x≥0,执行循环体,x=1.7,y=1﹣1.4=﹣0.4,x=1﹣1=0满足条件x≥0,执行循环体,x=﹣0.2,y=﹣1﹣1.6=﹣2.6,x=﹣1﹣1=﹣2不满足条件x≥0,退出循环,z=﹣2+(﹣2.6)=﹣4.6.输出z的值为﹣4.6.故选:C.7.(5分)若对于任意x∈R都有f(x)+2f(﹣x)=3cosx﹣sinx,则函数f(2x)图象的对称中心为()A.(k∈Z)B.(k∈Z)C.(k ∈Z)D.(k∈Z)【解答】解:∵对任意x∈R,都有f(x)+2f(﹣x)=3cosx﹣sinx ①,用﹣x代替x,得f(﹣x)+2f(x)=3cos(﹣x)﹣sin(﹣x)②,即f(﹣x)+2f(﹣x)=3cosx+sinx②;由①②组成方程组,解得f(x)=sinx+cosx,∴f(x)=sin(x+),∴f(2x)=sin(2x+).令2x+=kπ,k∈Z,求得x=﹣,故函数f(2x)图象的对称中心为(﹣,0),k∈Z,故选:D.8.(5分)设x,y满足约束条件,若z=﹣ax+y取得最大值的最优解不唯一,则实数a的值为()A.2或﹣3 B.3或﹣2 C.﹣或D.﹣或2【解答】解:作出不等式组对应的平面区域如图:(阴影部分OAB).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y=1平行,此时a=﹣3,综上a=﹣3或a=2,故选:A.9.(5分)函数f(x)=的部分图象大致是()A.B.C.D.【解答】解:∵函数f(x)的定义域为(﹣∞,﹣)∪(﹣,)∪(,+∞)f(﹣x)===f(x),∴f(x)为偶函数,∴f(x)的图象关于y轴对称,故排除A,令f(x)=0,即=0,解得x=0,∴函数f(x)只有一个零点,故排除D,当x=1时,f(1)=<0,故排除C,综上所述,只有B符合,故选:B.10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12+2B.20+6+2C.20+6+2D.20+12+2【解答】解:由三视图可知该几何体为侧放的四棱柱,棱锥的底面为矩形ABCD,底面与一个侧面PBC垂直,PB=PC=4,AB=3.S ABCD=3×=12,S△PBC=,S△PCD=S△PBA=,△PAD中AP=PD=5,AD=4,∴AD边上的高为,=,∴S△PAD则该几何体的表面积为12+8+6+6+2=12+20+2,故选:D.11.(5分)过抛物线y2=2px(p>0)的焦点F作斜率大于0的直线l交抛物线于A,B两点(A在B的上方),且l与准线交于点C,若,则=()A.B.C.3 D.2【解答】解:根据题意,设|AF|=a,|BF|=b,作AM、BN垂直准线于点M、N,则有|BF|=|BN|=b,|AF|=|AM|=a,若,则有|CB|=4|BF|,即|CB|=4|BN|,又由BN∥AM,则有|CA|=4|AM|,即有4b+a+b=4a,变形可得=,即=,故选:A.12.(5分)已知函数f(x)=e x+x2+lnx与函数g(x)=e﹣x+2x2﹣ax的图象上存在关于y轴对称的点,则实数a的取值范围为()A.(﹣∞,﹣e]B.C.(﹣∞,﹣1]D.【解答】解:由题意知,方程g(﹣x)﹣f(x)=0在(0,+∞)上有解,即e x+2x2+ax﹣lnx﹣e x﹣x2=0,即x+a﹣=0在(0,+∞)上有解,即函数y=x+a与y=在(0,+∞)上有交点,y=的导数为y′=,当x>e时,y′<0,函数y=递减;当0<x<e时,y′>0,函数y=递增.可得x=e处函数y=取得极大值,函数y=x+a与y=在(0,+∞)上的图象如右:当直线y=x+a与y=相切时,切点为(1,0),可得a=0﹣1=﹣1,由图象可得a的取值范围是(﹣∞,﹣1].故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,|+|=|﹣|,||=2,则•=﹣4【解答】解:在△ABC中,|+|=|﹣|,可得|+|2=|﹣|2,即有2+2+2•=2+2﹣2•,即为•=0,则△ABC为直角三角形,A为直角,则•=﹣•=﹣||•||•cosB=﹣||2=﹣4.故答案为:﹣4.14.(5分)一只蜜蜂在一个正方体箱子里面自由飞行,若蜜蜂在飞行过程中始终保持在该正方体内切球范围内飞行,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为.【解答】解:如图,设正方体的棱长为2a,则其内切球的半径为a,则,,∴蜜蜂“安全飞行”的概率为P=.故答案为:.15.(5分)若α∈(﹣,0),sin(α+)=﹣,则=.【解答】解:α∈(﹣,0),sin(α+)=﹣,∴cos(α+)==,则====,故答案为:.16.(5分)设F1,F2分别是双曲线的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m,18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为2.【解答】解:根据双曲线的定义,可得|AF1|﹣|AF2|=2a,∵△ABF2是等边三角形,即|AF2|=|AB|,∴|BF1|=2a,又∵|BF2|﹣|BF1|=2a,∴|BF2|=|BF1|+2a=4a,∵△BF1F2中,|BF1|=2a,|BF2|=4a,∠F1BF2=120°,∴|F1F2|2=|BF1|2+|BF2|2﹣2|BF1|•|BF2|cos120°,即4c2=4a2+16a2﹣2×2a×4a×(﹣)=28a2,解得c2=7a2,b2=6a2,由双曲线的第二定义可得===,则m=,由A在双曲线上,可得﹣=1,解得a=,则2a=2.故答案为:2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知等差数列{a n}的公差不为零,a1=3,且a2,a5,a14成等比数列.(1)求数列{a n}的通项公式;(2)若b n=(﹣1)n﹣1a n a n+1,求数列{b n}的前2n项和S2n.【解答】解:(1)设公差为d,由,得,化简得d2=2a1d,因为d≠0,a1=3,所以d=6,所以a n=6n﹣3.(2)因为,所以﹣(36×(2n)2﹣9),所以,即S2n=﹣36(1+2+3+4+…+(2n﹣1)+2n)=.18.(12分)从某校高中男生中随机选取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图,如图所示.(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);(2)若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,求这2人中至少有1人体重在[70,80)内的概率.【解答】解:(1)由频率分布直方图估计该校的100名同学的平均体重为:=45×0.005×10+55×0.035×10+65×0.030×10+75×0.020×10+85×0.010×10=64.5.(2)要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,体重在[60,70)内的男生中选:6×=3人,体重在[70,80)内的男生中选:6×=2人,体重在[80,90]内的男生中选:6×=1人,再从这6人中选2人当正副队长,基本事件总数n==15,∴这2人中至少有1人体重在[70,80)内的概率p=1﹣=.19.(12分)如图,在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.(1)求证:B1C∥平面A1DE;(2)若AC=3BC=6,△AB1C为等边三角形,求四棱锥A1﹣B1C1ED的体积.【解答】证明:(1)∵在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,∴DE∥BC,DB A 1B1,∴四边形DBB1A1是平行四边形,∴A1D∥BB1,∵A1D∩DE=D,BB1∩BC=B,A1D、DE⊂平面A1DE,BB1、BC⊂平面BCB1,∴平面A1DE∥平面B1BC,∵B1C⊂平面B1BC,∴B1C∥平面A1DE.解:(2)∵AC=3BC=6,△AB1C为等边三角形,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.∴AE=3,DE=1,B1E==3,∠AED=90°,∴四棱锥A1﹣B1C1ED的体积:=﹣=S△ADE•B1E﹣====3.20.(12分)如图,椭圆W:+=1(a>b>0)的焦距与椭圆Ω:+y2=1的短轴长相等,且W与Ω的长轴长相等,这两个椭圆的在第一象限的交点为A,直线l经过Ω在y轴正半轴上的顶点B且与直线OA(O为坐标原点)垂直,l与Ω的另一个交点为C,l与W交于M,N两点.(1)求W的标准方程:(2)求.【解答】解:(1)由题意可得,∴故W的标准方程为.(2)联立得∴,∴,易知B(0,1),∴l的方程为y=﹣3x+1.联立,得37x2﹣24x=0,∴x=0或,∴,联立,得31x2﹣18x﹣9=0,设M(x1,y1),N(x2,y2),则,,∴,故.21.(12分)已知函数f(x)=x﹣lnx.(1)若曲线y=f(x)在x=x0处的切线经过坐标原点,求x0及该切线的方程;(2)设g(x)=(e﹣1)x,若函数F(x)=的值域为R,求实数a 的取值范围.【解答】解:(1)由已知得(x>0),则,所以x0=e,所以所求切线方程为.(2)令,得x>1;令f'(x)<0,得0<x<1.所以f(x)在(0,1)上单调递减,在[1,+∞)上单调递增,所以f(x)min=f(1)=1,所以f(x)∈[1,+∞).而g(x)=(e﹣1)x在(﹣∞,a)上单调递增,所以g(x)∈(﹣∞,(e﹣1)a).欲使函数的值域为R,须a>0.①当0<a≤1时,只须(e﹣1)a≥1,即,所以.②当a>1时,f(x)∈[a﹣lna,+∞),g(x)∈(﹣∞,(e﹣1)a),只须a﹣lna≤(e﹣1)a对一切a>1恒成立,即lna+(e﹣2)a≥0对一切a>1恒成立,令φ(x)=lnx+(e﹣2)x(x>1),得,所以φ(x)在(1,+∞)上为增函数,所以φ(x)>φ(1)=e﹣2>0,所以a﹣lna≤(e﹣1)a对一切a>1恒成立.综上所述:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数),设直线l1与l2的交点为P,当k变化时,P的轨迹为曲线C1.(1)求出曲线C1的普通方程;(2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为ρsin(θ+)=4,点Q为曲线C1的动点,求点Q到直线C2的距离的最小值.【解答】解:(1)∵直线l1的参数方程为(t为参数),∴直线l1的普通方程为y=k(x+),①∵直线l2的参数方程为(m为参数),∴直线l2的普通方程为(﹣x),②①×②,消k,得:+y2=1.∵k≠0,∴y≠0,∴曲线C1的普通方程为=1(y≠0).(2)∵直线C2的极坐标方程为ρsin(θ+)=4,∴直线C2的直角坐标方程为x+y﹣8=0,由(1)知曲线C1与直线C2无公共点,∵曲线C1的参数方程为,(α为参数,α≠kπ,k∈Z),∴曲线C1上的点Q(,sinα)到直线的距离为:d==,∴当sin()=1时,d取最小值3.[选修4-5:不等式选讲]23.已知f(x)=|x+a|(a∈R).(1)若f(x)≥|2x+3|的解集为[﹣3,﹣1],求a的值;(2)若∀x∈R,不等式f(x)+|x﹣a|≥a2﹣2a恒成立,求实数a的取值范围.【解答】解:(1)f(x)≥|2x+3|即|x+a|≥|2x+3|,平方整理得:3x2+(12﹣2a)x+9﹣a2≤0,所以﹣3,﹣1是方程3x2+(12﹣2a)x+9﹣a2=0的两根,…2分由根与系数的关系得到…4分解得a=0…5分(2)因为f(x)+|x﹣a|≥|(x+a)﹣(x﹣a)|=2|a|…7分所以要不等式f(x)+|x﹣a|≥a2﹣2a恒成立只需2|a|≥a2﹣2a…8分当a≥0时,2a≥a2﹣2a解得0≤a≤4,当a<0时,﹣2a≥a2﹣2a此时满足条件的a不存在,综上可得实数a的范围是0≤a≤4…10分。

2018年河南省高考数学一诊试卷(文科)

2018年河南省高考数学一诊试卷(文科)

2018年河南省高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈R|3≤32﹣x<27},B={x∈Z|﹣3<x<1},则A∩B中元素的个数为()A.0 B.1 C.2 D.32.(5分)已知a∈R,复数z=,若=z,则a=()A.1 B.﹣1 C.2 D.﹣23.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个4.(5分)在△ABC中,角A,B,C的对边分别为a,b,c.若A=,=2sinAsinB,且b=6,则c=()A.2 B.3 C.4 D.65.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为()A.128π平方尺B.138π平方尺 C.140π平方尺 D.142π平方尺6.(5分)定义[x]表示不超过x的最大整数,(x)=x﹣[x],例如[2.1]=2,(2.1)=0.1,执行如图所示的A.﹣1.4 B.﹣2.6 C.﹣4.6 D.﹣2.87.(5分)若对于任意x∈R都有f(x)+2f(﹣x)=3cosx﹣sinx,则函数f(2x)图象的对称中心为()A.(k∈Z)B.(k∈Z)C.(k∈Z) D.(k∈Z)8.(5分)设x,y满足约束条件,若z=﹣ax+y取得最大值的最优解不唯一,则实数a的值为()A.2或﹣3 B.3或﹣2 C.﹣或D.﹣或29.(5分)函数f(x)=的部分图象大致是()A.B.C.D.10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12+2B.20+6+2C.20+6+2D.20+12+211.(5分)过抛物线y2=2px(p>0)的焦点F作斜率大于0的直线l交抛物线于A,B两点(A在B的上方),且l与准线交于点C,若,则=()A.B.C.3 D.212.(5分)已知函数f(x)=e x+x2+lnx与函数g(x)=e﹣x+2x2﹣ax的图象上存在关于y轴对称的点,则实数a的取值范围为()A.(﹣∞,﹣e]B.C.(﹣∞,﹣1]D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,|+|=|﹣|,||=2,则•=14.(5分)一只蜜蜂在一个正方体箱子里面自由飞行,若蜜蜂在飞行过程中始终保持在该正方体内切球范围内飞行,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为.15.(5分)若α∈(﹣,0),sin(α+)=﹣,则=.16.(5分)设F1,F2分别是双曲线的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m,18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知等差数列{a n}的公差不为零,a1=3,且a2,a5,a14成等比数列.(1)求数列{a n}的通项公式;(2)若b n=(﹣1)n﹣1a n a n+1,求数列{b n}的前2n项和S2n.18.(12分)从某校高中男生中随机选取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图,如图所示.(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);(2)若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,求这2人中至少有1人体重在[70,80)内的概率.19.(12分)如图,在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.(1)求证:B1C∥平面A1DE;(2)若AC=3BC=6,△AB1C为等边三角形,求四棱锥A1﹣B1C1ED的体积.20.(12分)如图,椭圆W:+=1(a>b>0)的焦距与椭圆Ω:+y2=1的短轴长相等,且W与Ω的长轴长相等,这两个椭圆的在第一象限的交点为A,直线l经过Ω在y轴正半轴上的顶点B且与直线OA(O为坐标原点)垂直,l与Ω的另一个交点为C,l与W交于M,N两点.(1)求W的标准方程:(2)求.21.(12分)已知函数f(x)=x﹣lnx.(1)若曲线y=f(x)在x=x0处的切线经过坐标原点,求x0及该切线的方程;(2)设g(x)=(e﹣1)x,若函数F(x)=的值域为R,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数),设l1与l2的交点为p,当k变化时,p的轨迹为曲线c1(Ⅰ)写出C1的普通方程及参数方程;(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设曲线C2的极坐标方程为,Q为曲线C1上的动点,求点Q到C2的距离的最小值.[选修4-5:不等式选讲]23.已知f(x)=|x+a|(a∈R).(1)若f(x)≥|2x+3|的解集为[﹣3,﹣1],求a的值;(2)若∀x∈R,不等式f(x)+|x﹣a|≥a2﹣2a恒成立,求实数a的取值范围.2018年河南省高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈R|3≤32﹣x<27},B={x∈Z|﹣3<x<1},则A∩B中元素的个数为()A.0 B.1 C.2 D.3【解答】解:∵A={x∈R|3≤32﹣x<27}={x∈R|﹣1<x≤1},B={x∈Z|﹣3<x<1}={﹣2,﹣1,0},∴A∩B={0}.∴A∩B中元素的个数为1.故选:B.2.(5分)已知a∈R,复数z=,若=z,则a=()A.1 B.﹣1 C.2 D.﹣2【解答】解:z===+a﹣1=(a﹣1)﹣(a+1)i,则=(a﹣1)+(a+1)i,∵=z,∴a+1=0,得a=﹣1,故选:B.3.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个【解答】解:由该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据的折线图,得:在A中,最低气温与最高气温为正相关,故A正确;在B中,10月的最高气温不低于5月的最高气温,故B正确;在C中,月温差(最高气温减最低气温)的最大值出现在1月,故C正确;在D中,最低气温低于0℃的月份有3个,故D错误.故选:D.4.(5分)在△ABC中,角A,B,C的对边分别为a,b,c.若A=,=2sinAsinB,且b=6,则c=()A.2 B.3 C.4 D.6【解答】解:△ABC中,A=,b=6,∴a2=b2+c2﹣2bccosA,即a2=36+c2﹣6c①;又=2sinAsinB,∴=2ab,即cosC==,∴a2+36=4c2②;由①②解得c=4或c=﹣6(不合题意,舍去);∴c=4.故选:C.5.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为()A.128π平方尺B.138π平方尺 C.140π平方尺 D.142π平方尺【解答】解:∵今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,∴构造一个长方体,其长、宽、高分别为7尺、5尺、8尺,则这个这个四棱锥的外接球就是这个长方体的外接球,∴这个四棱锥的外接球的半径R==(尺),∴这个四棱锥的外接球的表面积为S=4π×R2==138π(平方尺).故选:B.6.(5分)定义[x]表示不超过x的最大整数,(x)=x﹣[x],例如[2.1]=2,(2.1)=0.1,执行如图所示的程序框图,若输入的x=5.8,则输出的z=()A.﹣1.4 B.﹣2.6 C.﹣4.6 D.﹣2.8【解答】解:模拟程序的运行,可得x=5.8y=5﹣1.6=3.4x=5﹣1=4满足条件x≥0,执行循环体,x=1.7,y=1﹣1.4=﹣0.4,x=1﹣1=0满足条件x≥0,执行循环体,x=﹣0.2,y=﹣1﹣1.6=﹣2.6,x=﹣1﹣1=﹣2不满足条件x≥0,退出循环,z=﹣2+(﹣2.6)=﹣4.6.输出z的值为﹣4.6.故选:C.7.(5分)若对于任意x∈R都有f(x)+2f(﹣x)=3cosx﹣sinx,则函数f(2x)图象的对称中心为()A.(k∈Z)B.(k∈Z)C.(k∈Z) D.(k∈Z)【解答】解:∵对任意x∈R,都有f(x)+2f(﹣x)=3cosx﹣sinx ①,用﹣x代替x,得f(﹣x)+2f(x)=3cos(﹣x)﹣sin(﹣x)②,即f(﹣x)+2f(﹣x)=3cosx+sinx②;由①②组成方程组,解得f(x)=sinx+cosx,∴f(x)=sin(x+),∴f(2x)=sin(2x+).令2x+=kπ,k∈Z,求得x=﹣,故函数f(2x)图象的对称中心为(﹣,0),k∈Z,故选:D.8.(5分)设x,y满足约束条件,若z=﹣ax+y取得最大值的最优解不唯一,则实数a的值为()A.2或﹣3 B.3或﹣2 C.﹣或D.﹣或2【解答】解:作出不等式组对应的平面区域如图:(阴影部分OAB).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y=1平行,此时a=﹣3,综上a=﹣3或a=2,故选:A.9.(5分)函数f(x)=的部分图象大致是()A.B.C.D.【解答】解:∵函数f(x)的定义域为(﹣∞,﹣)∪(﹣,)∪(,+∞)f(﹣x)===f(x),∴f(x)为偶函数,∴f(x)的图象关于y轴对称,故排除A,令f(x)=0,即=0,解得x=0,∴函数f(x)只有一个零点,故排除D,当x=1时,f(1)=<0,故排除C,综上所述,只有B符合,故选:B.10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12+2B.20+6+2C.20+6+2D.20+12+2【解答】解:由三视图可知该几何体为侧放的四棱锥,棱锥的底面为矩形ABCD,底面与一个侧面PBC 垂直,PB=PC=4,AB=3.S ABCD=3×=12,S△PBC=,S△PCD=S△PBA=,△PAD中AP=PD=5,AD=4,∴AD边上的高为,∴S=,△PAD则该几何体的表面积为12+8+6+6+2=12+20+2,故选:D11.(5分)过抛物线y2=2px(p>0)的焦点F作斜率大于0的直线l交抛物线于A,B两点(A在B的上方),且l与准线交于点C,若,则=()A.B.C.3 D.2【解答】解:根据题意,设|AF|=a,|BF|=b,作AM、BN垂直准线于点M、N,则有|BF|=|BN|=b,|AF|=|AM|=a,若,则有|CB|=4|BF|,即|CB|=4|BN|,又由BN∥AM,则有|CA|=4|AM|,即有4b+a+b=4a,变形可得=,即=,故选:A.12.(5分)已知函数f(x)=e x+x2+lnx与函数g(x)=e﹣x+2x2﹣ax的图象上存在关于y轴对称的点,则实数a的取值范围为()A.(﹣∞,﹣e]B.C.(﹣∞,﹣1]D.水秀中华【解答】解:由题意知,方程g(﹣x)﹣f(x)=0在(0,+∞)上有解,即e x+2x2+ax﹣lnx﹣e x﹣x2=0,即x+a﹣=0在(0,+∞)上有解,即函数y=x+a与y=在(0,+∞)上有交点,y=的导数为y′=,当x>e时,y′<0,函数y=递减;当0<x<e时,y′>0,函数y=递增.可得x=e处函数y=取得极大值,函数y=x+a与y=在(0,+∞)上的图象如右:当直线y=x+a与y=相切时,切点为(1,0),可得a=0﹣1=﹣1,由图象可得a的取值范围是(﹣∞,﹣1].故选C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,|+|=|﹣|,||=2,则•=﹣4【解答】解:在△ABC中,|+|=|﹣|,可得|+|2=|﹣|2,即有2+2+2•=2+2﹣2•,即为•=0,则△ABC为直角三角形,A为直角,则•=﹣•=﹣||•||•cosB=﹣||2=﹣4.故答案为:﹣4.14.(5分)一只蜜蜂在一个正方体箱子里面自由飞行,若蜜蜂在飞行过程中始终保持在该正方体内切球范围内飞行,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为.【解答】解:如图,设正方体的棱长为2a,则其内切球的半径为a,则,,∴蜜蜂“安全飞行”的概率为P=.故答案为:.15.(5分)若α∈(﹣,0),sin(α+)=﹣,则=.【解答】解:α∈(﹣,0),sin(α+)=﹣,∴cos(α+)==,则====,故答案为:.16.(5分)设F1,F2分别是双曲线的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m,18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为2.【解答】解:根据双曲线的定义,可得|AF1|﹣|AF2|=2a,∵△ABF2是等边三角形,即|AF2|=|AB|,∴|BF1|=2a,又∵|BF2|﹣|BF1|=2a,∴|BF2|=|BF1|+2a=4a,∵△BF1F2中,|BF1|=2a,|BF2|=4a,∠F1BF2=120°,∴|F1F2|2=|BF1|2+|BF2|2﹣2|BF1|•|BF2|cos120°,即4c2=4a2+16a2﹣2×2a×4a×(﹣)=28a2,解得c2=7a2,b2=6a2,由双曲线的第二定义可得===,则m=,由A在双曲线上,可得﹣=1,解得a=,则2a=2.故答案为:2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知等差数列{a n}的公差不为零,a1=3,且a2,a5,a14成等比数列.(1)求数列{a n}的通项公式;(2)若b n=(﹣1)n﹣1a n a n+1,求数列{b n}的前2n项和S2n.【解答】解:(1)设公差为d,由,得,化简得d2=2a1d,因为d≠0,a1=3,所以d=6,所以a n=6n﹣3.(2)因为,所以﹣(36×(2n)2﹣9),所以,即S2n=﹣36(1+2+3+4+…+(2n﹣1)+2n)=.18.(12分)从某校高中男生中随机选取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图,如图所示.(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);(2)若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,求这2人中至少有1人体重在[70,80)内的概率.【解答】解:(1)由频率分布直方图估计该校的100名同学的平均体重为:=45×0.005×10+55×0.035×10+65×0.030×10+75×0.020×10+85×0.010×10=64.5.(2)要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,体重在[60,70)内的男生中选:6×=3人,体重在[70,80)内的男生中选:6×=2人,体重在[80,90]内的男生中选:6×=1人,再从这6人中选2人当正副队长,基本事件总数n==15,∴这2人中至少有1人体重在[70,80)内的概率p=1﹣=.19.(12分)如图,在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.(1)求证:B1C∥平面A1DE;(2)若AC=3BC=6,△AB1C为等边三角形,求四棱锥A1﹣B1C1ED的体积.【解答】证明:(1)∵在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,∴DE∥BC,DB A 1B1,∴四边形DBB1A1是平行四边形,∴A1D∥BB1,∵A1D∩DE=D,BB1∩BC=B,A1D、DE⊂平面A1DE,BB1、BC⊂平面BCB1,∴平面A1DE∥平面B1BC,∵B1C⊂平面B1BC,∴B1C∥平面A1DE.解:(2)∵AC=3BC=6,△AB1C为等边三角形,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.∴AE=3,DE=1,B1E==3,∠AED=90°,∴四棱锥A1﹣B1C1ED的体积:=﹣=S△ADE•B1E﹣====3.20.(12分)如图,椭圆W:+=1(a>b>0)的焦距与椭圆Ω:+y2=1的短轴长相等,且W与Ω的长轴长相等,这两个椭圆的在第一象限的交点为A,直线l经过Ω在y轴正半轴上的顶点B且与直线OA(O为坐标原点)垂直,l与Ω的另一个交点为C,l与W交于M,N两点.(1)求W的标准方程:(2)求.【解答】解:(1)由题意可得,∴故W的标准方程为.(2)联立得水秀中华∴,∴,易知B(0,1),∴l的方程为y=﹣3x+1.联立,得37x2﹣24x=0,∴x=0或,∴,联立,得31x2﹣18x﹣9=0,设M(x1,y1),N(x2,y2),则,,∴,故.21.(12分)已知函数f(x)=x﹣lnx.(1)若曲线y=f(x)在x=x0处的切线经过坐标原点,求x0及该切线的方程;(2)设g(x)=(e﹣1)x,若函数F(x)=的值域为R,求实数a的取值范围.【解答】解:(1)由已知得(x>0),则,所以x0=e,所以所求切线方程为.(2)令,得x>1;令f'(x)<0,得0<x<1.所以f(x)在(0,1)上单调递减,在[1,+∞)上单调递增,水秀中华所以f(x)min=f(1)=1,所以f(x)∈[1,+∞).而g(x)=(e﹣1)x在(﹣∞,a)上单调递增,所以g(x)∈(﹣∞,(e﹣1)a).欲使函数的值域为R,须a>0.①当0<a≤1时,只须(e﹣1)a≥1,即,所以.②当a>1时,f(x)∈[a﹣lna,+∞),g(x)∈(﹣∞,(e﹣1)a),只须a﹣lna≤(e﹣1)a对一切a>1恒成立,即lna+(e﹣2)a≥0对一切a>1恒成立,令φ(x)=lnx+(e﹣2)x(x>1),得,所以φ(x)在(1,+∞)上为增函数,所以φ(x)>φ(1)=e﹣2>0,所以a﹣lna≤(e﹣1)a对一切a>1恒成立.综上所述:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数),设l1与l2的交点为p,当k变化时,p的轨迹为曲线c1(Ⅰ)写出C1的普通方程及参数方程;(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设曲线C2的极坐标方程为,Q为曲线C1上的动点,求点Q到C2的距离的最小值.【解答】解:(Ⅰ)将参数方程转化为一般方程,①,②①×②消k可得:.即P的轨迹方程为.C1的普通方程为.C1的参数方程为(α为参数α≠kπ,k∈Z).水秀中华 水秀中华 21 (Ⅱ)由曲线C 2:, 得:,即曲线C 2的直角坐标方程为:x +y ﹣8=0,由(Ⅰ)知曲线C 1与直线C 2无公共点,曲线C 1上的点到直线x +y ﹣8=0的距离为:, 所以当时,d的最小值为.[选修4-5:不等式选讲]23.已知f (x )=|x +a |(a ∈R ).(1)若f (x )≥|2x +3|的解集为[﹣3,﹣1],求a 的值;(2)若∀x ∈R ,不等式f (x )+|x ﹣a |≥a 2﹣2a 恒成立,求实数a 的取值范围.【解答】解:(1)f (x )≥|2x +3|即|x +a |≥|2x +3|,平方整理得:3x 2+(12﹣2a )x +9﹣a 2≤0,所以﹣3,﹣1是方程 3x 2+(12﹣2a )x +9﹣a 2=0的两根,…2分 由根与系数的关系得到…4分解得a=0…5分(2)因为f (x )+|x ﹣a |≥|(x +a )﹣(x ﹣a )|=2|a |…7分所以要不等式f (x )+|x ﹣a |≥a 2﹣2a 恒成立只需2|a |≥a 2﹣2a…8分 当a ≥0时,2a ≥a 2﹣2a 解得0≤a ≤4,当a <0时,﹣2a ≥a 2﹣2a 此时满足条件的a 不存在,综上可得实数a 的范围是0≤a ≤4…10分。

