藁城区第三高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

藁城区第三高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )
A .0
B .1
C .2
D .3 2. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( ) A .(﹣1,2] B .(﹣2,2] C .[﹣2,2] D .[﹣2,﹣1)
3. 若命题“p ∧q ”为假,且“¬q ”为假,则( )
A .“p ∨q ”为假
B .p 假
C .p 真
D .不能判断q 的真假
4. 如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为( )
A .0°
B .45°
C .60°
D .90°
5. (﹣6≤a ≤3)的最大值为( )
A .9
B .
C .3
D .
6. 已知11x
yi i
=-+,其中,x y 是实数,是虚数单位,则x yi +的共轭复数为 A 、12i + B 、12i - C 、2i + D 、2i -
7. ()0
﹣(1﹣0.5﹣2
)÷
的值为( )
A .﹣
B .
C .
D .
8. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5)
C .(4,﹣3,1)
D .(﹣5,3,4)
9.已知等差数列的公差且成等比数列,则()A.B.C.D.
10.利用计算机在区间(0,1)上产生随机数a,则不等式ln(3a﹣1)<0成立的概率是()
A.B.C.D.
11.已知函数f(x)=x4cosx+mx2+x(m∈R),若导函数f′(x)在区间[﹣2,2]上有最大值10,则导函数f′(x)在区间[﹣2,2]上的最小值为()
A.﹣12 B.﹣10 C.﹣8 D.﹣6
12.过抛物线22(0)
y px p
=>焦点F的直线与双曲线
2
21
8
-=
y
x的一条渐近线平行,并交其抛物线于A、B两点,若>
AF BF,且||3
AF=,则抛物线方程为()
A.2y x
=B.22
y x
=C.24
y x
=D.23
y x
=
【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.
二、填空题
13.已知点A的坐标为(﹣1,0),点B是圆心为C的圆(x﹣1)2+y2=16上一动点,线段AB的垂直平分线交BC与点M,则动点M的轨迹方程为.
14.已知直线l过点P(﹣2,﹣2),且与以A(﹣1,1),B(3,0)为端点的线段AB相交,则直线l的斜率的取值范围是.
15.满足tan(x+)≥﹣的x的集合是.
16.已知函数()()
3
1
,ln
4
f x x mx
g x x
=++=-.{}
min,a b表示,a b中的最小值,若函数
()()()
{}()
min,0
h x f x g x x
=>恰有三个零点,则实数m的取值范围是▲.
17.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:
那么在所有不同的粉刷方案中,最低的涂料总费用是_______元.
18.已知命题p :∃x ∈R ,x 2+2x+a ≤0,若命题p 是假命题,则实数a 的取值范围是 .(用区间表示)
三、解答题
19.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;
(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.
20.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.
(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;
(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条
谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?
21.已知函数f(x)=|2x﹣a|+|x﹣1|.
(1)当a=3时,求不等式f(x)≥2的解集;
(2)若f(x)≥5﹣x对∀x∈R恒成立,求实数a的取值范围.
22.设函数f(x)=ae x(x+1)(其中e=2.71828…),g(x)=x2+bx+2,已知它们在x=0处有相同的切线.(Ⅰ)求函数f(x),g(x)的解析式;
(Ⅱ)求函数f(x)在[t,t+1](t>﹣3)上的最小值;
(Ⅲ)若对∀x≥﹣2,kf(x)≥g(x)恒成立,求实数k的取值范围.
23.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).
(1)求f(x)的最小值,并求取最小值时x的范围;
(2)若f(x)的最小值为2,求证:f(x)≥a+b.
24.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinA﹣sinC(cosB+sinB)=0.
(1)求角C的大小;
(2)若c=2,且△ABC的面积为,求a,b的值.
藁城区第三高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】B
【解析】111]
试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B.
考点:几何体的结构特征.
2.【答案】C
【解析】解:由f(x)=x2﹣6x+7=(x﹣3)2﹣2,x∈(2,5].
∴当x=3时,f(x)min=﹣2.
当x=5时,.
∴函数f(x)=x2﹣6x+7,x∈(2,5]的值域是[﹣2,2].
故选:C.
3.【答案】B
【解析】解:∵命题“p∧q”为假,且“¬q”为假,
∴q为真,p为假;
则p∨q为真,
故选B.
【点评】本题考查了复合命题的真假性的判断,属于基础题.
4.【答案】C
【解析】解:连结A1D、BD、A1B,
∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,
∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,
∵A1D=A1B=BD,
∴∠DA1B=60°.
∴CD1与EF所成角为60°.
故选:C.
【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.
5. 【答案】B
【解析】解:令f (a )=(3﹣a )(a+6)=﹣+
,而且﹣6≤a ≤3,由此可得函数f
(a )的最大值为,
故(﹣6≤a ≤3)的最大值为
=

