庄河市高级中学2018-2019学年高二上学期第一次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
庄河市高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. “a >0”是“方程y 2=ax 表示的曲线为抛物线”的( )条件.
A .充分不必要
B .必要不充分
C .充要
D .既不充分也不必要
2. 已知定义在R 上的奇函数)(x f ,满足(4)()f x f x +=-,且在区间[0,2]上是增函数,则 A 、(25)(11)(80)f f f -<< B 、(80)(11)(25)f f f <<- C 、(11)(80)(25)f f f <<- D 、(25)(80)(11)f f f -<< 3. 已知函数f (x )=2x ﹣2,则函数y=|f (x )|的图象可能是( )
A .
B .
C .
D .
4. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( ) A .1
B .2
C .3
D .4
5. 已知直线 a 平面α,直线b ⊆平面α,则( )
A .a b
B .与异面
C .与相交
D .与无公共点 6. 设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是( )
A .
B .
C .
D .
7. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论
中错误的是( )
A .AC ⊥BE
B .EF ∥平面ABCD
C .三棱锥A ﹣BEF 的体积为定值
D .异面直线A
E ,B
F 所成的角为定值
8. 给出下列两个结论:
①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;
②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;
则判断正确的是( ) A .①对②错
B .①错②对
C .①②都对
D .①②都错
9. 在曲线y=x 2上切线倾斜角为的点是( )
A .(0,0)
B .(2,4)
C .(,
)
D .(,)
10.下列给出的几个关系中:①{}{},a b ∅⊆;②
(){}{},,a b a b =;③{}{},,a b b a ⊆;
④{}0∅⊆,正确的有( )个
A.个
B.个
C.个
D.个
11.已知命题p :存在x 0>0,使2<1,则¬p 是( )
A .对任意x >0,都有2x ≥1
B .对任意x ≤0,都有2x <1
C .存在x 0>0,使2
≥1 D .存在x 0≤0,使2
<1
12.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,
||||10MF NF +=,则直线MN 的方程为( )
A .240x y +-=
B .240x y --=
C .20x y +-=
D .20x y --=
二、填空题
13.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)
14.函数y=sin 2x ﹣2sinx 的值域是y ∈ .
15.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 .
16.设函数
,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同
的实数根,则实数a 的取值范围是 .
17.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。
18.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.
三、解答题
19.过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,求抛物线的方程.
20.如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.
21.求函数f(x)=﹣4x+4在[0,3]上的最大值与最小值.
22.(本小题满分12分)已知12,F F 分别是椭圆C :22
221(0)x y a b a b
+=>>的两个焦点,且12||2F F =,点
2
在该椭圆上.
(1)求椭圆C 的方程;
(2)设直线l 与以原点为圆心,b 为半径的圆上相切于第一象限,切点为M ,且直线l 与椭圆交于P Q 、两
点,问22F P F Q PQ ++是否为定值?如果是,求出定值,如不是,说明理由.
23.(本小题满分12分)如图, 矩形ABCD 的两条对角线相交于点()2,0M ,AB 边所在直线的方 程为360x y --=点()1,1T -在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.
24.设函数f(x)=mx2﹣mx﹣1.
(1)若对一切实数x,f(x)<0恒成立,求m的取值范围;(2)对于x∈[1,3],f(x)<﹣m+5恒成立,求m的取值范围.
庄河市高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)
一、选择题
1. 【答案】A
【解析】解:若方程y 2
=ax 表示的曲线为抛物线,则a ≠0. ∴“a >0”是“方程y 2
=ax 表示的曲线为抛物线”的充分不必要条件.
故选A .
【点评】本题主要考查充分条件和必要条件的判断,利用抛物线的定义是解决本题的关键,比较基础.
2. 【答案】D
【解析】∵(4)()f x f x +=-,∴(8)(4)f x f x +=-+,∴(8)()f x f x +=, ∴()f x 的周期为8,∴(25)(1)f f -=-,)0()80(f f =,
(11)(3)(14)(1)(1)f f f f f ==-+=--=,
又∵奇函数)(x f 在区间[0,2]上是增函数,∴)(x f 在区间[2,2]-上是增函数, ∴(25)(80)(11)f f f -<<,故选D. 3. 【答案】B
【解析】解:先做出y=2x
的图象,在向下平移两个单位,得到y=f (x )的图象,
再将x 轴下方的部分做关于x 轴的对称图象即得y=|f (x )|的图象.