2018年河南省高考数学一诊试卷(文科)

2018年河南省高考数学一诊试卷(文科)

2018年河南省高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈R|3≤32﹣x<27},B={x∈Z|﹣3<x<1},则A∩B中元素的个数为()A.0 B.1 C.2 D.32.(5分)已知a∈R,复数z=,若=z,则a=()A.1 B.﹣1 C.2 D.﹣23.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个4.(5分)在△ABC中,角A,B,C的对边分别为a,b,c.若A=,=2sinAsinB,且b=6,则c=()A.2 B.3 C.4 D.65.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为()A.128π平方尺B.138π平方尺 C.140π平方尺 D.142π平方尺6.(5分)定义[x]表示不超过x的最大整数,(x)=x﹣[x],例如[2.1]=2,(2.1)=0.1,执行如图所示的程序框图,若输入的x=5.8,则输出的z=()A.﹣1.4 B.﹣2.6 C.﹣4.6 D.﹣2.87.(5分)若对于任意x∈R都有f(x)+2f(﹣x)=3cosx﹣sinx,则函数f(2x)图象的对称中心为()A.(k∈Z)B.(k∈Z)C.(k ∈Z)D.(k∈Z)8.(5分)设x,y满足约束条件,若z=﹣ax+y取得最大值的最优解不唯一,则实数a的值为()A.2或﹣3 B.3或﹣2 C.﹣或D.﹣或29.(5分)函数f(x)=的部分图象大致是()A.B.C.D.10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12+2B.20+6+2C.20+6+2D.20+12+2 11.(5分)过抛物线y2=2px(p>0)的焦点F作斜率大于0的直线l交抛物线于A,B两点(A在B的上方),且l与准线交于点C,若,则=()A.B.C.3 D.212.(5分)已知函数f(x)=e x+x2+lnx与函数g(x)=e﹣x+2x2﹣ax的图象上存在关于y轴对称的点,则实数a的取值范围为()A.(﹣∞,﹣e]B.C.(﹣∞,﹣1]D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,|+|=|﹣|,||=2,则•=14.(5分)一只蜜蜂在一个正方体箱子里面自由飞行,若蜜蜂在飞行过程中始终保持在该正方体内切球范围内飞行,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为.15.(5分)若α∈(﹣,0),sin(α+)=﹣,则=.16.(5分)设F1,F2分别是双曲线的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m,18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知等差数列{a n}的公差不为零,a1=3,且a2,a5,a14成等比数列.(1)求数列{a n}的通项公式;(2)若b n=(﹣1)n﹣1a n a n+1,求数列{b n}的前2n项和S2n.18.(12分)从某校高中男生中随机选取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图,如图所示.(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);(2)若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,求这2人中至少有1人体重在[70,80)内的概率.19.(12分)如图,在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.(1)求证:B1C∥平面A1DE;(2)若AC=3BC=6,△AB1C为等边三角形,求四棱锥A1﹣B1C1ED的体积.20.(12分)如图,椭圆W:+=1(a>b>0)的焦距与椭圆Ω:+y2=1的短轴长相等,且W与Ω的长轴长相等,这两个椭圆的在第一象限的交点为A,直线l经过Ω在y轴正半轴上的顶点B且与直线OA(O为坐标原点)垂直,l与Ω的另一个交点为C,l与W交于M,N两点.(1)求W的标准方程:(2)求.21.(12分)已知函数f(x)=x﹣lnx.(1)若曲线y=f(x)在x=x0处的切线经过坐标原点,求x0及该切线的方程;(2)设g(x)=(e﹣1)x,若函数F(x)=的值域为R,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数),设直线l1与l2的交点为P,当k变化时,P的轨迹为曲线C1.(1)求出曲线C1的普通方程;(2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为ρsin(θ+)=4,点Q为曲线C1的动点,求点Q到直线C2的距离的最小值.[选修4-5:不等式选讲]23.已知f(x)=|x+a|(a∈R).(1)若f(x)≥|2x+3|的解集为[﹣3,﹣1],求a的值;(2)若∀x∈R,不等式f(x)+|x﹣a|≥a2﹣2a恒成立,求实数a的取值范围.2018年河南省高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈R|3≤32﹣x<27},B={x∈Z|﹣3<x<1},则A∩B中元素的个数为()A.0 B.1 C.2 D.3【解答】解:∵A={x∈R|3≤32﹣x<27}={x∈R|﹣1<x≤1},B={x∈Z|﹣3<x<1}={﹣2,﹣1,0},∴A∩B={0}.∴A∩B中元素的个数为1.故选:B.2.(5分)已知a∈R,复数z=,若=z,则a=()A.1 B.﹣1 C.2 D.﹣2【解答】解:z===+a﹣1=(a﹣1)﹣(a+1)i,则=(a﹣1)+(a+1)i,∵=z,∴a+1=0,得a=﹣1,故选:B.3.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个【解答】解:由该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据的折线图,得:在A中,最低气温与最高气温为正相关,故A正确;在B中,10月的最高气温不低于5月的最高气温,故B正确;在C中,月温差(最高气温减最低气温)的最大值出现在1月,故C正确;在D中,最低气温低于0℃的月份有3个,故D错误.故选:D.4.(5分)在△ABC中,角A,B,C的对边分别为a,b,c.若A=,=2sinAsinB,且b=6,则c=()A.2 B.3 C.4 D.6【解答】解:△ABC中,A=,b=6,∴a2=b2+c2﹣2bccosA,即a2=36+c2﹣6c①;又=2sinAsinB,∴=2ab,即cosC==,∴a2+36=4c2②;由①②解得c=4或c=﹣6(不合题意,舍去);∴c=4.故选:C.5.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为()A.128π平方尺B.138π平方尺 C.140π平方尺 D.142π平方尺【解答】解:∵今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,∴构造一个长方体,其长、宽、高分别为7尺、5尺、8尺,则这个这个四棱锥的外接球就是这个长方体的外接球,∴这个四棱锥的外接球的半径R==(尺),∴这个四棱锥的外接球的表面积为S=4π×R2==138π(平方尺).故选:B.6.(5分)定义[x]表示不超过x的最大整数,(x)=x﹣[x],例如[2.1]=2,(2.1)=0.1,执行如图所示的程序框图,若输入的x=5.8,则输出的z=()A.﹣1.4 B.﹣2.6 C.﹣4.6 D.﹣2.8【解答】解:模拟程序的运行,可得x=5.8y=5﹣1.6=3.4x=5﹣1=4满足条件x≥0,执行循环体,x=1.7,y=1﹣1.4=﹣0.4,x=1﹣1=0满足条件x≥0,执行循环体,x=﹣0.2,y=﹣1﹣1.6=﹣2.6,x=﹣1﹣1=﹣2不满足条件x≥0,退出循环,z=﹣2+(﹣2.6)=﹣4.6.输出z的值为﹣4.6.故选:C.7.(5分)若对于任意x∈R都有f(x)+2f(﹣x)=3cosx﹣sinx,则函数f(2x)图象的对称中心为()A.(k∈Z)B.(k∈Z)C.(k ∈Z)D.(k∈Z)【解答】解:∵对任意x∈R,都有f(x)+2f(﹣x)=3cosx﹣sinx ①,用﹣x代替x,得f(﹣x)+2f(x)=3cos(﹣x)﹣sin(﹣x)②,即f(﹣x)+2f(﹣x)=3cosx+sinx②;由①②组成方程组,解得f(x)=sinx+cosx,∴f(x)=sin(x+),∴f(2x)=sin(2x+).令2x+=kπ,k∈Z,求得x=﹣,故函数f(2x)图象的对称中心为(﹣,0),k∈Z,故选:D.8.(5分)设x,y满足约束条件,若z=﹣ax+y取得最大值的最优解不唯一,则实数a的值为()A.2或﹣3 B.3或﹣2 C.﹣或D.﹣或2【解答】解:作出不等式组对应的平面区域如图:(阴影部分OAB).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y=1平行,此时a=﹣3,综上a=﹣3或a=2,故选:A.9.(5分)函数f(x)=的部分图象大致是()A.B.C.D.【解答】解:∵函数f(x)的定义域为(﹣∞,﹣)∪(﹣,)∪(,+∞)f(﹣x)===f(x),∴f(x)为偶函数,∴f(x)的图象关于y轴对称,故排除A,令f(x)=0,即=0,解得x=0,∴函数f(x)只有一个零点,故排除D,当x=1时,f(1)=<0,故排除C,综上所述,只有B符合,故选:B.10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12+2B.20+6+2C.20+6+2D.20+12+2【解答】解:由三视图可知该几何体为侧放的四棱柱,棱锥的底面为矩形ABCD,底面与一个侧面PBC垂直,PB=PC=4,AB=3.S ABCD=3×=12,S△PBC=,S△PCD=S△PBA=,△PAD中AP=PD=5,AD=4,∴AD边上的高为,=,∴S△PAD则该几何体的表面积为12+8+6+6+2=12+20+2,故选:D.11.(5分)过抛物线y2=2px(p>0)的焦点F作斜率大于0的直线l交抛物线于A,B两点(A在B的上方),且l与准线交于点C,若,则=()A.B.C.3 D.2【解答】解:根据题意,设|AF|=a,|BF|=b,作AM、BN垂直准线于点M、N,则有|BF|=|BN|=b,|AF|=|AM|=a,若,则有|CB|=4|BF|,即|CB|=4|BN|,又由BN∥AM,则有|CA|=4|AM|,即有4b+a+b=4a,变形可得=,即=,故选:A.12.(5分)已知函数f(x)=e x+x2+lnx与函数g(x)=e﹣x+2x2﹣ax的图象上存在关于y轴对称的点,则实数a的取值范围为()A.(﹣∞,﹣e]B.C.(﹣∞,﹣1]D.【解答】解:由题意知,方程g(﹣x)﹣f(x)=0在(0,+∞)上有解,即e x+2x2+ax﹣lnx﹣e x﹣x2=0,即x+a﹣=0在(0,+∞)上有解,即函数y=x+a与y=在(0,+∞)上有交点,y=的导数为y′=,当x>e时,y′<0,函数y=递减;当0<x<e时,y′>0,函数y=递增.可得x=e处函数y=取得极大值,函数y=x+a与y=在(0,+∞)上的图象如右:当直线y=x+a与y=相切时,切点为(1,0),可得a=0﹣1=﹣1,由图象可得a的取值范围是(﹣∞,﹣1].故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,|+|=|﹣|,||=2,则•=﹣4【解答】解:在△ABC中,|+|=|﹣|,可得|+|2=|﹣|2,即有2+2+2•=2+2﹣2•,即为•=0,则△ABC为直角三角形,A为直角,则•=﹣•=﹣||•||•cosB=﹣||2=﹣4.故答案为:﹣4.14.(5分)一只蜜蜂在一个正方体箱子里面自由飞行,若蜜蜂在飞行过程中始终保持在该正方体内切球范围内飞行,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为.【解答】解:如图,设正方体的棱长为2a,则其内切球的半径为a,则,,∴蜜蜂“安全飞行”的概率为P=.故答案为:.15.(5分)若α∈(﹣,0),sin(α+)=﹣,则=.【解答】解:α∈(﹣,0),sin(α+)=﹣,∴cos(α+)==,则====,故答案为:.16.(5分)设F1,F2分别是双曲线的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m,18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为2.【解答】解:根据双曲线的定义,可得|AF1|﹣|AF2|=2a,∵△ABF2是等边三角形,即|AF2|=|AB|,∴|BF1|=2a,又∵|BF2|﹣|BF1|=2a,∴|BF2|=|BF1|+2a=4a,∵△BF1F2中,|BF1|=2a,|BF2|=4a,∠F1BF2=120°,∴|F1F2|2=|BF1|2+|BF2|2﹣2|BF1|•|BF2|cos120°,即4c2=4a2+16a2﹣2×2a×4a×(﹣)=28a2,解得c2=7a2,b2=6a2,由双曲线的第二定义可得===,则m=,由A在双曲线上,可得﹣=1,解得a=,则2a=2.故答案为:2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知等差数列{a n}的公差不为零,a1=3,且a2,a5,a14成等比数列.(1)求数列{a n}的通项公式;(2)若b n=(﹣1)n﹣1a n a n+1,求数列{b n}的前2n项和S2n.【解答】解:(1)设公差为d,由,得,化简得d2=2a1d,因为d≠0,a1=3,所以d=6,所以a n=6n﹣3.(2)因为,所以﹣(36×(2n)2﹣9),所以,即S2n=﹣36(1+2+3+4+…+(2n﹣1)+2n)=.18.(12分)从某校高中男生中随机选取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图,如图所示.(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);(2)若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,求这2人中至少有1人体重在[70,80)内的概率.【解答】解:(1)由频率分布直方图估计该校的100名同学的平均体重为:=45×0.005×10+55×0.035×10+65×0.030×10+75×0.020×10+85×0.010×10=64.5.(2)要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,体重在[60,70)内的男生中选:6×=3人,体重在[70,80)内的男生中选:6×=2人,体重在[80,90]内的男生中选:6×=1人,再从这6人中选2人当正副队长,基本事件总数n==15,∴这2人中至少有1人体重在[70,80)内的概率p=1﹣=.19.(12分)如图,在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.(1)求证:B1C∥平面A1DE;(2)若AC=3BC=6,△AB1C为等边三角形,求四棱锥A1﹣B1C1ED的体积.【解答】证明:(1)∵在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,∴DE∥BC,DB A 1B1,∴四边形DBB1A1是平行四边形,∴A1D∥BB1,∵A1D∩DE=D,BB1∩BC=B,A1D、DE⊂平面A1DE,BB1、BC⊂平面BCB1,∴平面A1DE∥平面B1BC,∵B1C⊂平面B1BC,∴B1C∥平面A1DE.解:(2)∵AC=3BC=6,△AB1C为等边三角形,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.∴AE=3,DE=1,B1E==3,∠AED=90°,∴四棱锥A1﹣B1C1ED的体积:=﹣=S△ADE•B1E﹣====3.20.(12分)如图,椭圆W:+=1(a>b>0)的焦距与椭圆Ω:+y2=1的短轴长相等,且W与Ω的长轴长相等,这两个椭圆的在第一象限的交点为A,直线l经过Ω在y轴正半轴上的顶点B且与直线OA(O为坐标原点)垂直,l与Ω的另一个交点为C,l与W交于M,N两点.(1)求W的标准方程:(2)求.【解答】解:(1)由题意可得,∴故W的标准方程为.(2)联立得∴,∴,易知B(0,1),∴l的方程为y=﹣3x+1.联立,得37x2﹣24x=0,∴x=0或,∴,联立,得31x2﹣18x﹣9=0,设M(x1,y1),N(x2,y2),则,,∴,故.21.(12分)已知函数f(x)=x﹣lnx.(1)若曲线y=f(x)在x=x0处的切线经过坐标原点,求x0及该切线的方程;(2)设g(x)=(e﹣1)x,若函数F(x)=的值域为R,求实数a 的取值范围.【解答】解:(1)由已知得(x>0),则,所以x0=e,所以所求切线方程为.(2)令,得x>1;令f'(x)<0,得0<x<1.所以f(x)在(0,1)上单调递减,在[1,+∞)上单调递增,所以f(x)min=f(1)=1,所以f(x)∈[1,+∞).而g(x)=(e﹣1)x在(﹣∞,a)上单调递增,所以g(x)∈(﹣∞,(e﹣1)a).欲使函数的值域为R,须a>0.①当0<a≤1时,只须(e﹣1)a≥1,即,所以.②当a>1时,f(x)∈[a﹣lna,+∞),g(x)∈(﹣∞,(e﹣1)a),只须a﹣lna≤(e﹣1)a对一切a>1恒成立,即lna+(e﹣2)a≥0对一切a>1恒成立,令φ(x)=lnx+(e﹣2)x(x>1),得,所以φ(x)在(1,+∞)上为增函数,所以φ(x)>φ(1)=e﹣2>0,所以a﹣lna≤(e﹣1)a对一切a>1恒成立.综上所述:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数),设直线l1与l2的交点为P,当k变化时,P的轨迹为曲线C1.(1)求出曲线C1的普通方程;(2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为ρsin(θ+)=4,点Q为曲线C1的动点,求点Q到直线C2的距离的最小值.【解答】解:(1)∵直线l1的参数方程为(t为参数),∴直线l1的普通方程为y=k(x+),①∵直线l2的参数方程为(m为参数),∴直线l2的普通方程为(﹣x),②①×②,消k,得:+y2=1.∵k≠0,∴y≠0,∴曲线C1的普通方程为=1(y≠0).(2)∵直线C2的极坐标方程为ρsin(θ+)=4,∴直线C2的直角坐标方程为x+y﹣8=0,由(1)知曲线C1与直线C2无公共点,∵曲线C1的参数方程为,(α为参数,α≠kπ,k∈Z),∴曲线C1上的点Q(,sinα)到直线的距离为:d==,∴当sin()=1时,d取最小值3.[选修4-5:不等式选讲]23.已知f(x)=|x+a|(a∈R).(1)若f(x)≥|2x+3|的解集为[﹣3,﹣1],求a的值;(2)若∀x∈R,不等式f(x)+|x﹣a|≥a2﹣2a恒成立,求实数a的取值范围.【解答】解:(1)f(x)≥|2x+3|即|x+a|≥|2x+3|,平方整理得:3x2+(12﹣2a)x+9﹣a2≤0,所以﹣3,﹣1是方程3x2+(12﹣2a)x+9﹣a2=0的两根,…2分由根与系数的关系得到…4分解得a=0…5分(2)因为f(x)+|x﹣a|≥|(x+a)﹣(x﹣a)|=2|a|…7分所以要不等式f(x)+|x﹣a|≥a2﹣2a恒成立只需2|a|≥a2﹣2a…8分当a≥0时,2a≥a2﹣2a解得0≤a≤4,当a<0时,﹣2a≥a2﹣2a此时满足条件的a不存在,综上可得实数a的范围是0≤a≤4…10分。