故选B .
【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.
6. 【答案】D
【解析】
1
()1,2,1,12
x x xi yi x y i =-=-∴==+故选D 7. 【答案】D
【解析】解:原式=1﹣(1﹣)÷
=1﹣(1﹣
)÷
=1﹣(1﹣4)×
=1﹣(﹣3)×
=1+
=. 故选:D .
【点评】本题考查了根式与分数指数幂的运算问题,解题时应细心计算,是易错题.
8.【答案】C
【解析】解:设C(x,y,z),
∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,
∴,解得x=4,y=﹣3,z=1,
∴C(4,﹣3,1).
故选:C.
9.【答案】A
【解析】
由已知,,成等比数列,所以,即
所以,故选A
答案:A
10.【答案】C
【解析】解:由ln(3a﹣1)<0得<a<,
则用计算机在区间(0,1)上产生随机数a,不等式ln(3a﹣1)<0成立的概率是P=,故选:C.
11.【答案】C
【解析】解:由已知得f′(x)=4x3cosx﹣x4sinx+2mx+1,
令g(x)=4x3cosx﹣x4sinx+2mx是奇函数,
由f′(x)的最大值为10知:g(x)的最大值为9,最小值为﹣9,
从而f′(x)的最小值为﹣9+1=﹣8.
故选C.
【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.
12.【答案】C
【解析】
由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x
,所以0
002
002322ì=ï
ï-ïïïï
+=íï
ï=ïïïïî
y p x p x y px ,
解得2=p 或4=p ,因为322
->p p
,故03p <<,故2=p ,所以抛物线方程为24y x . 二、填空题
13.
【答案】
=1
【解析】解:由题意得,圆心C (1,0),半径等于4,
连接MA ,则|MA|=|MB|,
∴|MC|+|MA|=|MC|+|MB|=|BC|=4>|AC|=2,
故点M 的轨迹是:以A 、C 为焦点的椭圆,2a=4,即有a=2,c=1, ∴
b=


椭圆的方程为=1.
故答案为:
=1. 【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题.
14.【答案】
[,3] .
【解析】解:直线AP 的斜率
K==3,
直线BP 的斜率K ′
=
=
由图象可知,则直线l 的斜率的取值范围是
[,3],
故答案为:
[,3],
【点评】本题给出经过定点P 的直线l 与线段AB 有公共点,求l 的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.
15.【答案】 [k π,
+k π),k ∈Z .
【解析】解:由tan (x+)≥﹣

+k π≤x+<
+k π,
解得k π
≤x <
+k π,
故不等式的解集为[k π, +k π),k ∈Z ,
故答案为:[k π

+k π),k ∈Z ,
【点评】本题主要考查三角不等式的求解,利用正切函数的图象和性质是解决本题的关键.
16.【答案】()
53
,44
--
【解析】
试题分析:()2
3f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足
()10,0,0f f m ><<,解得51534244
m m >-⇒-<<- 考点:函数零点
【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.
17.【答案】1464
【解析】【知识点】函数模型及其应用
【试题解析】显然,面积大的房间用费用低的涂料,所以房间A 用涂料1,房间B 用涂料3,
房间C 用涂料2,即最低的涂料总费用是
元。

