备考2019高考数学二轮复习选择填空狂练二十五模拟训练五文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟训练五
1.[2018·衡水中学]设集合{}
0.4 1 x A x =<,集合(
){
}
2lg 2B x y x x ==--,则集合()A B =R ð( )
A .(]0,2
B .[)0,+∞
C .[)1,-+∞
D .()
(),10,-∞-+∞
2.[2018·衡水中学]已知复数i 3i a z a +=+-(a ∈R 为虚数单位),若复数z 的共轭复数的虚部为1
2
-,则复数在复平面内对应的点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
3.[2018·衡水中学]若1x ,2x ,,2018x 的平均数为3,方差为4,且()22i i y x =--,1i =,2,
,2018,
则新数据1y ,2y ,,2018y 的平均数和标准差分别为( ) A .4- 4-
B .4- 16
C .2 8
D .2- 4
4.[2018·衡水中学]已知双曲线()22
2210,0x y a b a b
-=>>的左焦点为抛物线212y x =-的焦点,双曲线的渐近
线方程为y =,则实数a =( ) A .3
B C D .
5.[2018·衡水中学]运行如图所示程序,则输出的S 的值为( )
A .1
442
B .1452
C .45
D .1462
一、选择题
6.[2018·衡水中学]
已知sin α=
2π0,a ⎛⎫∈ ⎪⎝⎭,则cos 26πa ⎛
⎫+ ⎪⎝
⎭的值为( )
A
B
C
D
7.[2018·衡水中学]如图是某几何体的三视图,则该几何体的体积为( )
A .6
B .9
C .12
D .18
8.[2018·衡水中学]已知2OA OB ==,点C 在线段AB 上,且OC 的最小值为1,则()OA tOB t -∈R 的最小值为(
) A
B
C .2
D
9.[2018·衡水中学]函数22sin 3π3π,00,1441x y x x
⎛⎫
⎡⎫⎛⎤=
∈- ⎪⎪ ⎢⎥⎣⎭⎝⎦⎝⎭+的图像大致是( ) A . B .
C .
D .
10.[2018·衡水中学]若抛物线24y x =的焦点是F ,准线是l ,点()4,M m 是抛物线上一点,则经过点F 、M 且与l 相切的圆共( ) A .0个
B .1个
C .2个
D .4个
11.[2018·衡水中学]设函数()sin 2π3f x x ⎛
⎫=+ ⎪⎝
⎭.若120x x <,且()()120f x f x +=,则21x x -的取值范围为
( ) A .π,6⎛⎫
+∞ ⎪⎝⎭
B .π,3⎛⎫
+∞ ⎪⎝⎭
C .2π,3⎛⎫
+∞ ⎪⎝⎭
D .4π,3⎛⎫
+∞ ⎪⎝⎭
12.[2018·衡水中学]对于函数()f x 和()g x ,设(){}
0x f x α∈=,(){}
0x g x β∈=,若存在α,β,使得
1αβ-≤,则称()f x 与()g x 互为“零点相邻函数”.若函数()1e 2x f x x -=+-与()23g x x ax a =--+互为“零
点相邻函数”,则实数a 的取值范围是( ) A .[]2,4 B .72,3⎡⎤⎢⎥⎣⎦
C .7,33⎡⎤⎢⎥⎣⎦
D .[]2,3
13.[2018·衡水中学]若数列{}n a 是等差数列,对于()121
n n b a a a n
=
+++,则数列{}n b 也是等差数列.
类比上述性质,若数列{}n c 是各项都为正数的等比数列,对于0n d >时,数列{}n d 也是等比数列,则
n d =__________.
14.[2018·衡水中学]函数()y f x =的图象在点()()2,2M f 处的切线方程是28y x =-,则.
15.[2018·衡水中学]已知a 是区间[]1,7上的任意实数,直线1:220l ax y a ---=与不等式组830x m x y x y ≥+≤-≤⎧⎪
⎨⎪⎩
表示
的平面区域总有公共点,则直线():30,l mx y n m n -+=∈R 的倾斜角α的取值范围为__________. 16.[2018·衡水中学]设锐角ABC △三个内角A ,B ,C 所对的边分别为a ,b ,c ,若)cos cos 2sin a B b A c C +=,1b =,则c 的取值范围为__________.
二、填空题
1.【答案】C
【解析】由题意得{}
{}0.410x A x x x =<=>,{}
{}22012B x x x x x x =-->=<->或, ∴{}12B x x =-≤≤R ð,∴(){}[)11,A B x x =≥-=-+∞R ð,故选C .
2.【答案】A
【解析】由题意得()()()()
()i 3i 3i i
1313i 3i 3i 1010a a a a z a a ++++-=+
=+=+--+,∴()3i 1311010a a z +-=-, 又复数z 的共轭复数的虚部为12-,∴31
102
a +-=-,解得2a =.
∴51
i 22
z =
+,∴复数z 在复平面内对应的点位于第一象限.故选A . 3.【答案】D 【解析】∵1x ,2x ,
,2018x 的平均数为3,方差为4,∴
()1220181
32018
x x x +++=,
()()()2
22
122018133342018x x x ⎡⎤-+-++-=⎣
⎦
.
又()2224i i i y x x =--=-+,1i =,2,,2018,
∴()()1220181220181
1
24201824220182018y x x x x x x ⎡⎤
⎡⎤=
-++++⨯=-++
++=-⎣
⎦⎢⎥⎣
⎦
,
()()()2
22
212201812422422422018s x x x ⎡⎤=-+++-++++-++⎣
⎦
()()()2
22
12201814343432018x x x ⎡⎤=
-+-++-⎣
⎦
()()()2
22
122018143332018x x x ⎡⎤=⨯
-+-++-⎣
⎦
16=,
∴新数据1y ,2y ,,2018y 的平均数和标准差分别为2-,4.故选D .
4.【答案】C
【解析】抛物线212y x =-的焦点坐标为()3,0-,则双曲线中3c =, 由双曲线的标准方程可得其渐近线方程为b y x a =±,则229
b
a a
b =+=⎧⎪⎨⎪⎩
,
答案与解析
一、选择题