2018年河南省郑州市高考一模数学文

2018年河南省郑州市高考一模数学文

2018年河南省郑州市高考一模数学文一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数3ii-(i 为虚数单位)等于( ) A.-1-3i B.-1+3i C.1-3i D.1+3i 解析:()()()3313i i i i i i i -⋅--==--⋅-. 答案:A2.设集合A={x|1<x <2},B={x|x <a},若A ∩B=A ,则a 的取值范围是( ) A.{a|a ≤2} B.{a|a ≤1} C.{a|a ≥1} D.{a|a ≥2}解析:∵A ∩B=A , ∴A ⊆B.∵集合A={x|1<x <2},B={x|x <a}, ∴a ≥2 答案:D3.设向量a =(1,m),b =(m-1,2),且a b ≠,若()a b a -⊥,则实数m=( ) A.2 B.1C.13 D.12解析:∵()a b a -⊥, ∴()a b a -⋅=0, 即2a b a -⋅=0, 即1+m 2-(m-1+2m)=0,即m 2-3m+2=0, 得m=1或m=2,当m=1时,量a =(1,1),b =(0,2),满足a b ≠,当m=2时,量a=(1,2),b=(1,2),不满足a b≠,综上m=1. 答案:B4.下列说法正确的是( )A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.∃x0∈(0,+∞),使3x0>4x0成立D.“若1sin2α≠,则6πα≠”是真命题解析:“若a>1,则a2>1”的否命题是“若a≤1,则a2≤1”,故A错;“若am2<bm2,则a<b”的逆命题为假命题,比如m=0,若a<b,则am2=bm2,故B错;对任意x>0,均有3x<4x成立,故C错;对若1sin2α≠,则6πα≠”的逆否命题是“若α=6π,则sinα=12”为真命题,则D正确.答案:D5.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=( )A.4B.5C.2D.3解析:模拟执行程序,可得a=1,A=1,S=0,n=1S=2不满足条件S ≥10,执行循环体,n=2,a=12,A=2,S=92 不满足条件S ≥10,执行循环体,n=3,a=14,A=4,S=354不满足条件S ≥10,执行循环体,n=4,a=18,A=8,S=1358满足条件S ≥10,退出循环,输出n 的值为4.答案:A6.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于( )A.10cm 3B.20cm 3C.30cm 3D.40cm 3解析:由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4, ∴几何体的体积11134534520232V =⨯⨯⨯-⨯⨯⨯⨯=(cm 3). 答案:B7.若将函数f(x)=()1sin 223x π+图象上的每一个点都向左平移3π个单位,得到g(x)的图象,则函数g(x)的单调递增区间为( )A.[44k k ππππ-+,](k ∈Z)B.[344k k ππππ++,](k ∈Z)C.[236k k ππππ--,](k ∈Z) D.[51212k k ππππ-+,](k ∈Z) 解析:将函数f(x)=()1sin 223x π+图象上的每一个点都向左平移3π个单位,得到g(x)=11sin 2sin 22332[]x x ππ++=-()的图象,故本题即求y=sin2x 的减区间,令322222k x k ππππ+≤≤+,求得344k x k ππππ+≤≤+,故函数g(x)的单调递增区间为[344k k ππππ++,],k ∈Z. 答案:B8.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n+2-2a n+1+a n =0(n ∈N *),记12111n nT S S S =++⋯+(n ∈N *),则T 2018=( )A.40342018 B.20172018 C.40362019 D.20182019解析:数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n+2-2a n+1+a n =0(n ∈N *), 则:数列为等差数列.设公差为d ,则:d=a 2-a 1=2-1=1, 则:a n =1+n-1=n. 故:()1122n n n S n +++⋯+==, 则:()1112n ⋅-=,所以:12111n nT S S S ++⋯+==()11111212231n n ⋅-+-+⋯+-+=()121⋅-=21nn +. 所以:2018220184036201812019T ⋅+==.答案:C9.已知函数()020x e a x f x x a x ⎧-≤⎨-⎩,=,>(a ∈R),若函数f(x)在R 上有两个零点,则实数a 的取值范围是( ) A.(0,1] B.[1,+∞) C.(0,1) D.(-∞,1]解析:当x ≤0时,f(x)单调递增,∴f(x)≤f(0)=1-a , 当x >0时,f(x)单调递增,且f(x)>-a. ∵f(x)在R 上有两个零点,∴100a a -≥⎧⎨-⎩<,解得0<a ≤1.答案:A10.已知椭圆C :22221y x a b+= (a >b >0)的左顶点和上顶点分别为A ,B ,左、右焦点分别是F 1,F 2,在线段AB 上有且只有一个点P 满足PF 1⊥PF 2,则椭圆的离心率的平方为( )A.D.解析:由直线AB 的方程为1y x a b+-=,整理得:bx-ay+ab=0, 由题意可知:直线AB 与圆O :x 2+y 2=c 2相切,可得d c ==,两边平方,整理得:c 4+3c 2c 2-a 4=0,两边同时除以a 4,由222c e a =,e 4-3e 2+1=0,∴2e =,又椭圆的离心率e ∈(0,1),∴e 2.答案:B11.我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a ,b 满足a ,G ,b 成等差数列且x ,G ,y 成等比数列,则14a b+的最小值为( )A.49 B.2 C.94D.9解析:甲班学生成绩的中位数是80+x=81,得x=1;由茎叶图可知乙班学生的总分为76+80×3+90×3+(0+2+y+1+3+6)=598+y , 乙班学生的平均分是86,且总分为86×7=602,所以y=4,若正实数a 、b 满足:a ,G ,b 成等差数列且x ,G ,y 成等比数列, 则xy=G2,2G=a+b ,即有a+b=4,a >0,b >0,则()()()1411414119145944444b a a b a b a b a b ⎛+=++=+++≥+=⨯= ⎝,当且仅当b=2a=83时,1a+4b 的最小值为94. 答案:C12.若对于任意的正实数x ,y 都有2ln y y x x e x me ⎛⎫-⋅≤ ⎪⎝⎭成立,则实数m 的取值范围为( ) A.(1e,1) B.(21e ,1] C.(21e,e] D.(0,1e] 解析:根据题意,对于2ln y y x x e x me ⎛⎫-⋅≤ ⎪⎝⎭,变形可得12y y x x ln y e x m ⎛⎫-≤ ⎪⎝⎭, 即12ln y y e x x m⎛⎫-≤ ⎪⎝⎭,设t=yx,则(2e-t)lnt≤1m,t>0,设f(t)=(2e-t)lnt,(t>0)则其导数f′(t)=-lnt+2et-1,又由t>0,则f′(t)为减函数,且f′(e)=-lne+2ee-1=0,则当t∈(0,e)时,f′(t)>0,f(t)为增函数,当t∈(e,+∞)时,f′(t)<0,f(t)为减函数,则f(t)的最大值为f(e),且f(e)=e,若f(t)=(2e-t)lnt≤1m恒成立,必有e≤1m,解可得0<m≤1e,即m的取值范围为(0,1e].答案:D二、填空题(本题共4小题,每题5分,共20分)13.设变量x,y满足约束条件140340xx yx y≥⎧⎪+-≤⎨⎪-+≤⎩则目标函数z=4x-y的最小值为______.解析:设变量x,y满足约束条件140340xx yx y≥⎧⎪+-≤⎨⎪-+≤⎩在坐标系中画出可行域三角形,平移直线4x-y=0经过点A(1,3)时,4x-y最小,最小值为:1,则目标函数z=4x-y的最小值:1.答案:114.如果直线ax+2y+3a=0与直线3x+(a-1)y=a-7平行,则a=______. 解析:∵直线ax+2y+3a=0与直线3x+(a-1)y=a-7平行,∴23 317 a aa a-≠--=,解得a=3. 答案:315.已知数列{a n }满足log 2an+1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=______.解析:∵log 2a n+1=1+log 2a n (n ∈N *),∴log 2a n+1-log 2a n =1,即12log 1n n aa +=,∴12n na a +=. ∴数列{a n }是公比q=2的等比数列.则a 101+a 102+…+a 110=(a 1+a 2+a 3+…+a 10)q 100=2100,∴log 2(a 101+a 102+…+a 110)=log 22100=100. 答案:10016.已知双曲线C :22221y x a b-=的右焦点为F ,过点F 向双曲线的一条渐近线引垂线,垂足为M ,交另一条渐近线于N ,若2FM FN =,则双曲线的渐近线方程为______. 解析:由题意得右焦点F(c ,0),设一渐近线OM 的方程为b y x a=, 则另一渐近线ON 的方程为by x a=-,由FM 的方程为()ay x c b =--,联立方程by x a=,可得M 的横坐标为2a c, 由FM 的方程为()a y x c b =--,联立方程by x a=-, 可得N 的横坐标为222ca a b-.由2FM FN =,可得22222a ca c c c a b⎛⎫-=- ⎪-⎝⎭, 即为222222a ca c c a c -=-, 由c e a =,可得222112e e -=-, 即有e 4-5e 2+4=0,解得e 2=4或1(舍去),即为e=2,即c=2a ,b=,可得渐近线方程为y=±答案:y=三、解答题:(本大题共7小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2ccosB=2a+b. (1)求角C ;(2)若△ABC 的面积为S ,求ab 的最小值. 解析:(1)利用正弦定理即可求得cosC=-12,由C 的取值范围,即可求得C ; (2)根据三角形的面积公式,求得c=12ab ,利用余弦定理及基本不等式的性质即可求得ab 的最小值.答案::(1)由正弦定理可知:2sin sin sin a b c RA B C===,a=2RsinA ,b=2RsinB ,c=2RsinC ,由2ccosB=2a+b ,则2sinCcosB=2sin(B+C)+sinB , ∴2sinBcosC+sinB=0, 由0<B <π,sinB ≠0,cosC=-12, 0<C <π,则23C π=;(2)由1sin 2S ab C ==,则c=12ab , 由c 2=a 2+b 2-2abcosC=a 2+b 2+ab ,∴222234a b a b ab ab =++≥,当且仅当a=b 时取等号, ∴ab ≥12,故ab 的最小值为12. 18. 2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:男生测试情况:(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过附:(()()()()()22n ad bcKa b c d a c b d-++++=,其中n=a+b+c+d)解析:(1)按分层抽样计算男生、女生应抽的人数,用列举法计算基本事件数,求出所求的概率值;(2)填写列联表,计算观测值,对照临界值得出结论.答案:(1)按分层抽样男生应抽取80名,女生应抽取20名;∴x=80-(5+10+15+47)=3,y=20-(2+3+10+2)=3;抽取的100名且测试等级为优秀的学生中有三位男生,设为A,B,C;两位女生设为a,b;从5名任意选2名,总的基本事件有AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10个;设“选出的两名学生恰好是一男一女为事件A”;则事件包含的基本事件有Aa,Ab,Ba,Bb,Ca,Cb共6个;∴P(A)=63 105=;(2)填写2×2列联表如下:则()2210050153059.09180205545K⨯⨯-⨯=≈⨯⨯⨯;∵9.091>6.635且P(K2≥6.635)=0.010,∴在犯错误的概率不超过0.010的前提下认为“是否为‘体育达人’与性别有关”.19.如图,在三棱锥P-ABC 中,平面PAB ⊥平面ABC ,AB=6,BC =AC =D ,E 为线段AB 上的点,且AD=2DB ,PD ⊥AC.(1)求证:PD ⊥平面ABC ;(2)若∠PAB =4π,求点B 到平面PAC 的距离.解析:(1)连接CD ,推导出CD ⊥AB ,CD ⊥PD ,由此能证明PD ⊥平面ABC.(2)设点B 到平面PAC 的距离为d ,由V E-PAC =VP-AEC ,能求出点B 到平面PAC 的距离. 答案:(1)连接CD ,据题知AD=4,BD=2,∵AC 2+BC 2=AB 2,∴∠ACB=90°,∴cos ∠ABC ,∴CD2=4+12−2×2×∠ABC=8,∴CD= ∴CD 2+AD 2=AC 2,∴CD ⊥AB ,又∵平面PAB ⊥平面ABC ,∴CD ⊥平面PAB ,∴CD ⊥PD ,∵PD ⊥AC ,CD ∩AC=C ,∴PD ⊥平面ABC.(2)∵∠PAB =4π,∴PD=AD=4,∴PA=在Rt △PCD 中,PC ==∴△PAC 是等腰三角形,∴S △PAC =设点B 到平面PAC 的距离为d ,由V E-PAC =V P-AEC ,得1133ABC S PAC d S PD ⨯⨯=,∴3ABC PAC S PDd S ⨯==,故点B 到平面PAC 的距离为3.20.已知圆C :x 2+y 2+2x-2y+1=0和抛物线E :y 2=2px(p >0),圆心C 到抛物线焦点F 的距离为(1)求抛物线E 的方程;(2)不过原点的动直线l 交抛物线于A ,B 两点,且满足OA ⊥OB.设点M 为圆C 上任意一动点,求当动点M 到直线l 的距离最大时的直线l 方程.解析:(1)直接利用定义求出抛物线的方程.(2)利用直线和抛物线的位置关系,建立方程组,进一步利用一元二次方程根与系数的关系建立等量关系,最后利用最大值求出直线的方程.答案:(1)圆C :x 2+y 2+2x-2y+1=0可化为(x+1)2+(y-1)2=1,则圆心为(-1,1).抛物线E :y 2=2px(p >0),焦点坐标F(2p ,0),由于:圆心C 到抛物线焦点F 则:211172p ⎛⎫ ⎪⎝⎭++=, 解得:p=6.故抛物线的方程为:y 2=12x(2)设直线的方程为x=my+t ,A(x 1,y 1),B(x 2,y 2), 则:212y x x my t⎧⎨+⎩==,整理得:y 2-12my-12t=0,所以:y 1+y 2=12m ,y 1y 2=-12t.由于:OA ⊥OB.则:x 1x 2+y 1y 2=0.即:(m 2+1)y 1y 2+mt(y 1+y 2)+t 2=0.整理得:t 2-12t=0,由于t ≠0,解得t=12.故直线的方程为x=my+12,直线经过定点(12,0).当CN ⊥l 时,即动点M 经过圆心C(-1,1)时到直线的距离取最大值.当CP ⊥l 时,即动点M 经过圆心C(-1,1)时到动直线L 的距离取得最大值. 113MP CP k k ==-, 则:113m =.此时直线的方程为:11213x y =+, 即:13x-y-156=0.21.已知函数f(x)=lnx-a(x+1),a ∈R 在(1,f(1))处的切线与x 轴平行.(1)求f(x)的单调区间;(2)若存在x 0>1,当x ∈(1,x 0)时,恒有()()212122x f x x k x -++->成立,求k 的取值范围.解析:(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)问题转化为可化为()21ln 122x x x k x -+-->,令()()21ln 122x g x x x k x =-+---,(x >1),通过讨论k 的范围,求出函数的单调区间,从而确定k 的范围即可.答案:(1)由已知可得f(x)的定义域为(0,+∞),∵f ′(x)=1x-a ,∴f ′(1)=1-a=0,解得:a=1, ∴f ′(x)=1x x -, 令f ′(x)>0,解得:0<x <1,令f ′(x)<0,解得:x >1,故f(x)在(0,1)递增,在(1,+∞)递减;(1)不等式()()212122x f x x k x -++->可化为()21ln 122x x x k x -+-->, 令()()21ln 122x g x x x k x =-+---,(x >1), ()()211x k x g x x-+-+'=, ∵x >1,令h(x)=-x 2+(1-k)x+1,h(x)的对称轴是x=12k -, ①当12k -≤1时,即k ≥-1, 易知h(x)在(1,x 0)上递减,∴h(x)<h(1)=1-k ,若k ≥1,则h(x)≤0,∴g ′(x)≤0,∴g(x)在(1,x 0)递减,∴g(x)<g(1)=0,不适合题意.若-1≤k <1,则h(1)>0,∴必存在x 0使得x ∈(1,x 0)时,g ′(x)>0,∴g(x)在(1,x 0)递增,∴g(x)>g(1)=0恒成立,适合题意. ②当12k ->1时,即k <-1, 易知必存在x 0使得h(x)在(1,x 0)递增,∴h(x)>h(1)=1-k >0,∴g ′(x)>0,∴g(x)在(1,x 0)递增,∴g(x)>g(1)=0恒成立,适合题意.综上,k 的取值范围是(-∞,1).22.在平面直角坐标系xOy 中,直线l 过点(1,0),倾斜角为α,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是ρ=28cos 1cos θθ-. (1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)若4πα=,设直线l 与曲线C 交于A ,B 两点,求△AOB 的面积.解析:(1)直接把参数方程和极坐标方程与直角坐标方程的转化.(2)利用点到直线的距离公式和三角形的面积公式求出结果.答案:(1)直线L 的参数方程为:1cos sin x t y t αα+⎧⎨⎩==(t 为参数). 曲线C 的极坐标方程是ρ=28cos 1cos θθ-, 转化为直角坐标方程为:y 2=8x(2)当4πα=时,直线l 的参数方程为:1x y ⎧+⎪⎪⎨⎪⎪⎩= (t 为参数),代入y 2=8x得到:2160t --=.(t1和t2为A 和B 的参数),所以:t 1+t 2=t 1t 2=-16.所以:|AB|=|t 1−t 2|=O 到AB的距离为:1sin 4d π=⋅则:12AOB S ⋅==23.设函数f(x)=|x+3|,g(x)=|2x-1|.(1)解不等式f(x)<g(x);(2)若2f(x)+g(x)>ax+4对任意的实数x 恒成立,求a 的取值范围.解析:(1)两边平方求出不等式的解集即可;(2)设h(x)=2f(x)+g(x),通过讨论x 的范围,分离a ,根据函数的单调性求出a 的范围即可. 答案:(1)由已知得|x+3|<|2x-1|,即|x+3|2<|2x-1|2,则有3x 2-10x-8>0,∴x <-23或x >4, 故不等式的解集是(-∞,-23)∪(4,+∞); (2)由已知,设h(x)=2f(x)+g(x)=2|x+3|+|2x-1| =45317321452x x x x x ⎧--≤-⎪⎪-⎨⎪⎪+≥⎩,,<<,, 当x ≤-3时,只需-4x-5>ax+4恒成立, 即ax <-4x-9,∵x ≤-3<0, ∴4994x a x x--=-->恒成立, ∴()94a max x -->,∴a >-1, 当-3<x <12时,只需7>ax+4恒成立, 即ax-3<0恒成立, 只需3301302a a --≤⎧⎪⎨-≤⎪⎩, ∴16a a ≥-⎧⎨≤⎩, ∴-1≤a ≤6,当x ≥12时,只需4x+5>ax+4恒成立, 即ax <4x+1,∵x ≥12>0,∴4114x a x x+=+<恒成立, ∵144x +>,且无限趋近于4, ∴a ≤4,综上,a 的取值范围是(-1,4].。