故选B
【点评】本题考查含有绝对值的函数的图象问题,先作出y=f (x )的图象,再将x 轴下方的部分做关于x 轴的对称图象即得y=|f (x )|的图象.
4. 【答案】B
【解析】解:根据题意,M ∩N={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R}∩{(x ,y )|x 2
﹣y=0,x ∈R ,y ∈R}═{(x ,y )
|} 将x 2﹣y=0代入x 2+y 2
=1, 得y 2
+y ﹣1=0,△=5>0,
所以方程组有两组解,
因此集合M ∩N 中元素的个数为2个, 故选B .
【点评】本题既是交集运算,又是函数图形求交点个数问题
5.【答案】D
【解析】
试题分析:因为直线a平面α,直线b⊆平面α,所以//a b或与异面,故选D.
考点:平面的基本性质及推论.
6.【答案】D
【解析】解:根据函数与导数的关系:可知,当f′(x)≥0时,函数f(x)单调递增;当f′(x)<0时,函数f(x)单调递减
结合函数y=f(x)的图象可知,当x<0时,函数f(x)单调递减,则f′(x)<0,排除选项A,C
当x>0时,函数f(x)先单调递增,则f′(x)≥0,排除选项B
故选D
【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题
7.【答案】D
【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;
∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A﹣BEF的高,∴三棱
锥A﹣BEF的体积为定值,故C正确;
∵利用图形设异面直线所成的角为α,当E与D1重合时sinα=,α=30°;当F与B1重合时tanα=,∴异面
直线AE、BF所成的角不是定值,故D错误;
故选D.
8.【答案】C
【解析】解:①命题p 是一个特称命题,它的否定是全称命题,¬p 是全称命题,所以①正确.
②根据逆否命题的定义可知②正确. 故选C .
【点评】考查特称命题,全称命题,和逆否命题的概念.
9. 【答案】D
【解析】解:y'=2x ,设切点为(a ,a 2)
∴y'=2a ,得切线的斜率为2a ,所以2a=tan45°=1,
∴a=,
在曲线y=x 2
上切线倾斜角为的点是(,).
故选D .
【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
10.【答案】C 【解析】
试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C. 考点:集合间的关系. 11.【答案】A
【解析】解:∵命题p :存在x 0>0,使2<1为特称命题,
∴¬p 为全称命题,即对任意x >0,都有2x
≥1.
故选:A
12.【答案】D
【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.
设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2
114y x =,2
224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12
12
1y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D .
二、填空题
13.【答案】 10 cm
【解析】解:作出圆柱的侧面展开图如图所示,设A 关于茶杯口的对称点为A ′,
则A ′A=4cm ,BC=6cm ,∴A ′C=8cm ,
∴A′B==10cm.
故答案为:10.
【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决.
14.【答案】[﹣1,3].
【解析】解:∵函数y=sin2x﹣2sinx=(sinx﹣1)2﹣1,﹣1≤sinx≤1,
∴0≤(sinx﹣1)2≤4,∴﹣1≤(sinx﹣1)2﹣1≤3.
∴函数y=sin2x﹣2sinx的值域是y∈[﹣1,3].
故答案为[﹣1,3].
【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.
15.【答案】.
【解析】解:由题意可得,2a,2b,2c成等差数列
∴2b=a+c
∴4b2=a2+2ac+c2①
∵b2=a2﹣c2②
①②联立可得,5c2+2ac﹣3a2=0
∵
∴5e2+2e﹣3=0
∵0<e<1
∴
故答案为:
【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题
16.【答案】(﹣1,﹣]∪[,).
【解析】解:当﹣2≤x<﹣1时,[x]=﹣2,此时f(x)=x﹣[x]=x+2.
当﹣1≤x<0时,[x]=﹣1,此时f(x)=x﹣[x]=x+1.
当0≤x<1时,﹣1≤x﹣1<0,此时f(x)=f(x﹣1)=x﹣1+1=x.
当1≤x<2时,0≤x﹣1<1,此时f(x)=f(x﹣1)=x﹣1.
当2≤x<3时,1≤x﹣1<2,此时f(x)=f(x﹣1)=x﹣1﹣1=x﹣2.
当3≤x<4时,2≤x﹣1<3,此时f(x)=f(x﹣1)=x﹣1﹣2=x﹣3.
