【2014诺贝尔奖】物理学奖深度解读:蓝光LED光耀四野

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年的诺贝尔物理学奖授予了3位日本科学家,以表彰他们在蓝光LED上所作的研究。

“Isamu Akasaki, Hiroshi Amano and Shuji Nakamura are rewarded for inventing a new energy efficient and environment-friendly light source –the blue light-emitting diode (LED). In the spirit of Alfred Nobel, the Prize awards an invention of greatest benefit to mankind; by using blue LEDs, white light can be created in a new way. With the advent of LED lamps we now have more long-lasting and more efficient alternatives to older light sources.”

和以往的颁奖词一样,这里的每一段文字都富有深意,值得深入解读。

1. Blue light-emitting diode——宽禁带半导体PN结注入式电致发光

LED的原文“light-emitting diode”中,diode意为二极管,这将半导体PN结的注入式电致发光,与交流高压电场下的电致发光现象(EL 发光线)区别开来。

前者也就是今天使用的发光二极管的原理:当PN结正向偏置时,注入的少数载流子在界面附近与多数载流子复合并放出能量。在普通的二极管里,能量多以晶格振动(热能)的形式释放,而在发光二极管中载流子复合放出的能量部分以光子形式放出——电能转换成了光能。

常用的LED材料,如氮化镓(GaN)等,都是直接带隙半导体。它们的导带电子可以直接跃迁到价带与空穴复合,过程中只涉及电子-空穴对并放出一个光子。所以,它们的辐射效率很高,内部量子效率可以接近100%,也就是一次电子空穴对复合产生一个光子。硅、锗等间接带隙

半导体在复合过程中有大量的非辐射复合,量子效率不高。

对于直接带隙半导体来说,发射光子的能量和半导体的禁带宽度直接相关。理论上氮化镓的禁带宽度为3.44 eV,出射光子的能量也是3.44 eV,相当于360nm左右波长的近紫外光,这是中村等人研究的氮化镓系半导体用于短波段可见光发光二极管的理论基础。

常用的蓝光LED里半导体材料的禁带宽度略小,出射光波长在460nm 左右,实际工作压降稍大于半导体材料的禁带宽度,大约3.0~3.3V。作为对比,发出780nm红光的磷化铝铟镓(AlGaInP) LED一般只需要1.8~2.0V的供电电压,这是因为所用半导体材料的禁带宽度较窄的缘故。

这一特性对于应用来说,有利有弊。好处是直接获得光谱很窄的单色光源;光源的中心谱线可以通过能带工程调节;直接带隙半导体产生光子的效率很高,有利于提高整体光效;而坏处是,单一的LED无法得到多种波长的光线。

氮化镓系LED的颜色分布。

中村等人在日亚公司开发的成套氮化镓LED加工工艺,不仅获得了之前用其他材料难以获得的基于宽禁带材料的蓝色LED,同时也开启了一系列直接带隙半导体高亮度LED之门。通过包括掺杂在内的各种手段调节氮化镓系半导体材料的能带结构和禁带宽度,可以获取例如氮化铟镓(InGaN)的蓝/绿色高亮度LED,磷化铝铟镓的红/黄色高亮度LED,相比以前的LED,它们的光效都有革命性的提高。

2. White light can be created in a new way——白灯之路

LED七色俱全,为何是蓝色而非其它光色的LED研究获此殊荣?这需要从色光的本质说起。

所有的光源,要想成为通用照明光源,都需要过人眼这一关。人眼最习惯的光照是太阳光,在比较其他照明光源时通常都以太阳光为比较对象,这也是测量光源显色指数的原理。从光谱图上可以看出不同时段太阳光

在可见范围内基本是黑体辐射的连续谱,和此光谱越接近,人眼对颜色的感觉就越自然。

气体放电灯出现以后,由于光谱段很窄,显色性开始成为一个严重的问题。显色性差的例子之一是发黄光的钠灯,虽然看上去和色温低的白炽灯光色差距不大,但是由于钠灯没有红蓝光波段,红蓝衣服在钠灯下全成黑色,很不适合日常照明。这使得钠灯虽然光效早已突破200lm/W,但是始终派不上生活用场。

后来人们想了一招,光学中可以将任意色光分解成人眼敏感的三基色,如今可以反其道而行之,既然单一气体放电灯的光谱窄,那就多个不同光谱的灯拼在一起,合起来的效果就接近日光连续光谱了——这一思路的成果是三基色荧光粉水银放电灯,我们头上的日光灯管多数是这种。它们通过放电产生的紫外线激发红绿蓝三色荧光粉,3种基本色光组合,显色性接近阳光。以前的CRT显示器,也是基于三色荧光粉受电子流激发发光的原理。

说回LED,它起初面临的问题和气体放电灯一样,单一LED的发光波长很窄,这种单色的光源在多数场合并不适用。研究者参照荧光灯提出了多色LED组合与短波长的LED激发荧光粉等方案,它们理论上都可以获得白光和全色显示,但是它们都需要短波段,也就是蓝紫色端的LED。

不巧,在中村等人开发GaN材料之前,蓝光LED的研究又进展甚微,所以虽然LED发明很早,但是由于缺少蓝色色光,整个LED照明显示

产业的瓶颈就卡在这里。在这段时间里,手机屏幕的背光都是单色的绿光,点阵显示屏最多红绿两色,有些地方应该还能见到这些历史的残留。

单色背光的老手机。

中村等人发明的蓝光LED,补足了光谱上最后一块缺口,让基于LED 的白光照明和全彩色显示成为可能,为之后出现的所有LED照明灯,LED背光液晶显示器,LED全色显示点阵铺平了道路。是蓝光LED让LED从红绿色的小指示灯和数码管显示走向真正意义上的通用光源,成为“a new light source”,这也是蓝色LED的研究特别被重视的原因。

3. Energy efficient and environment-friendly——世界第一的光效

相关文档
最新文档