2018年高三最新 河南省郑州一中数学(文) 精品

2018年高三最新 河南省郑州一中数学(文) 精品

河南省郑州一中2018—2018学年高三年级上学期阶段测试数 学 试 卷(文)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.命题人:袁全超第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.)629cot(π-的值为( )A .3-B .3C .33D .33-2.设A 是B 的充分不必要条件,B 是C 的充要条件,D 是C 的必要不充分条件,则D 是A 的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件3.数列{}n a 的前n 项积为2n ,则这个数列的第3项为( )A .49B .94C .916D .1694.要得到函数)23cos(x y -=π的图象,可将x y 2cos =的图象( )A .向右平移3π个单位 B .向左平移3π个单位C .向右平移6π个单位D .向左平移6π个单位5.设)(x f 是定义在R 实数上的函数,且满足下列关系:),10()10(x f x f -=+),20()20(x f x f --=+则)(x f 是( )A .偶函数,又是周期函数B .偶函数,但不是周期函数C .奇函数,又是周期函数D .奇函数,但不是周期函数6.若不等式6|2|<+ax 的解集为(-1,2),则实数a 等于( )A .-4B .2C .8D .-8 7.函数x x y cos -=的部分图象是( )A .B .C . D8.等差数列{}n a 的前30项和为255,则2520107a a a a +++的值为 ( )A .34B .35C .36D .379.函数2)1(22+-+=x a x y 在)4,(-∞上是减函数,则实数a 的取值范围( )A .),3[+∞B .]3,(--∞C .),3[+∞-D .]5,(-∞ 10.关于x 方程)10(2)1(log 2<<-=+a x x a 的解的个数为 ( )A .0B .1C .2D .311.把数列{}12+n 中各项划分为:(3),(5,7), (9,11,13) , (15,17,19,21) , (23) , (25,27),(29,31,33) , (35,37,39,41),照此下去,第100个括号里各数的和为 ( )A .1891B .1990C .1873D .199212.已知命题P :函数)2(log 25.0a x x y ++=的值域为R, 命题Q :函数x a y )25(--=是R 上的减函数.若 P 或Q 为真命题,P 且Q 为假命题,则实数a 的取值范围是( )(A ) 1≤a (B ) 2<a (C ) 21<<a (D )1≤a 或 2≥a第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题4分,共16分. 把答案写在题中横线上. 13. 函数)sin(cos x y =的单调递减区间为 . 14. 不等式ax x +≥+223的解集为R ,则实数a 的值为_________.15. 已知等比数列的公比为2,前4项和1,则其前8项和为 . 16. 有下列命题:① b G a G ab G 、、是)0(≠=成等比数列的充分但非必要条件;② 若角βα、满足,1cos cos =βα则0sin=β+α)(; ③ 若不等式ax x <-+-34的解集非空,则必有1≥a④ 函数sin sin +=x y |x |的值域是[-2,2].其中错误的命题的序号是 (把错误的命题的序号都填上) 三、解答题: 本大题共6小题,共74分. 解答应写出文字说明, 证明过程或步骤 17. ( 本小题满分12分 )已知函数)(x f =)4(sin 23)23cos (sin 41222π-+--x x x (1)求满足)(x f =83的所有x 值的集合.(2)若]4,6[ππ-∈x ,求)(x f 的最大值和最小值.18. ( 本小题满分12分 )关于x 的方程022=++ax x 至少有一个小于1-的实根,求实数a 的范围.19. ( 本小题满分12分 )已知二次函数,12)(),0,0()(2+='++=x x f c bx ax x f 导函数经过点 ],1,[+∈n n x 当n a x f N n 是整数的个数记为时)(,)(+∈.(1)求a ,b,c 的值; (2)求数列}{n a 的通项公式;(3)令.}{,21n n n n n S n b a a b 项和的前求+⋅=20. ( 本小题满分12分)设函数)(xf定义在R上,当0>x时,1)(>xf,且对任意Rba∈,有)()()(bfafbaf⋅=+成立.(1)求证:1)0(=f;(2)求证:)(xf在R上为增函数;(3)若,2)1(=f集合{},,,2)2()(),(2ZnmmmfmfnmA∈>-⋅={},,,16)(),(ZnmmnfnmB∈=-=求BA .21. ( 本小题满分12分)某民营企业生产A、B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2.(注:利润与投资单位:万元)(1)分别将A、B两种产品的利润表示为投资的函数关系式写出;(2)该企业已筹集到10万元资金,并全部投入A 、B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元? (精确到1万元)22. ( 本小题满分14分 )已知二次函数)()(2c b a c bx ax x f >>++=满足0)1(=f ,图像上有两点))(,()),(,(2211m f m B m f m A ,满足[]0)()()()(21212=⋅+⋅++m f m f a m f m f a(1)求证:0≥b ;(2)若)(x f 图像与x 轴的交点为D C ,,求线段CD 长的取值范围;参考答案命题人:袁全超二、填空题:本题考查基本知识和基本运算。

2018年河南省高考数学一诊试卷(文科)

2018年河南省高考数学一诊试卷(文科)

2018年河南省高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈R|3≤32﹣x<27},B={x∈Z|﹣3<x<1},则A∩B中元素的个数为()A.0 B.1 C.2 D.32.(5分)已知a∈R,复数z=,若=z,则a=()A.1 B.﹣1 C.2 D.﹣23.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个4.(5分)在△ABC中,角A,B,C的对边分别为a,b,c.若A=,=2sinAsinB,且b=6,则c=()A.2 B.3 C.4 D.65.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为()A.128π平方尺B.138π平方尺 C.140π平方尺 D.142π平方尺6.(5分)定义[x]表示不超过x的最大整数,(x)=x﹣[x],例如[2.1]=2,(2.1)=0.1,执行如图所示的程序框图,若输入的x=5.8,则输出的z=()A.﹣1.4 B.﹣2.6 C.﹣4.6 D.﹣2.87.(5分)若对于任意x∈R都有f(x)+2f(﹣x)=3cosx﹣sinx,则函数f(2x)图象的对称中心为()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)8.(5分)设x,y满足约束条件,若z=﹣ax+y取得最大值的最优解不唯一,则实数a的值为()A.2或﹣3 B.3或﹣2 C.﹣或D.﹣或29.(5分)函数f(x)=的部分图象大致是()A.B.C.D.10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12+2B.20+6+2C.20+6+2D.20+12+211.(5分)过抛物线y2=2px(p>0)的焦点F作斜率大于0的直线l交抛物线于A,B两点(A在B的上方),且l与准线交于点C,若,则=()A.B.C.3 D.212.(5分)已知函数f(x)=e x+x2+lnx与函数g(x)=e﹣x+2x2﹣ax的图象上存在关于y轴对称的点,则实数a的取值范围为()A.(﹣∞,﹣e]B.C.(﹣∞,﹣1]D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,|+|=|﹣|,||=2,则•=14.(5分)一只蜜蜂在一个正方体箱子里面自由飞行,若蜜蜂在飞行过程中始终保持在该正方体内切球范围内飞行,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为.15.(5分)若α∈(﹣,0),sin(α+)=﹣,则=.16.(5分)设F1,F2分别是双曲线的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m,18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知等差数列{a n}的公差不为零,a1=3,且a2,a5,a14成等比数列.(1)求数列{a n}的通项公式;(2)若b n=(﹣1)n﹣1a n a n+1,求数列{b n}的前2n项和S2n.18.(12分)从某校高中男生中随机选取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图,如图所示.(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);(2)若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,求这2人中至少有1人体重在[70,80)内的概率.19.(12分)如图,在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.(1)求证:B1C∥平面A1DE;(2)若AC=3BC=6,△AB1C为等边三角形,求四棱锥A1﹣B1C1ED的体积.20.(12分)如图,椭圆W:+=1(a>b>0)的焦距与椭圆Ω:+y2=1的短轴长相等,且W与Ω的长轴长相等,这两个椭圆的在第一象限的交点为A,直线l经过Ω在y轴正半轴上的顶点B且与直线OA(O为坐标原点)垂直,l与Ω的另一个交点为C,l与W交于M,N两点.(1)求W的标准方程:(2)求.21.(12分)已知函数f(x)=x﹣lnx.(1)若曲线y=f(x)在x=x0处的切线经过坐标原点,求x0及该切线的方程;(2)设g(x)=(e﹣1)x,若函数F(x)=的值域为R,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数),设l1与l2的交点为p,当k变化时,p的轨迹为曲线c1(Ⅰ)写出C1的普通方程及参数方程;(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设曲线C2的极坐标方程为,Q为曲线C1上的动点,求点Q到C2的距离的最小值.[选修4-5:不等式选讲]23.已知f(x)=|x+a|(a∈R).(1)若f(x)≥|2x+3|的解集为[﹣3,﹣1],求a的值;(2)若∀x∈R,不等式f(x)+|x﹣a|≥a2﹣2a恒成立,求实数a的取值范围.2018年河南省高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈R|3≤32﹣x<27},B={x∈Z|﹣3<x<1},则A∩B中元素的个数为()A.0 B.1 C.2 D.3【解答】解:∵A={x∈R|3≤32﹣x<27}={x∈R|﹣1<x≤1},B={x∈Z|﹣3<x<1}={﹣2,﹣1,0},∴A∩B={0}.∴A∩B中元素的个数为1.故选:B.2.(5分)已知a∈R,复数z=,若=z,则a=()A.1 B.﹣1 C.2 D.﹣2【解答】解:z===+a﹣1=(a﹣1)﹣(a+1)i,则=(a﹣1)+(a+1)i,∵=z,∴a+1=0,得a=﹣1,故选:B.3.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个【解答】解:由该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据的折线图,得:在A中,最低气温与最高气温为正相关,故A正确;在B中,10月的最高气温不低于5月的最高气温,故B正确;在C中,月温差(最高气温减最低气温)的最大值出现在1月,故C正确;在D中,最低气温低于0℃的月份有3个,故D错误.故选:D.4.(5分)在△ABC中,角A,B,C的对边分别为a,b,c.若A=,=2sinAsinB,且b=6,则c=()A.2 B.3 C.4 D.6【解答】解:△ABC中,A=,b=6,∴a2=b2+c2﹣2bccosA,即a2=36+c2﹣6c①;又=2sinAsinB,∴=2ab,即cosC==,∴a2+36=4c2②;由①②解得c=4或c=﹣6(不合题意,舍去);∴c=4.故选:C.5.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为()A.128π平方尺B.138π平方尺 C.140π平方尺 D.142π平方尺【解答】解:∵今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,∴构造一个长方体,其长、宽、高分别为7尺、5尺、8尺,则这个这个四棱锥的外接球就是这个长方体的外接球,∴这个四棱锥的外接球的半径R==(尺),∴这个四棱锥的外接球的表面积为S=4π×R2==138π(平方尺).故选:B.6.(5分)定义[x]表示不超过x的最大整数,(x)=x﹣[x],例如[2.1]=2,(2.1)=0.1,执行如图所示的程序框图,若输入的x=5.8,则输出的z=()A.﹣1.4 B.﹣2.6 C.﹣4.6 D.﹣2.8【解答】解:模拟程序的运行,可得x=5.8y=5﹣1.6=3.4x=5﹣1=4满足条件x≥0,执行循环体,x=1.7,y=1﹣1.4=﹣0.4,x=1﹣1=0满足条件x≥0,执行循环体,x=﹣0.2,y=﹣1﹣1.6=﹣2.6,x=﹣1﹣1=﹣2不满足条件x≥0,退出循环,z=﹣2+(﹣2.6)=﹣4.6.输出z的值为﹣4.6.故选:C.7.(5分)若对于任意x∈R都有f(x)+2f(﹣x)=3cosx﹣sinx,则函数f(2x)图象的对称中心为()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【解答】解:∵对任意x∈R,都有f(x)+2f(﹣x)=3cosx﹣sinx ①,用﹣x代替x,得f(﹣x)+2f(x)=3cos(﹣x)﹣sin(﹣x)②,即f(﹣x)+2f(﹣x)=3cosx+sinx②;由①②组成方程组,解得f(x)=sinx+cosx,∴f(x)=sin(x+),∴f(2x)=sin(2x+).令2x+=kπ,k∈Z,求得x=﹣,故函数f(2x)图象的对称中心为(﹣,0),k∈Z,故选:D.8.(5分)设x,y满足约束条件,若z=﹣ax+y取得最大值的最优解不唯一,则实数a的值为()A.2或﹣3 B.3或﹣2 C.﹣或D.﹣或2【解答】解:作出不等式组对应的平面区域如图:(阴影部分OAB).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y=1平行,此时a=﹣3,综上a=﹣3或a=2,故选:A.9.(5分)函数f(x)=的部分图象大致是()A.B.C.D.【解答】解:∵函数f(x)的定义域为(﹣∞,﹣)∪(﹣,)∪(,+∞)f(﹣x)===f(x),∴f(x)为偶函数,∴f(x)的图象关于y轴对称,故排除A,令f(x)=0,即=0,解得x=0,∴函数f(x)只有一个零点,故排除D,当x=1时,f(1)=<0,故排除C,综上所述,只有B符合,故选:B.10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12+2B.20+6+2C.20+6+2D.20+12+2【解答】解:由三视图可知该几何体为侧放的四棱锥,棱锥的底面为矩形ABCD,底面与一个侧面PBC垂直,PB=PC=4,AB=3.S ABCD=3×=12,S△PBC=,S△PCD=S△PBA=,△PAD中AP=PD=5,AD=4,∴AD边上的高为,=,∴S△PAD则该几何体的表面积为12+8+6+6+2=12+20+2,故选:D11.(5分)过抛物线y2=2px(p>0)的焦点F作斜率大于0的直线l交抛物线于A,B两点(A在B的上方),且l与准线交于点C,若,则=()A.B.C.3 D.2【解答】解:根据题意,设|AF|=a,|BF|=b,作AM、BN垂直准线于点M、N,则有|BF|=|BN|=b,|AF|=|AM|=a,若,则有|CB|=4|BF|,即|CB|=4|BN|,又由BN∥AM,则有|CA|=4|AM|,即有4b+a+b=4a,变形可得=,即=,故选:A.12.(5分)已知函数f(x)=e x+x2+lnx与函数g(x)=e﹣x+2x2﹣ax的图象上存在关于y轴对称的点,则实数a的取值范围为()A.(﹣∞,﹣e]B.C.(﹣∞,﹣1]D.【解答】解:由题意知,方程g(﹣x)﹣f(x)=0在(0,+∞)上有解,即e x+2x2+ax﹣lnx﹣e x﹣x2=0,即x+a﹣=0在(0,+∞)上有解,即函数y=x+a与y=在(0,+∞)上有交点,y=的导数为y′=,当x>e时,y′<0,函数y=递减;当0<x<e时,y′>0,函数y=递增.可得x=e处函数y=取得极大值,函数y=x+a与y=在(0,+∞)上的图象如右:当直线y=x+a与y=相切时,切点为(1,0),可得a=0﹣1=﹣1,由图象可得a的取值范围是(﹣∞,﹣1].故选C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,|+|=|﹣|,||=2,则•=﹣4【解答】解:在△ABC中,|+|=|﹣|,可得|+|2=|﹣|2,即有2+2+2•=2+2﹣2•,即为•=0,则△ABC为直角三角形,A为直角,则•=﹣•=﹣||•||•cosB=﹣||2=﹣4.故答案为:﹣4.14.(5分)一只蜜蜂在一个正方体箱子里面自由飞行,若蜜蜂在飞行过程中始终保持在该正方体内切球范围内飞行,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为.【解答】解:如图,设正方体的棱长为2a,则其内切球的半径为a,则,,∴蜜蜂“安全飞行”的概率为P=.故答案为:.15.(5分)若α∈(﹣,0),sin(α+)=﹣,则=.【解答】解:α∈(﹣,0),sin(α+)=﹣,∴cos(α+)==,则====,故答案为:.16.(5分)设F1,F2分别是双曲线的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m,18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为2.【解答】解:根据双曲线的定义,可得|AF1|﹣|AF2|=2a,∵△ABF2是等边三角形,即|AF2|=|AB|,∴|BF1|=2a,又∵|BF2|﹣|BF1|=2a,∴|BF2|=|BF1|+2a=4a,∵△BF1F2中,|BF1|=2a,|BF2|=4a,∠F1BF2=120°,∴|F1F2|2=|BF1|2+|BF2|2﹣2|BF1|•|BF2|cos120°,即4c2=4a2+16a2﹣2×2a×4a×(﹣)=28a2,解得c2=7a2,b2=6a2,由双曲线的第二定义可得===,则m=,由A在双曲线上,可得﹣=1,解得a=,则2a=2.故答案为:2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知等差数列{a n}的公差不为零,a1=3,且a2,a5,a14成等比数列.(1)求数列{a n}的通项公式;(2)若b n=(﹣1)n﹣1a n a n+1,求数列{b n}的前2n项和S2n.【解答】解:(1)设公差为d,由,得,化简得d2=2a1d,因为d≠0,a1=3,所以d=6,所以a n=6n﹣3.(2)因为,所以﹣(36×(2n)2﹣9),所以,即S2n=﹣36(1+2+3+4+…+(2n﹣1)+2n)=.18.(12分)从某校高中男生中随机选取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图,如图所示.(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);(2)若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,求这2人中至少有1人体重在[70,80)内的概率.【解答】解:(1)由频率分布直方图估计该校的100名同学的平均体重为:=45×0.005×10+55×0.035×10+65×0.030×10+75×0.020×10+85×0.010×10=64.5.(2)要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,体重在[60,70)内的男生中选:6×=3人,体重在[70,80)内的男生中选:6×=2人,体重在[80,90]内的男生中选:6×=1人,再从这6人中选2人当正副队长,基本事件总数n==15,∴这2人中至少有1人体重在[70,80)内的概率p=1﹣=.19.(12分)如图,在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.(1)求证:B1C∥平面A1DE;(2)若AC=3BC=6,△AB1C为等边三角形,求四棱锥A1﹣B1C1ED的体积.【解答】证明:(1)∵在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,∴DE∥BC,DB A 1B1,∴四边形DBB1A1是平行四边形,∴A1D∥BB1,∵A1D∩DE=D,BB1∩BC=B,A1D、DE⊂平面A1DE,BB1、BC⊂平面BCB1,∴平面A1DE∥平面B1BC,∵B1C⊂平面B1BC,∴B1C∥平面A1DE.解:(2)∵AC=3BC=6,△AB1C为等边三角形,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.∴AE=3,DE=1,B1E==3,∠AED=90°,∴四棱锥A1﹣B1C1ED的体积:=﹣=S△ADE•B1E﹣====3.20.(12分)如图,椭圆W:+=1(a>b>0)的焦距与椭圆Ω:+y2=1的短轴长相等,且W与Ω的长轴长相等,这两个椭圆的在第一象限的交点为A,直线l经过Ω在y轴正半轴上的顶点B且与直线OA(O为坐标原点)垂直,l与Ω的另一个交点为C,l与W交于M,N两点.(1)求W的标准方程:(2)求.水秀中华【解答】解:(1)由题意可得,∴故W的标准方程为.(2)联立得∴,∴,易知B(0,1),∴l的方程为y=﹣3x+1.联立,得37x2﹣24x=0,∴x=0或,∴,联立,得31x2﹣18x﹣9=0,设M(x1,y1),N(x2,y2),则,,∴,故.21.(12分)已知函数f(x)=x﹣lnx.(1)若曲线y=f(x)在x=x0处的切线经过坐标原点,求x0及该切线的方程;水秀中华(2)设g(x)=(e﹣1)x,若函数F(x)=的值域为R,求实数a的取值范围.【解答】解:(1)由已知得(x>0),则,所以x0=e,所以所求切线方程为.(2)令,得x>1;令f'(x)<0,得0<x<1.所以f(x)在(0,1)上单调递减,在[1,+∞)上单调递增,所以f(x)min=f(1)=1,所以f(x)∈[1,+∞).而g(x)=(e﹣1)x在(﹣∞,a)上单调递增,所以g(x)∈(﹣∞,(e﹣1)a).欲使函数的值域为R,须a>0.①当0<a≤1时,只须(e﹣1)a≥1,即,所以.②当a>1时,f(x)∈[a﹣lna,+∞),g(x)∈(﹣∞,(e﹣1)a),只须a﹣lna≤(e﹣1)a对一切a>1恒成立,即lna+(e﹣2)a≥0对一切a>1恒成立,令φ(x)=lnx+(e﹣2)x(x>1),得,所以φ(x)在(1,+∞)上为增函数,所以φ(x)>φ(1)=e﹣2>0,所以a﹣lna≤(e﹣1)a对一切a>1恒成立.综上所述:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数),设l1与l2的交点为p,当k变化时,p的轨迹为曲线c1(Ⅰ)写出C1的普通方程及参数方程;(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设曲线C2的极坐标方程为,Q为曲线C1上的动点,求点Q到C2的距离的最小值.水秀中华【解答】解:(Ⅰ)将参数方程转化为一般方程,①,②①×②消k可得:.即P的轨迹方程为.C1的普通方程为.C1的参数方程为(α为参数α≠kπ,k∈Z).(Ⅱ)由曲线C2:,得:,即曲线C2的直角坐标方程为:x+y﹣8=0,由(Ⅰ)知曲线C1与直线C2无公共点,曲线C1上的点到直线x+y﹣8=0的距离为:,所以当时,d的最小值为.[选修4-5:不等式选讲]23.已知f(x)=|x+a|(a∈R).(1)若f(x)≥|2x+3|的解集为[﹣3,﹣1],求a的值;(2)若∀x∈R,不等式f(x)+|x﹣a|≥a2﹣2a恒成立,求实数a的取值范围.【解答】解:(1)f(x)≥|2x+3|即|x+a|≥|2x+3|,平方整理得:3x2+(12﹣2a)x+9﹣a2≤0,所以﹣3,﹣1是方程3x2+(12﹣2a)x+9﹣a2=0的两根,…2分由根与系数的关系得到…4分解得a=0…5分水秀中华(2)因为f(x)+|x﹣a|≥|(x+a)﹣(x﹣a)|=2|a|…7分所以要不等式f(x)+|x﹣a|≥a2﹣2a恒成立只需2|a|≥a2﹣2a…8分当a≥0时,2a≥a2﹣2a解得0≤a≤4,当a<0时,﹣2a≥a2﹣2a此时满足条件的a不存在,综上可得实数a的范围是0≤a≤4…10分。