设g(x)=ax,则g(x)过定点(0,0),
坐标系中作出函数y=f(x)和g(x)的图象如图:
当g(x)经过点A(﹣2,1),D(4,1)时有3个不同的交点,当经过点B(﹣1,1),C(3,1)时,有2个不同的交点,
则OA的斜率k=,OB的斜率k=﹣1,OC的斜率k=,OD的斜率k=,
故满足条件的斜率k的取值范围是或,
故答案为:(﹣1,﹣]∪[,)
【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.
17.【答案】
【解析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,
且点A与圆心O之间的距离为OA==,
圆的半径为r=,
∴sin θ==,
∴cos θ=,tan θ==,
∴tan2θ===,
故答案为:。
18.【答案】
【解析】由y =x 2+3x 得y ′=2x +3, ∴当x =-1时,y ′=1,
则曲线y =x 2+3x 在点(-1,-2)处的切线方程为y +2=x +1, 即y =x -1,设直线y =x -1与曲线y =ax +ln x 相切于点(x 0,y 0),
由y =ax +ln x 得y ′=a +1
x
(x >0),
∴⎩⎪⎨⎪
⎧a +1x 0
=1
y 0=x 0
-1y
=ax 0
+ln x
,解之得x 0
=1,y 0
=0,a =0. ∴a =0. 答案:0
三、解答题
19.【答案】
【解析】解:由题意可知过焦点的直线方程为y=x ﹣,联立,
得
,
设A (x 1,y 1),B (x 2,y 2)
根据抛物线的定义,得|AB|=x 1+x 2+p=4p=8,
解得p=2.
∴抛物线的方程为y2=4x.
【点评】本题给出直线与抛物线相交,在已知被截得弦长的情况下求焦参数p的值.着重考查了抛物线的标准方程和直线与圆锥曲线位置关系等知识,属于中档题.
20.【答案】
【解析】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.
又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,
∴AA1⊥平面ABC.
(II)解:由AC=4,BC=5,AB=3.
∴AC2+AB2=BC2,∴AB⊥AC.
建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),
∴,,.
设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).
则,令y1=4,解得x1=0,z1=3,∴.
,令x2=3,解得y2=4,z2=0,∴.
===.
∴二面角A1﹣BC1﹣B1的余弦值为.
(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,
∴=,=(0,3,﹣4),
∵,∴,
∴,解得t=.
∴.
【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.
21.【答案】
【解析】解:∵,∴f′(x)=x2﹣4,
由f′(x)=x2﹣4=0,得x=2,或x=﹣2,
∵x∈[0,3],∴x=2,
x f x f x
当x=0时,f(x)max=f(0)=4,
当x=2时,.
22.【答案】
【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.
23.【答案】(1)320x y ++=;(2)()2
2
28x y -+=.
【解析】
试题分析:(1)由已知中AB 边所在直线方程为360x y --=,且AD 与AB 垂直,结合点()1,1T -在直线
AD 上,可得到AD 边所在直线的点斜式方程,即可求得AD 边所在直线的方程;(2)根据矩形的性质可得
矩形ABCD 外接圆圆心纪委两条直线的交点()2,0M ,根据(1)中直线,即可得到圆的圆心和半径,即可求得矩形ABCD 外接圆的方程.
(2)由360
320
x y x y --=⎧⎨++=⎩解得点A 的坐标为()0,2-,
因为矩形ABCD 两条对角线的交点为()2,0M ,
所以M 为距形ABCD 外接圆的圆心, 又AM =
=从而距形ABCD 外接圆的方程为()2
2
28x y -+=.1
考点:直线的点斜式方程;圆的方程的求解.
【方法点晴】本题主要考查了直线的点斜式方程、圆的方程的求解,其中解答中涉及到两条直线的交点坐标,圆的标准方程,其中(1)中的关键是根据已知中AB 边所在的直线方程以及AD 与AB 垂直,求出直线AD 的斜率;(2)中的关键是求出A 点的坐标,进而求解圆的圆心坐标和半径,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力. 24.【答案】
【解析】解:(1)当m=0时,f (x )=﹣1<0恒成立,
当m ≠0时,若f (x )<0恒成立,
则
解得﹣4<m <0
综上所述m 的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
(2)要x ∈[1,3],f (x )<﹣m+5恒成立,
即恒成立.
令﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
﹣﹣﹣﹣
当 m >0时,g (x )是增函数, 所以g (x )max =g (3)=7m ﹣6<0,
解得.所以
当m=0时,﹣6<0恒成立.
当m<0时,g(x)是减函数.
所以g(x)max=g(1)=m﹣6<0,
解得m<6.
所以m<0.
综上所述,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键.。