2018年河南省高考数学一模试卷(文科)

2018年河南省高考数学一模试卷(文科)

2018年河南省高考数学一模试卷(文科)一、选择题(本题共12小题,每小题5分,共60分)1. 已知集合A={x|x<0, 或x>2},B=N,则集合(∁R A)∩B中元素的个数为()A.2B.3C.4D.52. 若复数(a+3i)(1−2i)(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A.−6B.13C.32D.√133. 已知f(x)=sinx−tanx,命题p:∃x0∈(0, π2),f(x0)<0,则()A.p是假命题,¬p:∀x∈(0, π2),f(x)≥0B.p是假命题,¬p:∃x0∈(0, π2),f(x0)≥0C.p是真命题,¬p:∀x∈(0, π2),f(x)≥0D.p是真命题,¬p:∃x0∈(0, π2),f(x0)≥04. 已知程序框图如图,则输出i的值为()A.7B.9C.11D.135. 设不等式组{x+y≤4y−x≥0x−1≥0,表示的平面区域为D,则z=y+1x的取值范围为()A.[32, 4] B.(32, 4) C.[2, 4] D.[32, 2]6. 已知a=0.63.1,b=4.10.6,c=log0.64.1,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.b>c>aD.a>c>b7. 《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,若某“阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为( )A.1+√2B.1+2√2C.2+√2D.2+2√28. 已知数列:11,21,12,31,22,13,41,32,23,14,…,依它的前10项的规律,这个数列的第2018项a 2018等于( ) A.131 B.163C.64D.6329. 若等边三角形ABC 的边长为3,平面内一点M 满足6CM →−3CA →=2CB →,则AM →⋅BM →的值为( ) A.−152B.−2C.2D.15210. 关于函数f(x)=3sin(2x −π3)+1(x ∈R),下列命题正确的是( ) A.由f(x 1)=f(x 2)=1可得x 1−x 2是π的整数倍 B.y =f(x)的表达式可改写成f(x)=3cos(2x +π6)+1 C.y =f(x)的图象关于点(3π4, 1)对称 D.y =f(x)的图象关于直线x =−π12对称11. 设函数f(x)=mx 2−mx −1,若对于x ∈[1, 3],f(x)<−m +4恒成立,则实数m 的取值范围为( )A.(−∞, 0]B.[0,57) C.(−∞,0)∪(0,57) D.(−∞,57)12. 设双曲线的方程为x 2a 2−y 2b 2=1(a >0, b >0),若双曲线的渐近线被圆M:x 2+y 2−10x =0所截得的两条弦长之和为12,已知△ABP 的顶点A ,B 分别为双曲线的左、右焦点,顶点P 在双曲线上,则|sinP||sinA−sinB|的值等于( ) A.35B.√73C.53D.√7二、填空题(本题共4小题,每小题5分,共20分)已知圆的方程为x 2+y 2−6x −8y =0,则该圆过点(3, 5)的最短弦长为________.若函数f(x)={x(x −b),x ≥0,ax(x +2),x <0(a, b ∈R)为奇函数,则f(a +b)的值为________.a4+4,S n为数列{a n}的前n项和,S15=________.在等差数列{a n}中,a6=12已知三棱柱ABC−A1B1C1的底面是正三角形,侧棱AA1⊥底面ABC,若有一半径为2的球与三棱柱的各条棱均相切,则AA1的长度为________.三、解答题(共70分)已知△ABC的三个内角A,B,C的对边分别为a,b,c,且sin2B+sin2C−sin2A= sinBsinC.求A;(2)已知D为BC中点,AD=√19,BC=√7,求△ABC的面积.2如图所示,在四棱锥P−ABCD中,底面ABCD为直角梯形,AB // CD,∠BAD=90∘,DC=DA=2AB=2√5,点E为AD的中点,BD∩CE=H,PH⊥平面ABCD,且PH= 4.(1)求证:PC⊥BD(2)线段PC上是否存在一点F,使三棱锥P−BFD的体积为5√2?若存在,请找出点F 的位置;若不存在,请说明理由.某地区为了解学生学业水平考试的状况,从参加学业水平考试的学生中抽出160名,统计他们的数学成绩(均为整数),得到频率分布直方图如图所示.(1)估计这次考试数学成绩的平均分和众数;(2)假设成绩在[90,100]的学生中有3人得满分100分,有2人得99分,其余学生的数学成绩都不相同.现从90分以上的学生中任取2人,求这两人成绩相同的概率.x2y222px(p >0)的焦点,点(2, 4)在抛物线C 2上. (1)求椭圆的方程;(2)若过椭圆右焦点F 的直线l 与椭圆C 1交于A ,B 两点,记△ABP 三条边所在直线斜率乘积为t ,求t 的最大值.已知a ≠0,函数f(x)={−x 3+x 2,x <ealnx,x ≤e.(1)讨论函数f(x)的零点的个数;(2)若函数的图象上存在两点M ,N ,使得△MON 是以O 为直角顶点的直角三角形(其中O 为坐标原点),且斜边MN 的中点恰好在y 轴上,求实数a 的取值范围. [选修4-4:坐标系与参数方程选讲]在直角坐标系xOy 中,已知直线l 1:{x =tcosαy =tsinα (t 为参数),l 2:{x =tcos(α+π4)y =tsin(α+π4)(t 为参数),其中α∈(0, 3π4),以原点O 为极点,x 轴非负半轴为极轴,取相同长度单位建立极坐标系,曲线C 的极坐标方程为ρ−4cosθ=0.(1)写出l 1,l 2的极坐标方程和曲线C 的直角坐标方程;(2)设l 1,l 2分别与曲线C 交于点A ,B (非坐标原点),求|AB|的值. [选修4-5:不等式选讲]设函数f(x)=|x −a|(a >0).(1)当a =2时,解不等式f(x)≥1−2x ;(2)已知f(x)+|x −1|的最小值为3,且m 2n =a(m >0, n >0),求m +n 的最小值.参考答案与试题解析2018年河南省高考数学一模试卷(文科)一、选择题(本题共12小题,每小题5分,共60分)1.【答案】B【考点】交、并、补集的混合运算【解析】可先求出∁R A={x|0≤x≤2},然后进行交集的运算即可.【解答】∁R A={x|0≤x≤2};∴(∁R A)∩B={0, 1, 2}.2.【答案】A【考点】复数的运算【解析】利用复数代数形式的乘法运算化简,再由实部为0且虚部不为0联立求得a值.【解答】∵(a+3i)(1−2i)=(a+6)+(3−2a)i是纯虚数,∴{a+6=03−2a≠0,解得a=−6.3.【答案】C【考点】命题的真假判断与应用命题的否定【解析】利用特称值,判断特称命题的真假,利用命题的否定关系,特称命题的否定是全称命题写出结果.【解答】f(x)=sinx−tanx,x∈(0, π2),当x=π4时,∴f(x)=√22−1<0,命题p:∃x0∈(0, π2),f(x0)<0,是真命题,命题p:∃x0∈(0, π2),f(x0)<0,则¬p:∀x∈(0, π2),f(x)≥0.4.【答案】D【考点】【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,可得答案.【解答】当S=1时,不满足退出循环的条件,故S=1,i=3;当S=1时,不满足退出循环的条件,故S=3,i=5;当S=3时,不满足退出循环的条件,故S=15,i=7;当S=15时,不满足退出循环的条件,故S=105,i=9;当S=105时,不满足退出循环的条件,故S=945,i=11;当S=945时,不满足退出循环的条件,故S=10395,i=13;当S=10395时,满足退出循环的条件,故输出的i=13,5.【答案】A【考点】简单线性规划【解析】画出约束条件的可行域,利用目标函数的几何意义求解即可.【解答】不等式组{x+y≤4y−x≥0x−1≥0,表示的平面区域为D,如图:则z=y+1x的几何意义是可行域内的点与(0, −1)连线的斜率,由图象可知QB的斜率最小,QA的斜率最大,B(2, 2),A(1, 3),则z=y+1x 的最大值为:4,最小值为:32.6.【答案】B【考点】对数值大小的比较【解析】利用指数函数、对数函数的单调性直接求解.【解答】∵0<a=0.63.1<0.60=1,b=4.10.6>4.10=1,c=log0.64.1<log0.61=0,∴a,b,c的大小关系为b>a>c.7.【答案】C【考点】由三视图求表面积由三视图知该几何体是侧棱垂直于底面的四棱锥, 画出图形结合图形求出它的表面积. 【解答】解:由三视图知该几何体是侧棱垂直于底面的四棱锥,如图所示;正视图和侧视图是腰长为1的两个全等的等腰直角三角形, ∴ 四棱锥的底面是正方形,且边长为1,其中一条侧棱PD ⊥底面ABCD ,且侧棱PD =1,∴ 四棱锥的四个侧面都为直角三角形,且PA =PC =√2, ∴ 四棱锥的表面积为S =S 底面ABCD +2S △PAD +2S △PAB=1+2×12×1×1+2×12×1×√2=2+√2. 故选C . 8.【答案】 D【考点】数列的概念及简单表示法 【解析】观察数列的特征,得出它的项数是1+2+3+...+k =k(k+1)2(k ∈N ∗),在每一个k 段内是k 个分数(k ∈N ∗, k ≥3),且它们的分子分母和为k +1;进而求出第2018项即可. 【解答】观察数列:11,21,12,31,22,13,41,32,23,14,…, 得出:它的项数是1+2+3+...+k =k(k+1)2(k ∈N ∗),并且在每一个k 段内,是k 个分数(k ∈N ∗, k ≥3),且它们的分子分母和为k +1(k ∈N ∗, k ≥3); 由k =63时,k(k+1)2=2016<2018(k ∈N ∗),故a 2018在64段中,∴ 该数列的第2018项a 2018为第64组的第2项, 故a 2018=632,【答案】 B【考点】平面向量数量积的运算向量加减混合运算及其几何意义 【解析】根据条件可先求出CA →∗CB →=92,而由6CM →−3CA →=2CB →即可得出CM →=12CA →+13CB →,这样即可用CA →,CB →分别表示出AM →,BM →,然后进行数量积的运算即可. 【解答】解:等边三角形ABC 的边长为3; ∴ CA →⋅CB →=|CA →||CB →|cos60∘=92;6CM →−3CA →=2CB →; ∴ CM →=12CA →+13CB →;∴ AM →=AC →+CM →=−CA →+12CA →+13CB →=−12CA →+13CB →,BM →=BC →+CM →=−CB →+12CA →+13CB →=12CA →−23CB →; ∴ AM →⋅BM →=(−1CA →+1CB →)⋅(1CA →−2CB →)=−14CA →2+12CA →⋅CB →−29CB →2=−94+94−2=−2. 故选B . 10.【答案】 D【考点】正弦函数的图象 【解析】 此题暂无解析 【解答】得x =kπ2+π6(k ∈Z),所以x 1=k 1π2+π6(k 1∈Z ),x 2=k 2π2+π6(k 2∈Z ),所以x 1−x 2=π2(k 1−k 2)(k 1,k 2∈Z ),是π2的整数倍,故A 错误;由f(x)=3sin (2x −π3)+1,得f(x)=−3cos (2x −π3+π2)+1=−3cos (2x +π6)+1,故B 错误;由2x −π3=kπ(k ∈Z),得x =kπ2+π6(k ∈Z).令kπ2+π6=3π4(k ∈Z),解得k =76,不符合题意,故C 错误;由2x −π3=kπ+π2(k ∈Z),得x =kπ2+5π12(k ∈Z).令k =−1,则x =−π12,即y =f(x)的图象关于直线x =−π12对称,故D 正确. 故选D . 11.【答案】 D【考点】二次函数的性质 二次函数的图象 【解析】利用分离参数法,再求出对应函数在x ∈[1, 3]上的最大值,即可求m 的取值范围. 【解答】由题意,f(x)<−m +4,可得m(x 2−x +1)<5. ∵ 当x ∈[1, 3]时,x 2−x +1∈[1, 7], ∴ 不等式f(x)<0等价于m <5x 2−x+1. ∵ 当x =3时,5x 2−x+1的最小值为57, ∴ 若要不等式m <5x 2−x+1恒成立,则必须m <57,因此,实数m 的取值范围为(−∞, 57),12.【答案】 C【考点】 双曲线的特性 【解析】根据垂径定理求出圆心到直线的距离为d =4,再根据点到直线的距离公式可得3|sinP|2c 2R2c 2a =53【解答】双曲线的一条渐近线方程为y=bax,双曲线的渐近线被圆M:x2+y2−10x=0,即(x−5)2+y2=25所截得的两条弦长之和为12,设圆心到直线的距离为d,则d=√25−9=4,∴√a2+b2=4,即5b=4c,即b=45c∵a2=c2−b2=925c2,∴a=35c,∴|AP−BP|=2a,由正弦定理可得APsinB =PBsinA=ABsinP=2R,∴sinB=AP2R ,sinA=BP2R,sinP=2c2R,∴|sinP||sinA−sinB|=2c2R|BP2R−AP2R|=2c2a=53,二、填空题(本题共4小题,每小题5分,共20分)【答案】4√6【考点】直线与圆的位置关系【解析】根据题意,将圆的一般方程变形为标准方程,分析可得其圆心与半径,设P为(3, 5),圆心为M,分析可得当过点P(3, 5)的直线与连接P与圆心的直线垂直时,弦最短,结合点到直线的距离公式分析可得答案.【解答】根据题意,圆的方程为x2+y2−6x−8y=0,其标准方程为(x−3)2+(y−4)2=25,其圆心为(3, 4),半径为5,设P为(3, 5),圆心为M,分析可得当过点P(3, 5)的直线与连接P与圆心的直线垂直时,弦最短,则弦长l=2×√r2−|MP|2=4√6;【答案】−1【考点】函数的求值分段函数的应用【解析】由已知中函数f(x)为奇函数,f(−x)=−f(x)恒成立,可得a,b的值,进而可得f(a+【解答】解:∵ 函数为奇函数, 故f(−x)=−f(x)恒成立, 故{a =−1,−b =2a,即{a =−1,b =2, ∴ f(x)={x 2−2x,x ≥0,−x 2−2x,x <0,∴ f(a +b)=f(1)=1−2=−1. 故答案为−1. 【答案】 120【考点】等差数列的前n 项和 【解析】等差数列{a n }中,a 6=12a 4+4,可得2a 6−a 4=8=a 8.代入S 15=15(a 1+a 15)2=15a 8,即可得出. 【解答】等差数列{a n }中,a 6=12a 4+4,∴ 2a 6−a 4=8=a 8. S 15=15(a 1+a 15)2=15a 8=15×8=120.【答案】 2√3【考点】柱体、锥体、台体的体积计算 【解析】由题意求出正三棱柱的高、底面边长,即可求出AA 1的长度. 【解答】由题意,△ABC 的外接圆即为球的大圆,r =2, 设底面△ABC 外接圆圆心G ,即GA =GB =GC =2,从而正三角形ABC 边长2√3, 设球心O ,由题意,E 、D 在球面上,OE =OD =2, F 为DE 中点,则OF ⊥DE ,OF =GD =12GC =1, 在Rt △OEF 中,OE =2,OF =1,∴ EF =√3, ∴ DE =2√3, ∴ AA 1=2√3.三、解答题(共70分)【答案】(1)由正弦定理:sin 2B +sin 2C −sin 2A =sinBsinC . 转换为:b 2+c 2−a 2=bc , 即:cosA =b 2+c 2−a 22bc=12,由于:0<A <π,则:A =π3.(2)由于:a 2=b 2+c 2−2bccosA =7, 所以:b 2+c 2−bc =7①. 由于:D 为BC 中点, 则:AD →2=12(AB →+AC →),所以:4AD →2=(AB →+AC →)2, 即:b 2+c 2+bc =19② 由①②得:bc =6, 所以:S △ABC =12bcsinA =3√32【考点】 三角形求面积 【解析】(1)直接利用余弦定理求出A 的值.(2)利用余弦定理和向量的线性运算及三角形的面积公式求出结果. 【解答】(1)由正弦定理:sin 2B +sin 2C −sin 2A =sinBsinC . 转换为:b 2+c 2−a 2=bc , 即:cosA =b 2+c 2−a 22bc=12,由于:0<A <π, 则:A =π3.(2)由于:a 2=b 2+c 2−2bccosA =7, 所以:b 2+c 2−bc =7①. 由于:D 为BC 中点, 则:AD →2=12(AB →+AC →),所以:4AD →2=(AB →+AC →)2, 即:b 2+c 2+bc =19② 由①②得:bc =6, 所以:S △ABC =12bcsinA =3√32【答案】证明:∵ AB // CD ,∠BAD =90∘,∴ ∠EDC =∠BAD =90∘,∵ DC =DA =2AB ,E 为AD 的中点,∴ AB =ED ,则△BAD ≅△EDC , ∴ ∠DBA =∠DEH .∵ ∠DBA +∠ADB =90∘,∴ ∠DEH +∠ADB =90∘,则BD ⊥EC . 又∵ PH ⊥平面ABCD ,BD ⊂平面ABCD ,∴ BD ⊥PH . 又∵ PH ∩EC =H ,且PH 、EC ⊂平面PEC , ∴ BD ⊥平面PEC ,∵ PC ⊂平面PEC ,∴ PC ⊥BD ;假设线段PC 上存在一点F ,使三棱锥P −BFD 的体积为5√2,由(1)可知,△DHE∽△DAB,且求得BD=EC=5,AB=DE=√5,∴DHDA =EHBA=DEDB,∴EH=1,HC=4,DH=2,HB=3.∵PH、EC、BD两两垂直,且PH=HC=4,∴∠HPC=45∘,∵BD⊥平面PEC,∴V P−BFD=V B−PHF+V D−PHF=13S△PHF×BD=13×12×PH×PF×sin45∘×5=5√23PF=5√2.∴PF=3,∵PC=4√2>3,∴线段PC上存在一点F,满足PF=3,使三棱锥P−BFD的体积为5√2.【考点】柱体、锥体、台体的体积计算直线与平面垂直【解析】(1)由已知证明△BAD≅△EDC,得到∠DBA=∠DEH,再由∠DBA+∠ADB=90∘,可得∠DEH+∠ADB=90∘,即BD⊥EC.又PH⊥平面ABCD,得BD⊥PH.由线面垂直的判定可得BD⊥平面PEC,进一步得到PC⊥BD;(2)由(1)可知,△DHE∽△DAB,解三角形可得EH,HC,DH,HB的值,结合PH、EC、BD两两垂直,且PH=HC=4,求得∠HPC=45∘,则BD⊥平面PEC,再由等积法求得PF=3,可得线段PC上存在一点F,满足PF=3,使三棱锥P−BFD的体积为5√2.【解答】证明:∵AB // CD,∠BAD=90∘,∴∠EDC=∠BAD=90∘,∵DC=DA=2AB,E为AD的中点,∴AB=ED,则△BAD≅△EDC,∴∠DBA=∠DEH.∵∠DBA+∠ADB=90∘,∴∠DEH+∠ADB=90∘,则BD⊥EC.又∵PH⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PH.又∵PH∩EC=H,且PH、EC⊂平面PEC,∴BD⊥平面PEC,∵PC⊂平面PEC,∴PC⊥BD;假设线段PC上存在一点F,使三棱锥P−BFD的体积为5√2,由(1)可知,△DHE∽△DAB,且求得BD=EC=5,AB=DE=√5,∴DHDA =EHBA=DEDB,∴EH=1,HC=4,DH=2,HB=3.∵PH、EC、BD两两垂直,且PH=HC=4,∴∠HPC=45∘,∵BD⊥平面PEC,∴V P−BFD=V B−PHF+V D−PHF=13S△PHF×BD=13×12×PH×PF×sin45∘×5=5√23PF=5√2.∴PF=3,∵PC=4√2>3,∴线段PC上存在一点F,满足PF=3,使三棱锥P−BFD的体积为5√2.【答案】解:(1)利用区间中点值估算这160名学生的平均分为45×0.05+55×0.15+65×0.2+75×0.3+85×0.25+95×0.05=72(分),众数的估计值为75分.(2)由频率分布直方图知,在160人中,90分以上的学生数为160×0.005×10=8(人).设“从8人中任取2人,这两人成绩相同”为事件A,记这8人编号分别为1,2,3,4,5,6,7,8,其中4号、5号成绩为99分,6号、7号、8号的成绩为100分.由题意,从8人中任取2人,基本事件有(1, 2),(1, 3),(1, 4),(1, 5),(1, 6),(1, 7),(1, 8),(2, 3),(2, 4),(2, 5),(2, 6),(2, 7),(2, 8),(3, 4),(3, 5),(3, 6),(3, 7),(3, 8),(4, 5),(4, 6),(4, 7),(4, 8),(5, 6),(5, 7),(5, 8),(6, 7),(6, 8),(7, 8),共28个.其中事件A所包含的基本事件为(4, 5),(6, 7),(6,8),(7, 8),共4个.由古典概型概率计算公式得P(A)=428=17.【考点】频率分布直方图列举法计算基本事件数及事件发生的概率【解析】此题暂无解析【解答】解:(1)利用区间中点值估算这160名学生的平均分为45×0.05+55×0.15+65×0.2+75×0.3+85×0.25+95×0.05=72(分),众数的估计值为75分.(2)由频率分布直方图知,在160人中,90分以上的学生数为160×0.005×10=8(人).设“从8人中任取2人,这两人成绩相同”为事件A,记这8人编号分别为1,2,3,4,5,6,7,8,其中4号、5号成绩为99分,6号、7号、8号的成绩为100分.由题意,从8人中任取2人,基本事件有(1, 2),(1, 3),(1, 4),(1, 5),(1, 6),(1, 7),(1, 8),(2, 3),(2, 4),(2, 5),(2, 6),(2, 7),(2, 8),(3, 4),(3, 5),(3, 6),(3, 7),(3, 8),(4, 5),(4, 6),(4, 7),(4, 8),(5, 6),(5, 7),(5, 8),(6, 7),(6, 8),(7, 8),共28个.其中事件A所包含的基本事件的个数为(4, 5),(6, 7),(6,8),(7, 8),共4个.由古典概型概率计算公式得P(A)=428=17.【答案】点(2,在抛物线C 2上,∴ p =4,即c =2,即a 2+b 2=c 2=4,① ∵ 点P(2,(1)在椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)上,∴ 4a 2+9b 2=1,②,由①②解得a 2=16,b 2=12, ∴ 椭圆方程为x 216+y 212=1;(Ⅱ)椭圆的右焦点为F(2, 0),由题意可得直线k 的斜率存在, 设直线l 的方程为y =k(x −(2),(x 1, y 1),B(x 2, y 2),当k ≠0时,y k =x −2,得t =k ⋅y 1−3x 1−2⋅y 2−3x 2−3=k 3⋅y 1−3y 1⋅y 2−3y 2=k 3[1−3(1y 1+1y 2)+9y 1y 2]联立直线方程和椭圆方程,消去x ,得(4+3k 2)y 2+12ky −36=0,显然可知△>0,则y 1+y 2=−12k4k 2+3,y 1y 2=−−36k 24k 2+3,∴ t =k 3(1−3y 1+y 2y 1y 2+9y1y 2)=−k 2−34k =−(k +38)2+964则当k =0时,t =0也满足上式,即t =−k 2−34k =0, ∴ 当k =−38时,t max =964. 【考点】 椭圆的定义 【解析】(1)先求出c ,再根据点P(2, 3)在椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)上,即可求出a 2=16,b 2=12,问题得以解决.(2)右焦点F(2, 0),直线l:y =k(x −2),(与椭圆的交点A(x 1, y 1),B(x 2, y 2),从而联立方程再用韦达定理,再写出k PA ,k PB ,从而化简t =k PA ⋅k PB ⋅k .从而求最大值即可. 【解答】 点(2,在抛物线C 2上,∴ p =4,即c =2,即a 2+b 2=c 2=4,① ∵ 点P(2,(1)在椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)上, ∴ 4a 2+9b 2=1,②,由①②解得a 2=16,b 2=12, ∴ 椭圆方程为x 216+y 212=1;(Ⅱ)椭圆的右焦点为F(2, 0),由题意可得直线k 的斜率存在,设直线l 的方程为y =k(x −(2),(x 1, y 1),B(x 2, y 2),当k ≠0时,y k =x −2,得t =k ⋅y 1−3x 1−2⋅y 2−3x 2−3=k 3⋅y 1−3y 1⋅y 2−3y 2=k 3[1−3(1y 1+1y 2)+9y 1y 2]联立直线方程和椭圆方程,消去x ,得(4+3k 2)y 2+12ky −36=0,显然可知△>0,则y 1+y 2=−12k4k 2+3,y 1y 2=−−36k 24k 2+3,∴ t =k 3(1−3y 1+y 2y 1y 2+9y 1y 2)=−k 2−34k =−(k +38)2+964则当k =0时,t =0也满足上式,即t =−k 2−34k =0, ∴ 当k =−38时,t max =964.【答案】若−x 3+x 2=0,解得x =0或x =1,此时有两个零点,x =0或x =1, 若a >0时,f(x)=alnx ≥alne =a >0此时无零点, 当a <0时,f(x)=alnx ≤alne =a <0此时无零点, 综上所述,函数f(x)有两个零点0或1,假设曲线y =f(x)上存在两点M 、N 满足题设要求,则点M 、N 只能在y 轴两侧.不妨设M (t, f(t))(t >0),则N(−t, t 3+t 2),∵ △MON 是以O 为直角顶点的直角三角形,∴ OM →⋅ON →=0,即−t 2+f(t)(t 3+t 2)=0 ①.若方程①有解,存在满足题设要求的两点M 、N ;若方程①无解,不存在满足题设要求的两点M 、N .若0<t <e ,则f(t)=−t 3+t 2代入①式得:−t 2+(−t 3+t 2)(t 3+t 2)=0, 即t 4−t 2+1=0,而此方程无解,因此t ≥e ,此时f(t)=alnt , 代入①式得:−t 2+(alnt)(t 3+t 2)=0,即1a =(t +1)lnt ②,令ℎ(x)=(x +1)lnx(x ≥e), 则ℎ′(x)=lnx +1+1x >0,∴ ℎ(x)在[e, +∞)上单调递增,∵ t ≥e ,∴ ℎ(t)≥ℎ(e)=e +1,∴ ℎ(t)的取值范围是[e +1, +∞). ∴ 对于0<a ≤1e+1,方程②总有解,即方程①总有解, 故a 的取值范围为(0, 1e+1].【考点】分段函数的应用 【解析】(1)根据函数零点和方程根的关系即可判断,(2)假设曲线y =f(x)上存在两点M 、N 满足题设要求,则点M 、N 只能在y 轴两侧.不妨设M (t, f(t))(t >0),则N(−t, t 3+t 2),运用向量垂直的条件:数量积为0,构造函数ℎ(x)=(x +1)lnx(x ≥e),运用导数判断单调性,求得最值,即可得到a 的范围. 【解答】若−x3+x2=0,解得x=0或x=1,此时有两个零点,x=0或x=1,若a>0时,f(x)=alnx≥alne=a>0此时无零点,当a<0时,f(x)=alnx≤alne=a<0此时无零点,综上所述,函数f(x)有两个零点0或1,假设曲线y=f(x)上存在两点M、N满足题设要求,则点M、N只能在y轴两侧.不妨设M(t, f(t))(t>0),则N(−t, t3+t2),∵△MON是以O为直角顶点的直角三角形,∴OM→⋅ON→=0,即−t2+f(t)(t3+t2)=0①.若方程①有解,存在满足题设要求的两点M、N;若方程①无解,不存在满足题设要求的两点M、N.若0<t<e,则f(t)=−t3+t2代入①式得:−t2+(−t3+t2)(t3+t2)=0,即t4−t2+1=0,而此方程无解,因此t≥e,此时f(t)=alnt,代入①式得:−t2+(alnt)(t3+t2)=0,即1a=(t+1)lnt②,令ℎ(x)=(x+1)lnx(x≥e),则ℎ′(x)=lnx+1+1x>0,∴ℎ(x)在[e, +∞)上单调递增,∵t≥e,∴ℎ(t)≥ℎ(e)=e+1,∴ℎ(t)的取值范围是[e+1, +∞).∴对于0<a≤1e+1,方程②总有解,即方程①总有解,故a的取值范围为(0, 1e+1].[选修4-4:坐标系与参数方程选讲]【答案】l1,l2的极坐标方程为θ1=α(ρ∈R),θ2=α+π4(ρ∈R).曲线C的极坐标方程方程为ρ−4cosθ=0.即得ρ2−4ρcosθ=0,利用ρ2x2+y2,x=ρcosθ得曲线C的直角坐标方程为(x−2)2+y2=4.因为ρ1=4cosα,ρ2=4cos(α+π4),所以|AB|2=ρ12+ρ22−2ρ1.ρ2cosπ4=16[cos2α+cos2(α+π4)−√2cosαcos(α+π4)]=16[cos2α+12(cosα−sinα)2−cosα(cosα−sinα)]=8,所以|AB|的值为2√2.【考点】参数方程与普通方程的互化【解析】(1)考查直线l1,l2参数方程与极坐标方程的互化,曲线C的极坐标方程与直角坐标方程的互化.重点都是消去参数t.(2)利用l1,l2极坐标方程,结合余弦定理,计算出|AB|的长度.【解答】l1,l2的极坐标方程为θ1=α(ρ∈R),θ2=α+π4(ρ∈R).曲线C的极坐标方程方程为ρ−4cosθ=0.即得ρ2−4ρcosθ=0,利用ρ2x2+y2,x=ρcosθ得曲线C的直角坐标方程为(x−2)2+y2=4.因为ρ1=4cosα,ρ2=4cos(α+π4),所以|AB|2=ρ12+ρ22−2ρ1.ρ2cosπ4=16[cos2α+cos2(α+π4)−√2cosαcos(α+π4)]=16[cos2α+12(cosα−sinα)2−cosα(cosα−sinα)]=8,所以|AB|的值为2√2.[选修4-5:不等式选讲]【答案】当x≥2时,x−2≥1−2x,得x≥1,故x≥2,当x<2时,2−x≥1−2x,得x≥−1,故−1≤x<2,综上,不等式的解集是{x|x≥−1};∵f(x)+|x−1|的最小值是3,∴f(x)+|x−1|≥|x−a−(x−1)|=|a−1|=3,故a=4,∵m+n=m2+m2+n≥3√m2∗m2∗n3=3,当且仅当m2=n即m=2,n=1时取“=”.【考点】绝对值三角不等式【解析】(1)通过讨论x的范围,求出不等式的解集即可;(2)根据绝对值不等式的性质求出a的值,结合基本不等式的性质求出m+n的最小值即可.【解答】当x≥2时,x−2≥1−2x,得x≥1,故x≥2,当x<2时,2−x≥1−2x,得x≥−1,故−1≤x<2,综上,不等式的解集是{x|x≥−1};∵f(x)+|x−1|的最小值是3,∴f(x)+|x−1|≥|x−a−(x−1)|=|a−1|=3,故a=4,∵m+n=m2+m2+n≥3√m2∗m2∗n3=3,当且仅当m2=n即m=2,n=1时取“=”.。

2018年河南省郑州市高考数学一模试卷(文科)

2018年河南省郑州市高考数学一模试卷(文科)

2018年河南省郑州市高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数(i为虚数单位)等于()A.﹣1﹣3i B.﹣1+3i C.1﹣3i D.1+3i2.(5分)设集合A={x|1<x<2},B={x|x<a},若A∩B=A,则a的取值范围是()A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}3.(5分)设向量=(1,m),=(m﹣1,2),且≠,若(﹣)⊥,则实数m=()A.2 B.1 C.D.4.(5分)下列说法正确的是()A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.∃x0∈(0,+∞),使成立D.“若,则”是真命题5.(5分)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=()A.4 B.5 C.2 D.36.(5分)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm37.(5分)若将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)的图象,则函数g(x)的单调递增区间为()A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ﹣](k∈Z)D.[kπ﹣,kπ+](k∈Z)8.(5分)已知数列{a n}的前n项和为S n,a1=1,a2=2,且a n+2﹣2a n+1+a n=0(n∈N*),记T n=,则T2018=()A.B.C.D.9.(5分)已知函数,若函数f(x)在R上有两个零点,则实数a的取值范围是()A.(0,1]B.[1,+∞)C.(0,1) D.(﹣∞,1]10.(5分)已知椭圆的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为()A.B.C.D.11.(5分)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a,b满足a,G,b成等差数列且x,G,y成等比数列,则的最小值为()A.B.2 C.D.912.(5分)若对于任意的正实数x,y都有成立,则实数m 的取值范围为()A. B.C.D.二、填空题(本题共4小题,每题5分,共20分)13.(5分)设变量x,y满足约束条件则目标函数z=4x﹣y的最小值为.14.(5分)如果直线ax+2y+3a=0与直线3x+(a﹣1)y=a﹣7平行,则a=.15.(5分)已知数列{a n}满足,且a1+a2+a3+…+a10=1,则log2(a101+a102+…+a110)=.16.(5分)已知双曲线的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为M,交另一条渐近线于N,若,则双曲线的渐近线方程为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b.(1)求角C;(2)若△ABC的面积为,求ab的最小值.18.(12分)2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:男生测试情况:抽样情况病残免试不合格合格良好优秀人数5101547x女生测试情况抽样情况病残免试不合格合格良好优秀人数2310y2(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人”与性别有关?男性女性总计体育达人非体育达人总计临界值表:P(K2≥k0)0.100.050.0250.0100.005 k0 2.706 3.841 5.024 6.6357.879附:(,其中n=a+b+c+d)19.(12分)如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AB=6,,,D,E为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;(2)若,求点B到平面PAC的距离.20.(12分)已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C 到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l方程.21.(12分)已知函数f(x)=lnx﹣a(x+1),a∈R在(1,f(1))处的切线与x 轴平行.(1)求f(x)的单调区间;(2)若存在x0>1,当x∈(1,x0)时,恒有成立,求k的取值范围.22.(10分)在平面直角坐标系xOy中,直线l过点(1,0),倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若,设直线l与曲线C交于A,B两点,求△AOB的面积.23.设函数f(x)=|x+3|,g(x)=|2x﹣1|.(1)解不等式f(x)<g(x);(2)若2f(x)+g(x)>ax+4对任意的实数x恒成立,求a的取值范围.2018年河南省郑州市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数(i为虚数单位)等于()A.﹣1﹣3i B.﹣1+3i C.1﹣3i D.1+3i【解答】解:==﹣1﹣3i故选A2.(5分)设集合A={x|1<x<2},B={x|x<a},若A∩B=A,则a的取值范围是()A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}【解答】解:∵A∩B=A,∴A⊆B.∵集合A={x|1<x<2},B={x|x<a},∴a≥2故选:D.3.(5分)设向量=(1,m),=(m﹣1,2),且≠,若(﹣)⊥,则实数m=()A.2 B.1 C.D.【解答】解:∵(﹣)⊥,∴(﹣)•=0,即2﹣•=0,即1+m2﹣(m﹣1+2m)=0,即m2﹣3m+2=0,得m=1或m=2,当m=1时,量=(1,1),=(0,2),满足≠,当m=2时,量=(1,2),=(1,2),不满足≠,综上m=1,故选:B.4.(5分)下列说法正确的是()A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.∃x0∈(0,+∞),使成立D.“若,则”是真命题【解答】解:“若a>1,则a2>1”的否命题是“若a≤1,则a2≤1”,故A错;“若am2<bm2,则a<b”的逆命题为假命题,比如m=0,若a<b,则am2=bm2,故B错;对任意x>0,均有3x<4x成立,故C错;对若,则”的逆否命题是“若α=,则sinα=”为真命题,则D正确.故选D.5.(5分)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=()A.4 B.5 C.2 D.3【解答】解:模拟执行程序,可得a=1,A=1,S=0,n=1S=2不满足条件S≥10,执行循环体,n=2,a=,A=2,S=不满足条件S≥10,执行循环体,n=3,a=,A=4,S=不满足条件S≥10,执行循环体,n=4,a=,A=8,S=满足条件S≥10,退出循环,输出n的值为4.故选:A.6.(5分)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm3【解答】解:由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××3×4×5=20(cm3).故选B.7.(5分)若将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)的图象,则函数g(x)的单调递增区间为()A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ﹣](k∈Z)D.[kπ﹣,kπ+](k∈Z)【解答】解:将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)=sin[2(x+)+]=﹣sin2x的图象,故本题即求y=sin2x的减区间,令2kπ+≤2x≤2kπ+,求得kπ+≤x≤kπ+,故函数g(x)的单调递增区间为[kπ+,kπ+],k∈Z,故选:B.8.(5分)已知数列{a n}的前n项和为S n,a1=1,a2=2,且a n+2﹣2a n+1+a n=0(n∈N*),记T n=,则T2018=()A.B.C.D.【解答】解:数列{a n}的前n项和为S n,a1=1,a2=2,且a n+2﹣2a n+1+a n=0(n∈N*),则:数列为等差数列.设公差为d,则:d=a2﹣a1=2﹣1=1,则:a n=1+n﹣1=n.故:,则:,所以:,=,=,=.所以:.故选:C9.(5分)已知函数,若函数f(x)在R上有两个零点,则实数a的取值范围是()A.(0,1]B.[1,+∞)C.(0,1) D.(﹣∞,1]【解答】解:当x≤0时,f(x)单调递增,∴f(x)≤f(0)=1﹣a,当x>0时,f(x)单调递增,且f(x)>﹣a.∵f(x)在R上有两个零点,∴,解得0<a≤1.故选A.10.(5分)已知椭圆的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为()A.B.C.D.【解答】解:方法一:依题意,作图如下:A(﹣a,0),B(0,b),F1(﹣c,0),F2(c,0),∴直线AB的方程为,整理得:bx﹣ay+ab=0,设直线AB上的点P(x,y),则bx=ay﹣ab,x=y﹣a,∵PF1⊥PF2,则•=(﹣c﹣x,﹣y)•(c﹣x,﹣y)=x2+y2﹣c2=()2+y2﹣c2,令f(y)=()2+y2﹣c2,则f′(y)=2(y﹣a)×+2y,∴由f′(y)=0得:y=,于是x=﹣,∴•=(﹣)2+()2﹣c2=0,整理得:=c2,又b2=a2﹣c2,整理得:c4+3c2c2﹣a4=0,两边同时除以a4,由e2=,∴e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e2=.椭圆的离心率的平方,故选B.方法二:由直线AB的方程为,整理得:bx﹣ay+ab=0,由题意可知:直线AB与圆O:x2+y2=c2相切,可得d==c,两边平方,整理得:c4+3c2c2﹣a4=0,两边同时除以a4,由e2=,e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e2=.椭圆的离心率的平方,故选B.11.(5分)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a,b满足a,G,b成等差数列且x,G,y成等比数列,则的最小值为()A.B.2 C.D.9【解答】解:甲班学生成绩的中位数是80+x=81,得x=1;由茎叶图可知乙班学生的总分为76+80×3+90×3+(0+2+y+1+3+6)=598+y,乙班学生的平均分是86,且总分为86×7=602,所以y=4,若正实数a、b满足:a,G,b成等差数列且x,G,y成等比数列,则xy=G2,2G=a+b,即有a+b=4,a>0,b>0,则+=(a+b)(+)=(1+4++)≥(5+2)=×9=,当且仅当b=2a=时,的最小值为.12.(5分)若对于任意的正实数x,y都有成立,则实数m 的取值范围为()A. B.C.D.【解答】解:根据题意,对于(2x﹣)•ln≤,变形可得(2x﹣)ln≤,即(2e﹣)ln≤,设t=,则(2e﹣t)lnt≤,t>0,设f(t)=(2e﹣t)lnt,(t>0)则其导数f′(t)=﹣lnt+﹣1,又由t>0,则f′(t)为减函数,且f′(e)=﹣lne+﹣1=0,则当t∈(0,e)时,f′(t)>0,f(t)为增函数,当t∈(e,+∞)时,f′(t)<0,f(t)为减函数,则f(t)的最大值为f(e),且f(e)=e,若f(t)=(2e﹣t)lnt≤恒成立,必有e≤,解可得0<m≤,即m的取值范围为(0,];故选:D.二、填空题(本题共4小题,每题5分,共20分)13.(5分)设变量x,y满足约束条件则目标函数z=4x﹣y的最小值为1.【解答】解:设变量x,y满足约束条件在坐标系中画出可行域三角形,平移直线4x﹣y=0经过点A(1,3)时,4x﹣y最小,最小值为:1,则目标函数z=4x﹣y的最小值:1.故答案为:1.14.(5分)如果直线ax+2y+3a=0与直线3x+(a﹣1)y=a﹣7平行,则a=3.【解答】解:∵直线ax+2y+3a=0与直线3x+(a﹣1)y=a﹣7平行,∴,解得a=3.故答案为:3.15.(5分)已知数列{a n}满足,且a1+a2+a3+…+a10=1,则log2(a101+a102+…+a110)=100.【解答】解:∵,∴log2a n+1﹣log2a n=1,即,∴.∴数列{a n}是公比q=2的等比数列.则a101+a102+…+a110=(a1+a2+a3+…+a10)q100=2100,∴log2(a101+a102+…+a110)=.故答案为:100.16.(5分)已知双曲线的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为M,交另一条渐近线于N,若,则双曲线的渐近线方程为y=±x.【解答】解:由题意得右焦点F(c,0),设一渐近线OM的方程为y=x,则另一渐近线ON的方程为y=﹣x,由FM的方程为y=﹣(x﹣c),联立方程y=x,可得M的横坐标为,由FM的方程为y=﹣(x﹣c),联立方程y=﹣x,可得N的横坐标为.由2=,可得2(﹣c)=﹣c,即为﹣c=,由e=,可得﹣1=,即有e4﹣5e2+4=0,解得e2=4或1(舍去),即为e=2,即c=2a,b=a,可得渐近线方程为y=±x,故答案为:y=±x.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b.(1)求角C;(2)若△ABC的面积为,求ab的最小值.【解答】解:(1)由正弦定理可知:===2R,a=2RsinA,b=2RsinB,c=2RsinC,由2ccosB=2a+b,则2sinCcosB=2sin(B+C)+sinB,∴2sinBcosC+sinB=0,由0<B<π,sinB≠0,cosC=﹣,0<C<π,则C=;(2)由S=absinC=c,则c=ab,由c2=a2+b2﹣2abcosC=a2+b2+ab,∴=a2+b2+ab≥3ab,当且仅当a=b时取等号,∴ab≥12,故ab的最小值为12.18.(12分)2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:男生测试情况:抽样情况病残免试不合格合格良好优秀人数5101547x女生测试情况抽样情况病残免试不合格合格良好优秀人数2310y2(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人”与性别有关?男性女性总计体育达人非体育达人总计临界值表:P(K2≥k0)0.100.050.0250.0100.005 k0 2.706 3.841 5.024 6.6357.879附:(,其中n=a+b+c+d)【解答】解:(1)按分层抽样男生应抽取80名,女生应抽取20名;∴x=80﹣(5+10+15+47)=3,y=20﹣(2+3+10+2)=3;抽取的100名且测试等级为优秀的学生中有三位男生,设为A,B,C;两位女生设为a,b;从5名任意选2名,总的基本事件有AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10个;设“选出的两名学生恰好是一男一女为事件A”;则事件包含的基本事件有Aa,Ab,Ba,Bb,Ca,Cb共6个;∴P(A)==;(2)填写2×2列联表如下:男生女生总计体育达人50555非体育达人301545总计8020100则K2=≈9.091;∵9.091>6.635且P(K2≥6.635)=0.010,∴在犯错误的概率不超过0.010的前提下认为“是否为‘体育达人’与性别有关”.19.(12分)如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AB=6,,,D,E为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;(2)若,求点B到平面PAC的距离.【解答】证明:(1)连接CD,据题知AD=4,BD=2,∵AC2+BC2=AB2,∴∠ACB=90°,∴cos,∴=8,∴CD=2,∴CD2+AD2=AC2,∴CD⊥AB,又∵平面PAB⊥平面ABC,∴CD⊥平面PAB,∴CD⊥PD,∵PD⊥AC,CD∩AC=C,∴PD⊥平面ABC.解:(2)∵,∴PD=AD=4,∴PA=4,在Rt△PCD中,PC==2,∴△PAC是等腰三角形,∴,设点B到平面PAC的距离为d,=V P﹣AEC,得,由V E﹣PAC∴d==3,故点B到平面PAC的距离为3.20.(12分)已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C 到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l方程.【解答】解:(1)圆C:x2+y2+2x﹣2y+1=0可化为(x+1)2+(y﹣1)2=1,则圆心为(﹣1,1).抛物线E:y2=2px(p>0),焦点坐标F(),由于:圆心C到抛物线焦点F的距离为.则:,解得:p=6.故抛物线的方程为:y2=12x(2)设直线的方程为x=my+t,A(x1,y1),B(x2,y2),则:,整理得:y2﹣12my﹣12t=0,所以:y1+y2=12m,y1y2=﹣12t.由于:OA⊥OB.则:x1x2+y1y2=0.即:(m2+1)y1y2+mt(y1+y2)+t2=0.整理得:t2﹣12t=0,由于t≠0,解得t=12.故直线的方程为x=my+12,直线经过定点(12,0).当CN⊥l时,即动点M经过圆心C(﹣1,1)时到直线的距离取最大值.当CP⊥l时,即动点M经过圆心C(﹣1,1)时到动直线L的距离取得最大值.k MP=k CP=﹣,则:m=.此时直线的方程为:x=,即:13x﹣y﹣156=0.21.(12分)已知函数f(x)=lnx﹣a(x+1),a∈R在(1,f(1))处的切线与x 轴平行.(1)求f(x)的单调区间;(2)若存在x0>1,当x∈(1,x0)时,恒有成立,求k的取值范围.【解答】解:(1)由已知可得f(x)的定义域为(0,+∞),∵f′(x)=﹣a,∴f′(1)=1﹣a=0,解得:a=1,∴f′(x)=,令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,故f(x)在(0,1)递增,在(1,+∞)递减;(1)不等式f(x)﹣+2x+>k(x﹣1)可化为lnx﹣+x﹣>k(x﹣1),令g(x)=lnx﹣+x﹣﹣k(x﹣1),(x>1),g′(x)=,∵x>1,令h(x)=﹣x2+(1﹣k)x+1,h(x)的对称轴是x=,①当≤1时,即k≥﹣1,易知h(x)在(1,x0)上递减,∴h(x)<h(1)=1﹣k,若k≥1,则h(x)≤0,∴g′(x)≤0,∴g(x)在(1,x0)递减,∴g(x)<g(1)=0,不适合题意.若﹣1≤k<1,则h(1)>0,∴必存在x0使得x∈(1,x0)时,g′(x)>0,∴g(x)在(1,x0)递增,∴g(x)>g(1)=0恒成立,适合题意.②当>1时,即k<﹣1,易知必存在x0使得h(x)在(1,x0)递增,∴h(x)>h(1)=1﹣k>0,∴g′(x)>0,∴g(x)在(1,x0)递增,∴g(x)>g(1)=0恒成立,适合题意.综上,k的取值范围是(﹣∞,1).22.(10分)在平面直角坐标系xOy中,直线l过点(1,0),倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若,设直线l与曲线C交于A,B两点,求△AOB的面积.【解答】(1)直线L的参数方程为:(α为参数).曲线C的极坐标方程是,转化为直角坐标方程为:y2=8x(2)当时,直线l的参数方程为:(t为参数),代入y2=8x得到:.(t1和t2为A和B的参数),所以:,t1t2=﹣16.所以:.O到AB的距离为:d=.则:=.23.设函数f(x)=|x+3|,g(x)=|2x﹣1|.(1)解不等式f(x)<g(x);(2)若2f(x)+g(x)>ax+4对任意的实数x恒成立,求a的取值范围.【解答】解:(1)由已知得|x+3|<|2x﹣1|,即|x+3|2<|2x﹣1|2,则有3x2﹣10x﹣8>0,∴x<﹣或x>4,故不等式的解集是(﹣∞,﹣)∪(4,+∞);(2)由已知,设h(x)=2f(x)+g(x)=2|x+3|+|2x﹣1|=,当x≤﹣3时,只需﹣4x﹣5>ax+4恒成立,即ax<﹣4x﹣9,∵x≤﹣3<0,∴a>=﹣4﹣恒成立,∴a>,∴a>﹣1,当﹣3<x<时,只需7>ax+4恒成立,即ax﹣3<0恒成立,只需,∴,∴﹣1≤a≤6,当x≥时,只需4x+5>ax+4恒成立,即ax<4x+1,∵x≥>0,∴a<=4+恒成立,∵4+>4,且无限趋近于4,∴a≤4,综上,a的取值范围是(﹣1,4].。

2018年河南省高考数学一诊试卷(文科)

2018年河南省高考数学一诊试卷(文科)

2018年河南省高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈R|3≤32﹣x<27},B={x∈Z|﹣3<x<1},则A∩B中元素的个数为()A.0 B.1 C.2 D.32.(5分)已知a∈R,复数z=,若=z,则a=()A.1 B.﹣1 C.2 D.﹣23.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个4.(5分)在△ABC中,角A,B,C的对边分别为a,b,c.若A=,=2sinAsinB,且b=6,则c=()A.2 B.3 C.4 D.65.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为()A.128π平方尺B.138π平方尺 C.140π平方尺 D.142π平方尺6.(5分)定义[x]表示不超过x的最大整数,(x)=x﹣[x],例如[2.1]=2,(2.1)=0.1,执行如图所示的程序框图,若输入的x=5.8,则输出的z=()A.﹣1.4 B.﹣2.6 C.﹣4.6 D.﹣2.87.(5分)若对于任意x∈R都有f(x)+2f(﹣x)=3cosx﹣sinx,则函数f(2x)图象的对称中心为()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)8.(5分)设x,y满足约束条件,若z=﹣ax+y取得最大值的最优解不唯一,则实数a的值为()A.2或﹣3 B.3或﹣2 C.﹣或D.﹣或29.(5分)函数f(x)=的部分图象大致是()A.B.C.D.10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12+2B.20+6+2C.20+6+2D.20+12+211.(5分)过抛物线y2=2px(p>0)的焦点F作斜率大于0的直线l交抛物线于A,B两点(A 在B的上方),且l与准线交于点C,若,则=()A.B.C.3 D.212.(5分)已知函数f(x)=e x+x2+lnx与函数g(x)=e﹣x+2x2﹣ax的图象上存在关于y轴对称的点,则实数a的取值范围为()A.(﹣∞,﹣e]B.C.(﹣∞,﹣1]D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,|+|=|﹣|,||=2,则•=14.(5分)一只蜜蜂在一个正方体箱子里面自由飞行,若蜜蜂在飞行过程中始终保持在该正方体内切球范围内飞行,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为.15.(5分)若α∈(﹣,0),sin(α+)=﹣,则=.16.(5分)设F1,F2分别是双曲线的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m,18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知等差数列{a n}的公差不为零,a1=3,且a2,a5,a14成等比数列.(1)求数列{a n}的通项公式;(2)若b n=(﹣1)n﹣1a n a n+1,求数列{b n}的前2n项和S2n.18.(12分)从某校高中男生中随机选取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图,如图所示.(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);(2)若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,求这2人中至少有1人体重在[70,80)内的概率.19.(12分)如图,在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,B1E ⊥平面ABC,且∠ACB=90°.(1)求证:B1C∥平面A1DE;(2)若AC=3BC=6,△AB1C为等边三角形,求四棱锥A1﹣B1C1ED的体积.20.(12分)如图,椭圆W:+=1(a>b>0)的焦距与椭圆Ω:+y2=1的短轴长相等,且W与Ω的长轴长相等,这两个椭圆的在第一象限的交点为A,直线l经过Ω在y轴正半轴上的顶点B且与直线OA(O为坐标原点)垂直,l与Ω的另一个交点为C,l与W交于M,N 两点.(1)求W的标准方程:(2)求.21.(12分)已知函数f(x)=x﹣lnx.(1)若曲线y=f(x)在x=x0处的切线经过坐标原点,求x0及该切线的方程;(2)设g(x)=(e﹣1)x,若函数F(x)=的值域为R,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数),设l1与l2的交点为p,当k变化时,p的轨迹为曲线c1(Ⅰ)写出C1的普通方程及参数方程;(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设曲线C2的极坐标方程为,Q为曲线C1上的动点,求点Q到C2的距离的最小值.[选修4-5:不等式选讲]23.已知f(x)=|x+a|(a∈R).(1)若f(x)≥|2x+3|的解集为[﹣3,﹣1],求a的值;(2)若∀x∈R,不等式f(x)+|x﹣a|≥a2﹣2a恒成立,求实数a的取值范围.2018年河南省高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈R|3≤32﹣x<27},B={x∈Z|﹣3<x<1},则A∩B中元素的个数为()A.0 B.1 C.2 D.3【解答】解:∵A={x∈R|3≤32﹣x<27}={x∈R|﹣1<x≤1},B={x∈Z|﹣3<x<1}={﹣2,﹣1,0},∴A∩B={0}.∴A∩B中元素的个数为1.故选:B.2.(5分)已知a∈R,复数z=,若=z,则a=()A.1 B.﹣1 C.2 D.﹣2【解答】解:z===+a﹣1=(a﹣1)﹣(a+1)i,则=(a﹣1)+(a+1)i,∵=z,∴a+1=0,得a=﹣1,故选:B.3.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个【解答】解:由该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据的折线图,得:在A中,最低气温与最高气温为正相关,故A正确;在B中,10月的最高气温不低于5月的最高气温,故B正确;在C中,月温差(最高气温减最低气温)的最大值出现在1月,故C正确;在D中,最低气温低于0℃的月份有3个,故D错误.故选:D.4.(5分)在△ABC中,角A,B,C的对边分别为a,b,c.若A=,=2sinAsinB,且b=6,则c=()A.2 B.3 C.4 D.6【解答】解:△ABC中,A=,b=6,∴a2=b2+c2﹣2bccosA,即a2=36+c2﹣6c①;又=2sinAsinB,∴=2ab,即cosC==,∴a2+36=4c2②;由①②解得c=4或c=﹣6(不合题意,舍去);∴c=4.故选:C.5.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为()A.128π平方尺B.138π平方尺 C.140π平方尺 D.142π平方尺【解答】解:∵今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,∴构造一个长方体,其长、宽、高分别为7尺、5尺、8尺,则这个这个四棱锥的外接球就是这个长方体的外接球,∴这个四棱锥的外接球的半径R==(尺),∴这个四棱锥的外接球的表面积为S=4π×R2==138π(平方尺).故选:B.6.(5分)定义[x]表示不超过x的最大整数,(x)=x﹣[x],例如[2.1]=2,(2.1)=0.1,执行如图所示的程序框图,若输入的x=5.8,则输出的z=()A.﹣1.4 B.﹣2.6 C.﹣4.6 D.﹣2.8【解答】解:模拟程序的运行,可得x=5.8y=5﹣1.6=3.4x=5﹣1=4满足条件x≥0,执行循环体,x=1.7,y=1﹣1.4=﹣0.4,x=1﹣1=0满足条件x≥0,执行循环体,x=﹣0.2,y=﹣1﹣1.6=﹣2.6,x=﹣1﹣1=﹣2不满足条件x≥0,退出循环,z=﹣2+(﹣2.6)=﹣4.6.输出z的值为﹣4.6.故选:C.7.(5分)若对于任意x∈R都有f(x)+2f(﹣x)=3cosx﹣sinx,则函数f(2x)图象的对称中心为()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【解答】解:∵对任意x∈R,都有f(x)+2f(﹣x)=3cosx﹣sinx ①,用﹣x代替x,得f(﹣x)+2f(x)=3cos(﹣x)﹣sin(﹣x)②,即f(﹣x)+2f(﹣x)=3cosx+sinx②;由①②组成方程组,解得f(x)=sinx+cosx,∴f(x)=sin(x+),∴f(2x)=sin(2x+).令2x+=kπ,k∈Z,求得x=﹣,故函数f(2x)图象的对称中心为(﹣,0),k∈Z,故选:D.8.(5分)设x,y满足约束条件,若z=﹣ax+y取得最大值的最优解不唯一,则实数a的值为()A.2或﹣3 B.3或﹣2 C.﹣或D.﹣或2【解答】解:作出不等式组对应的平面区域如图:(阴影部分OAB).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y=1平行,此时a=﹣3,综上a=﹣3或a=2,故选:A.9.(5分)函数f(x)=的部分图象大致是()A.B.C.D.【解答】解:∵函数f(x)的定义域为(﹣∞,﹣)∪(﹣,)∪(,+∞)f(﹣x)===f(x),∴f(x)为偶函数,∴f(x)的图象关于y轴对称,故排除A,令f(x)=0,即=0,解得x=0,∴函数f(x)只有一个零点,故排除D,当x=1时,f(1)=<0,故排除C,综上所述,只有B符合,故选:B.10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12+2B.20+6+2C.20+6+2D.20+12+2【解答】解:由三视图可知该几何体为侧放的四棱锥,棱锥的底面为矩形ABCD,底面与一个侧面PBC垂直,PB=PC=4,AB=3.S ABCD=3×=12,S△PBC=,S△PCD=S△PBA=,△PAD中AP=PD=5,AD=4,∴AD边上的高为,=,∴S△PAD则该几何体的表面积为12+8+6+6+2=12+20+2,故选:D11.(5分)过抛物线y2=2px(p>0)的焦点F作斜率大于0的直线l交抛物线于A,B两点(A 在B的上方),且l与准线交于点C,若,则=()A.B.C.3 D.2【解答】解:根据题意,设|AF|=a,|BF|=b,作AM、BN垂直准线于点M、N,则有|BF|=|BN|=b,|AF|=|AM|=a,若,则有|CB|=4|BF|,即|CB|=4|BN|,又由BN∥AM,则有|CA|=4|AM|,即有4b+a+b=4a,变形可得=,即=,故选:A.12.(5分)已知函数f(x)=e x+x2+lnx与函数g(x)=e﹣x+2x2﹣ax的图象上存在关于y轴对称的点,则实数a的取值范围为()A.(﹣∞,﹣e]B.C.(﹣∞,﹣1]D.【解答】解:由题意知,方程g(﹣x)﹣f(x)=0在(0,+∞)上有解,即e x+2x2+ax﹣lnx﹣e x﹣x2=0,即x+a﹣=0在(0,+∞)上有解,即函数y=x+a与y=在(0,+∞)上有交点,y=的导数为y′=,当x>e时,y′<0,函数y=递减;当0<x<e时,y′>0,函数y=递增.可得x=e处函数y=取得极大值,函数y=x+a与y=在(0,+∞)上的图象如右:当直线y=x+a与y=相切时,切点为(1,0),可得a=0﹣1=﹣1,由图象可得a的取值范围是(﹣∞,﹣1].故选C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,|+|=|﹣|,||=2,则•=﹣4【解答】解:在△ABC中,|+|=|﹣|,可得|+|2=|﹣|2,即有2+2+2•=2+2﹣2•,即为•=0,则△ABC为直角三角形,A为直角,则•=﹣•=﹣||•||•cosB=﹣||2=﹣4.故答案为:﹣4.14.(5分)一只蜜蜂在一个正方体箱子里面自由飞行,若蜜蜂在飞行过程中始终保持在该正方体内切球范围内飞行,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为.【解答】解:如图,设正方体的棱长为2a,则其内切球的半径为a,则,,∴蜜蜂“安全飞行”的概率为P=.故答案为:.15.(5分)若α∈(﹣,0),sin(α+)=﹣,则=.【解答】解:α∈(﹣,0),sin(α+)=﹣,∴cos(α+)==,则====,故答案为:.16.(5分)设F1,F2分别是双曲线的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m,18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为2.【解答】解:根据双曲线的定义,可得|AF1|﹣|AF2|=2a,∵△ABF2是等边三角形,即|AF2|=|AB|,∴|BF1|=2a,又∵|BF2|﹣|BF1|=2a,∴|BF2|=|BF1|+2a=4a,∵△BF1F2中,|BF1|=2a,|BF2|=4a,∠F1BF2=120°,∴|F1F2|2=|BF1|2+|BF2|2﹣2|BF1|•|BF2|cos120°,即4c2=4a2+16a2﹣2×2a×4a×(﹣)=28a2,解得c2=7a2,b2=6a2,由双曲线的第二定义可得===,则m=,由A在双曲线上,可得﹣=1,解得a=,则2a=2.故答案为:2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知等差数列{a n}的公差不为零,a1=3,且a2,a5,a14成等比数列.(1)求数列{a n}的通项公式;(2)若b n=(﹣1)n﹣1a n a n+1,求数列{b n}的前2n项和S2n.【解答】解:(1)设公差为d,由,得,化简得d2=2a1d,因为d≠0,a1=3,所以d=6,所以a n=6n﹣3.(2)因为,所以﹣(36×(2n)2﹣9),所以,即S2n=﹣36(1+2+3+4+…+(2n﹣1)+2n)=.18.(12分)从某校高中男生中随机选取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图,如图所示.(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);(2)若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,求这2人中至少有1人体重在[70,80)内的概率.【解答】解:(1)由频率分布直方图估计该校的100名同学的平均体重为:=45×0.005×10+55×0.035×10+65×0.030×10+75×0.020×10+85×0.010×10=64.5.(2)要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,体重在[60,70)内的男生中选:6×=3人,体重在[70,80)内的男生中选:6×=2人,体重在[80,90]内的男生中选:6×=1人,再从这6人中选2人当正副队长,基本事件总数n==15,∴这2人中至少有1人体重在[70,80)内的概率p=1﹣=.19.(12分)如图,在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,B1E ⊥平面ABC,且∠ACB=90°.(1)求证:B1C∥平面A1DE;(2)若AC=3BC=6,△AB1C为等边三角形,求四棱锥A1﹣B1C1ED的体积.【解答】证明:(1)∵在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,AB=2A1B1,∴DE∥BC,DB A 1B1,∴四边形DBB1A1是平行四边形,∴A1D∥BB1,∵A1D∩DE=D,BB1∩BC=B,A1D、DE⊂平面A1DE,BB1、BC⊂平面BCB1,∴平面A1DE∥平面B1BC,∵B1C⊂平面B1BC,∴B1C∥平面A1DE.解:(2)∵AC=3BC=6,△AB1C为等边三角形,AB=2A1B1,B1E⊥平面ABC,且∠ACB=90°.∴AE=3,DE=1,B1E==3,∠AED=90°,∴四棱锥A1﹣B1C1ED的体积:=﹣=S△ADE•B1E﹣====3.20.(12分)如图,椭圆W:+=1(a>b>0)的焦距与椭圆Ω:+y2=1的短轴长相等,且W与Ω的长轴长相等,这两个椭圆的在第一象限的交点为A,直线l经过Ω在y轴正半轴上的顶点B且与直线OA(O为坐标原点)垂直,l与Ω的另一个交点为C,l与W交于M,N 两点.(1)求W的标准方程:(2)求.【解答】解:(1)由题意可得,∴故W的标准方程为.(2)联立得∴,∴,易知B(0,1),∴l的方程为y=﹣3x+1.联立,得37x2﹣24x=0,∴x=0或,∴,联立,得31x2﹣18x﹣9=0,设M(x1,y1),N(x2,y2),则,,∴,故.21.(12分)已知函数f(x)=x﹣lnx.(1)若曲线y=f(x)在x=x0处的切线经过坐标原点,求x0及该切线的方程;(2)设g(x)=(e﹣1)x,若函数F(x)=的值域为R,求实数a的取值范围.【解答】解:(1)由已知得(x>0),则,所以x0=e,所以所求切线方程为.(2)令,得x>1;令f'(x)<0,得0<x<1.所以f(x)在(0,1)上单调递减,在[1,+∞)上单调递增,所以f(x)min=f(1)=1,所以f(x)∈[1,+∞).而g(x)=(e﹣1)x在(﹣∞,a)上单调递增,所以g(x)∈(﹣∞,(e﹣1)a).欲使函数的值域为R,须a>0.①当0<a≤1时,只须(e﹣1)a≥1,即,所以.②当a>1时,f(x)∈[a﹣lna,+∞),g(x)∈(﹣∞,(e﹣1)a),只须a﹣lna≤(e﹣1)a对一切a>1恒成立,即lna+(e﹣2)a≥0对一切a>1恒成立,令φ(x)=lnx+(e﹣2)x(x>1),得,所以φ(x)在(1,+∞)上为增函数,所以φ(x)>φ(1)=e﹣2>0,所以a﹣lna≤(e﹣1)a对一切a>1恒成立.综上所述:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参水秀中华数方程为(m为参数),设l1与l2的交点为p,当k变化时,p的轨迹为曲线c1(Ⅰ)写出C1的普通方程及参数方程;(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设曲线C2的极坐标方程为,Q为曲线C1上的动点,求点Q到C2的距离的最小值.【解答】解:(Ⅰ)将参数方程转化为一般方程,①,②①×②消k可得:.即P的轨迹方程为.C1的普通方程为.C1的参数方程为(α为参数α≠kπ,k∈Z).(Ⅱ)由曲线C2:,得:,即曲线C2的直角坐标方程为:x+y﹣8=0,由(Ⅰ)知曲线C1与直线C2无公共点,曲线C1上的点到直线x+y﹣8=0的距离为:,所以当时,d的最小值为.[选修4-5:不等式选讲]23.已知f(x)=|x+a|(a∈R).(1)若f(x)≥|2x+3|的解集为[﹣3,﹣1],求a的值;(2)若∀x∈R,不等式f(x)+|x﹣a|≥a2﹣2a恒成立,求实数a的取值范围.【解答】解:(1)f(x)≥|2x+3|即|x+a|≥|2x+3|,水秀中华平方整理得:3x2+(12﹣2a)x+9﹣a2≤0,所以﹣3,﹣1是方程3x2+(12﹣2a)x+9﹣a2=0的两根,…2分由根与系数的关系得到…4分解得a=0…5分(2)因为f(x)+|x﹣a|≥|(x+a)﹣(x﹣a)|=2|a|…7分所以要不等式f(x)+|x﹣a|≥a2﹣2a恒成立只需2|a|≥a2﹣2a…8分当a≥0时,2a≥a2﹣2a解得0≤a≤4,当a<0时,﹣2a≥a2﹣2a此时满足条件的a不存在,综上可得实数a的范围是0≤a≤4…10分。

河南省郑州市2018届高中毕业班第一次质量检测(模拟)文科数学试题

河南省郑州市2018届高中毕业班第一次质量检测(模拟)文科数学试题

2018高中毕业年级第一次质量预测文科数学试题卷第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数3i i-(i 为虚数单位)等于( )A.13i --B.13i -+C.13i +D.13i -2.设集合{}12A x x =<<,{}B x x a =<,若A B A ⋂=,则a 的取值范围是( ) A.{}2a a ≤B.{}1a a ≤C.{}1a a ≥D.{}2a a ≥3.设向量(1,)a m =,(1,2)b m =-,且a b ≠,若()a b a -⊥,则实数m =( ) A.12B.13C.1D.24. 下列说法正确的是( )A .“若1a >,则21a >”的否命题是“若1a >,则21a ≤”B.“若22am bm <,则a b <”的逆命题为真命题 C.0(0,)x ∃∈+∞,使0034xx>成立 D .“若1sin 2α≠,则6πα≠”是真命题 5.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n =( ) A.5 B.4 C.3 D.26.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( ) A.103cm B.203cmC.303cmD.403cm7.若将函数1()sin(2)23f x x π=+图象上的每一个点都向左平移3π个单位,得到()y g x =的图象,则函数()y g x =的单调递增区间为( )A.3[,]()44k k k Z ππππ++∈ B.[,]()44k k k Z ππππ-+∈ C.2[,]()36k k k Z ππππ--∈ D.5[,]()1212k k k Z ππππ-+∈ 8.已知数列{}n a 的前n 项和为n S ,11a =,22a =,且*2120()n n n a a a n N ++-+=∈,记*12111...()n nT n N S S S =+++∈,则2018T =( ) A.40342018 B.20172018C.40362019D.201820199.已知函数,0()()2,0x e a x f x a R x a x ⎧-≤=∈⎨->⎩,若函数()f x 在R 上有两个零点,则实数a 的取值范围是( )A.01](,B.[1,)+∞C.(0,1)D.(,1]-∞10. 已知椭圆2222:1(0)x y C a b a b+=>>的左顶点和上顶点分别为,A B ,左、右焦点分别是12,F F ,在线段AB 上有且只有一个点P 满足12PF PF ⊥,则椭圆的离心率的平方为( )11.我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数,a b 满足,,a G b 成等差数列且,,x G y 成等比数列,则14ab+的最小值为( )A.49B.2C.94D.9 12.若对于任意的正实数,x y 都有(2)ln y y x x e x me-≤ 成立,则实数m 的取值范围为( ) A.1(,1)e B.21(,1]e C.21(,]e e D.1(0,]e第Ⅱ卷二、填空题(本题共4小题,每题5分,共20分)13. 设变量,x y 满足约束条件1,40,340,x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩则目标函数4z x y =-的最小值为.14.如果直线230ax y a ++=与直线3(1)7x a y a +-=-平行,则a = . 15.已知数列{}n a 满足*212log 1log ()n n a a n N +=+∈,且12310...1a a a a ++++=,则2101102110log (...)a a a +++= .16.已知双曲线2222:1x y C a b-=的右焦点为F ,过点F 向双曲线的一条渐近线引垂线,垂足为M ,交另一条渐近线于N ,若2FM FN =,则双曲线的渐近线方程为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤.17. 在ABC 中,角,,A B C 的对边分别为,,a b c ,且2cos 2c B a b =+. (1)求角C ;(2)若ABC 的面积为2S c =,求ab 的最小值. 18.2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过附:(22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)19.如图,在三棱锥P ABC -中,平面PAB ⊥平面ABC ,6AB =,BC =AC =,D E 为线段AB 上的点,且2AD DB =,PD AC ⊥.(1)求证:PD ⊥平面ABC ;(2)若4PAB π∠=,求点B 到平面PAC 的距离.20.已知圆22:2210C x y x y ++-+=和抛物线2:2(0)E y px p =>,圆心C 到抛物线焦点F (1)求抛物线E 的方程;(2)不过原点的动直线l 交抛物线于,A B 两点,且满足OA OB ⊥.设点M 为圆C 上任意一动点,求当动点M 到直线l 的距离最大时的直线l 方程.21.已知函数()ln (1)f x x a x =-+,a R ∈在(1,(1))f 处的切线与x 轴平行. (1)求()f x 的单调区间;(2)若存在01x >,当0(1,)x x ∈时,恒有21()2(1)22x f x x k x -++>-成立,求k 的取值范围.22.在平面直角坐标系xOy 中,直线l 过点(1,0),倾斜角为α,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是28cos =1cos θρθ-. (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)若4πα=,设直线l 与曲线C 交于,A B 两点,求AOB 的面积.23.设函数()3f x x =+,()21g x x =-. (1)解不等式()()f x g x <;(2)若2()()4f x g x ax +>+对任意的实数x 恒成立,求a 的取值范围.2018年高中毕业年级第一次质量预测文科数学 参考答案二、填空题13.6;14.3;15.100;16..y x = 三、解答题: 17.(1).sin sin sin a b cA B C==2sin cos 2sin sin ,C B A B =+由已知可得,2sin cos 2sin )sin .C B B C B =++则有(2sin cos sin 0,B C B ∴+=sin 0.B B ∴≠ 为三角形的内角1cos .2C ∴=-2.3C C π∴=又为三角形的内角,(2)11sin ,.22S ab C c ab ==∴= 222222cos ,c a b ab C a b ab =+-=++又22223.4a b a b ab ab ∴=++≥12.ab ∴≥ 故ab 的最小值为12.18.(1)按分层抽样男生应抽取80名,女生应抽取20名.80(5101547)3x ∴=-+++=,20(23102) 3.y ==+++=抽取的100名且测试等级为优秀的学生中有三位男生,设为A ,B ,C ;两位女生设为a ,b .从5名任意选2名,总的基本事件有(A,B),(A,)C ,(A,a),(A,b)(,)B C ,(,a)B ,(,b)B ,(C,a),(C,b),(a,b),共10个.设“选出的两名学生恰好是一男一女为事件A ”.则事件包含的基本事件有(A,a),(A,b),(,a)B ,(,b)B ,(C,a),(C,b)共6个.63(A)105P ∴==则222(ad bc)100(5015305)9.091.(a b)(c d)(a c)(b d)80205545n k -⨯-⨯==≈++++⨯⨯⨯9.091 6.635> 且2(k 6.635)0.010P ≥=.所以在犯错误的概率不超过0.010的前提下可以认为“是否为‘体育达人’与性别无关”.19.(1)证明:连接CD ,据题知.2,4==BD AD222,90,AC BC AB ACB +=∴∠= cos ABC ∠== 8cos 322212222=∠⨯⨯-+=∴ABCCD .22=∴CD 222AC AD CD =+∴,则AB CD ⊥,又因为ABC PAB 平面平面⊥,所以,,PD CD PAB CD ⊥∴⊥平面 因为AC PD ⊥,CD AC ,都在平面ABC 内,所以⊥PD 平面ABC ;(2),4PAB π∠=4,PD AD ∴==PA ∴=Rt PCD PC ∴∆==在中, PAC ∴∆是等腰三角形,PAC S ∆∴可求得,B PAC d 设点到平面的距离为B PAC P ABC V V --=由,11,33PAC ABC S d S PD ∆∆∴⨯=⨯=3.ABC PAC S PD d S ∆∆⨯∴=B PAC 故点到平面的距离为320.(1)222:210C y x x y +-+=+可化为22(1)(1)1x y ++-=,则-1,C 圆心为().∴抛物线的方程为212.y x =(2)1122(0),(,),(,).l x my t t A x y B x y =+≠设直线为:212120.y my t --=联立可得121212,12,y y m y y t ∴+==- 1212,0,OA OB x x y y ⊥∴+=2212121)()0.m y y mt y y t ++++=即(2120t t -=整理可得,0,12.t t ≠∴=12,l x my ∴=+直线的方程为:(12,0).l P 故直线过定(1,1)CN l M C l ∴⊥-当时,即动点经过圆心时到动直线的距离取得最大值.当l CP ⊥时,即动点M 经过圆心C(-1,1)时到动直线l 的距离取得最大值.,131,13112101=∴-=--==m k k CP MP21.(1)由已知可得()f x 的定义域为(0,).+∞1(),f x a x '=- (1)10,f a '∴=-= 1.a ∴=11()1,x f x x x-'∴=-= ()001,f x x '><<令得()01,f x x '<>令得()01+f x ∴∞的单调递增区间为(,),单调递减区间为(1,).(1) 不等式21()2(1)22x f x x k x -++>-可化为21ln (1)22x x x k x -+->-, 21()ln (1),(1),22x g x x x k x x =-+--->令21(1)1()1,x k x g x x k x x-+-+'=-+-=令1,x > 2()(1)1,h x x k x =-+-+令1(),2kh x x -=的对称轴为 ① 111,2kk -≤≥-当时,即0()1),h x x 易知在(,上单调递减 ()(1)1,h x h k ∴<=-1,()0,k h x ≥≤若则()0,g x '∴≤0()1),g x x ∴在(,上单调递减()(1)0g x g ∴<=,不适合题意.-1,(1)0,k h ≤<>若1则001)()0,x x x g x '∴∈>必存在使得(,时 0()1),g x x ∴在(,上单调递增()(1)0g x g ∴>=恒成立,适合题意.② 111,2kk -><-当时,即00()1),x h x x 易知必存在使得在(,上单调递增 ()(1)10,h x h k ∴>=->()0,g x '∴>0()1),g x x ∴在(,上单调递增 ()(1)0g x g ∴>=恒成立,适合题意.综上,k 的取值范围是(,1).-∞22.(1)直线l 的参数方程为:1cos ,(sin x t t y t αα=+⎧⎨=⎩为参数). 28cos sin θρθ=,2sin 8cos ,ρθθ∴=22sin 8cos ,ρθρθ∴=28.y x =即 (2)当4πα=时,直线l的参数方程为:1,2(2x t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),代入28y x =可得2160,t --=12,,A B t t 设、两点对应的参数分别为则11t t +=1216t t =-12AB t t ∴=-==1sin,42O AB d π=⨯=又点到直线的距离11222AOB S AB d ∆∴=⨯=⨯=23.(本小题满分10分)(1)321,x x +<-由已知,可得22321.x x +<-即21080,x x -->则有:3 24.3x x ∴<->或 2(,)(4,).3-∞-+∞ 故所求不等式的解集为: 45,3,1(2)()2()()23217,3,2145,.2x x h x f x g x x x x x x ⎧⎪--≤-⎪⎪=+=++-=-<<⎨⎪⎪+≥⎪⎩由已知,设3454,49,x x ax ax x ≤--->+<--当时,只需恒成立即499304x x a x x --≤-<∴>=-- 恒成立.,1,)94(max ->∴-->∴a x a 1374,302x ax ax -<<>+-<当时,只需恒成立即恒成立..61,61,0321033≤≤-∴⎩⎨⎧≤-≥∴⎪⎩⎪⎨⎧≤-≤--a a a a a 只需1454,4 1.2x x ax ax x ≥+>+<+当时,只需恒成立即14110,42x x a x x +≥>∴<=+ 恒成立.414>+x ,且无限趋近于4,.4≤∴a综上,a 的取值范围是(1,4].-。

2018-2019年河南省郑州市...

2018-2019年河南省郑州市...

2018-2019年河南省郑州市...河南省郑州市2018届高三第一次质量检测文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|230}A x x x =+-=,{1,1}B =-,则A B =()A .{1}B .{1,1,3}-C .{3,1,1}--D .{3,1,1,3}--2.若命题“p 或q ”与命题“非p ”都是真命题,则()A .命题p 与命题q 都是真命题B .命题p 与命题q 都是假命题C .命题p 是真命题,命题q 是假命题D .命题p 是假命题,命题q 是真命题3.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.特别是当x π=时,10i e π+=被认为是数学上最优美的公式,数学家们评价它是“上帝创造的公式”.根据欧拉公式可知,4i e 表示的复数在复平面中位于()A .第一象限B .第二象限C .第三象限D .第四象限4.下列曲线中离心率为223的是() A .22198x y -= B .2219x y -= C .22198x y += D .2219x y += 5.若72sin 410A π??+= ,,4A ππ??∈ ,则sin A 的值为() A .35 B .45C .35或45D .346.已知变量x ,y 满足约束条件40221x y x y --≤??-≤<??≤?,若2z x y =-,则z 的取值范围是()A .[5,6)-B .[5,6]-C .(2,9)D .[5,9]-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高中毕业年级第一次质量预测
文科数学 参考答案
二、填空题
13.6;14.3;15.100;16..3
y x =± 三、解答题:
17.(1).sin sin sin a b c A B C == ……2分
2sin cos 2sin sin ,C B A B =+由已知可得,
2sin cos 2sin )sin .C B B C B =++则有(
2sin cos sin 0,
B C B ∴+= ……4分
sin 0.B B ∴≠ 为三角形的内角1cos .2C ∴=-
2.3C C π∴= 又为三角形的内角,
……6分
(2)11sin ,.22
S ab C c ab ==∴= ……8分 222222cos ,c a b ab C a b ab =+-=++又
22
223.4a b a b ab ab ∴=++≥ ……10分
12.ab ∴≥ ……11分
故ab 的最小值为12. ……12分
18.(1)按分层抽样男生应抽取80名,女生应抽取20名.
80(5101547)3x ∴=-+++=,20(23102) 3.y ==+++=
抽取的100名且测试等级为优秀的学生中有三位男生,设为A ,B ,C ;
两位女生设为a ,b .从5名任意选2名,总的基本事件有(A,B),(A,)C ,(A,a),(A,b)(,)B C ,(,a)B ,(,b)B ,(C,a),(C,b),(a,b),共10个.
设“选出的两名学生恰好是一男一女为事件A ”.
则事件包含的基本事件有(A,a),(A,b),(,a)B ,(,b)B ,(C,a),(C,b)共6个.
6
3
(A)105P ∴==..........6分
(2)2
⨯则22
2(ad bc)100(5015305)9.091.(a b)(c d)(a c)(b d)80205545n k -⨯-⨯==≈+++
+⨯⨯⨯
9.091
6.635> 且2(k 6.635)0.010P ≥=.
所以在犯错误的概率不超过0.010的前提下可以认为“是否为‘体育达人’与性别无
关”. ...........12分
19.(1)证明:连接CD ,据题知.2,4==BD AD
222,90,AC BC AB ACB +=∴∠= cos 63ABC ∠==
8cos 322212222=∠⨯⨯-+=
∴ABC CD .22
=∴CD
22
2AC AD CD =+∴,则AB CD ⊥, ..........4分
又因为ABC PAB 平面平面⊥,所以,
,PD CD PAB CD ⊥∴⊥平面 ..........6分 因为AC PD ⊥,CD AC ,都在平面ABC 内,所以⊥PD 平面ABC ;..........8分
(2),4PAB π
∠= 4,PD AD ∴==PA ∴=
Rt PCD PC ∴∆==在中,PAC ∴∆是等腰三角形,PAC S ∆∴可求得 ..........10分
,
B PA
C d 设点到平面的距离为
B PA
C P ABC V V --=由,1
1,33PAC ABC S d S PD ∆∆∴⨯=⨯=3.
ABC
PAC S PD
d S ∆
∆⨯∴=
..........B PAC 12故点到平面的距离为3.分
20.(1)222:210C y x x y +-+=+可化为22(1)(1)1x y ++-=,则-1,1C 圆心为().
∴抛物线的方程为2
12.y x =.………4分
(2)1122(0),(,),(,).l x my t t A x y B x y =+≠设直线为: 212120.y my t --=联立可得121212,12,y y m y y t ∴+==- ………5分 1212,0,OA OB x x y y ⊥∴+= ………6分
2212121)()0.m y y mt y y t ++++=即(
2120t t -=整理可得,0,12.t t ≠∴= ………8分 12,l x my ∴=+直线的方程为:(12,0).l P 故直线过定………9分
(1,1)CN l M C l ∴⊥-当时,即动点经过圆心时到动直线的距离取得最大值. 当l CP ⊥时,即动点M 经过圆心C(-1,1)时到动直线l 的距离取得最大值. ,13
1,13112101=∴-=--=
=m k k CP MP ………11分
分 21.(1)由已知可得()f x 的定义域为(0,).+∞
1(),f x a x '=- (1)10,f a '∴=-= 1.a ∴=11()1,x f x x x
-'∴=-= ()001,f x x '><<令得()01,f x x '<>令得
()01+f x ∴∞的单调递增区间为(,),单调递减区间为(1,).
(1) 不等式21()2(1)22x f x x k x -++>-可化为21ln (1)22
x x x k x -+->-, 21()ln (1),(1),22
x g x x x k x x =-+--->令 21(1)1()1,x k x g x x k x x
-+-+'=-+-=令 1,x > 2()(1)1,h x x k x =-+-+令1(),2k h x x -=的对称轴为 ① 111,2
k k -≤≥-当时,即0()1),h x x 易知在(,上单调递减 ()(1)1,h x h k ∴<=-
1,()0,k h x ≥≤若则()0,g x '∴≤0()1),g x x ∴在(,
上单调递减()(1)0g x g ∴<=,不适合题意. -1,(1)0,k h ≤<>若1则001)()0,x x x g x '∴∈
>必存在使得(,时 0()1),g x x ∴在(,上单调递增()(1)0g x g ∴>=恒成立,适合题意. ② 111,2
k k -><-当时,即00()1),x h x x 易知必存在使得在(,上单调递增 ()(1)10,h x h k ∴>=->()0,g x '∴>0()1),g x x ∴在(,
上单调递增 ()(1)0g x g ∴>=恒成立,适合题意.
综上,k 的取值范围是(,1).-∞
22.(1)直线l 的参数方程为:1cos ,
(sin x t t y t αα=+
⎧⎨=⎩为参数). ……2分
28cos sin θ
ρθ= ,2sin 8cos ,ρθθ∴=22sin 8cos ,ρθρθ∴=28.y x =即
……5分 (2)当4πα=时,直线l
的参数方程为:1,
2(2x t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),
(6)
分 代入28y x =
可得2160,t --=
12,,A B t t 设、两点对应的参数分别为
则11t t +=1216t t =-
12AB t t ∴=-== ……8分
1sin 4O AB d π
=⨯=又点到直线的距离
1
1
22AOB S AB d ∆∴=⨯=⨯= ……10分
23.(本小题满分10分)
(1)321,x x +<-由已知,可得
22321.x x +<-即 ……1分
21080,x x -->则有:3
2
4.3x x ∴<->或 ……3分
2
(,)(4,).3-∞-+∞ 故所求不等式的解集为: ……4分
45,3,1(2)()2()()23217,3,2145,.2x x h x f x g x x x x x x ⎧⎪--≤-⎪⎪=+=++-=-<<⎨⎪⎪+≥⎪⎩由已知,设……6分
3454,49,x x ax ax x ≤--->+<--当时,只需恒成立即 499304x x a x x --≤-<∴>=-- 恒成立. ,1,)94(max ->∴-->∴a x a ……7分
1374,302
x ax ax -<<>+-<当时,只需恒成立即恒成立. .61,61,032
1033≤≤-∴⎩⎨⎧≤-≥∴⎪⎩⎪⎨⎧≤-≤--a a a a a 只需……8分 1454,4 1.2
x x ax ax x ≥+>+<+当时,只需恒成立即 14110,42x x a x x
+≥>∴<=+ 恒成立. 414>+x
,且无限趋近于4, .4≤∴a ……9分
综上,a 的取值范围是(1,4].-……10分。

相关文档
最新文档