故答案为:1464
18.【答案】 (1,+∞)
【解析】解:∵命题p :∃x ∈R ,x 2+2x+a ≤0, 当命题p 是假命题时,
命题¬p :∀x ∈R ,x 2+2x+a >0是真命题;
即△=4﹣4a <0,
∴a >1;
∴实数a 的取值范围是(1,+∞).
故答案为:(1,+∞).
【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目.
三、解答题
19.【答案】(1)证明见解析;(2)【解析】
试题分析:(1)有线面垂直的性质可得1BC AB ⊥,再由菱形的性质可得11AB A B ⊥,进而有线面垂直的判定定理可得结论;(2)先证三角形1A AB 为正三角形,再由于勾股定理求得AB 的值,进而的三角形1A AB 的面积,又知三棱锥的高为3BC =,利用棱锥的体积公式可得结果.

点:1、线面垂直的判定定理;2、勾股定理及棱锥的体积公式.
20.【答案】
【解析】解:(Ⅰ)设测试成绩的中位数为x ,由频率分布直方图得,
(0.0015+0.019)×20+(x ﹣140)×0.025=0.5,
解得:x=143.6.
∴测试成绩中位数为143.6.
进入第二阶段的学生人数为200×(0.003+0.0015)×20=18人.
(Ⅱ)设最后抢答阶段甲、乙两队猜对灯谜的条数分别为ξ、η,
则ξ~B(3,),
∴E(ξ)=.
∴最后抢答阶段甲队得分的期望为[]×20=30,
∵P(η=0)=,
P(η=1)=,
P(η=2)=,
P(η=3)=,
∴Eη=.
∴最后抢答阶段乙队得分的期望为[]×20=24.
∴120+30>120+24,
∴支持票投给甲队.
【点评】本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,考查或然与必然的思想,属中档题.
21.【答案】
【解析】解:(1)a=3时,即求解|2x﹣3|+|x﹣1|≥2,
①当x≥时,不等式即2x﹣3+x﹣1≥2,解得x≥2,
②当1<x<时,不等式即3﹣2x+x﹣1≥2,解得x<0.
③当x≤1时,3﹣2x+1﹣x≥2,解得2x≤2,即x≤.
∴综上,原不等式解集为{x|x≤或x≥2}.
(2)即|2x﹣a|≥5﹣x﹣|x﹣1|恒成立
令g(x)=5﹣x﹣|x﹣1|=,
则由函数g(x)的图象可得它的最大值为4,
故函数y=|2x﹣a|的图象应该恒在函数g(x)的图象的上方,
数形结合可得≥3,
∴a≥6,即a的范围是[6,+∞).
【点评】本题考查了绝对值不等式问题,考查函数的最值问题,是一道中档题.
22.【答案】
【解析】解:(Ⅰ)f'(x)=ae x(x+2),g'(x)=2x+b﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由题意,两函数在x=0处有相同的切线.
∴f'(0)=2a,g'(0)=b,
∴2a=b,f(0)=a=g(0)=2,∴a=2,b=4,
∴f(x)=2e x(x+1),g(x)=x2+4x+2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
(Ⅱ)f'(x)=2e x(x+2),由f'(x)>0得x>﹣2,由f'(x)<0得x<﹣2,
∴f(x)在(﹣2,+∞)单调递增,在(﹣∞,﹣2)单调递减.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
∵t>﹣3,∴t+1>﹣2
①当﹣3<t<﹣2时,f(x)在[t,﹣2]单调递减,[﹣2,t+1]单调递增,
∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
②当t≥﹣2时,f(x)在[t,t+1]单调递增,∴;
∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣

(Ⅲ)令F(x)=kf(x)﹣g(x)=2ke x(x+1)﹣x2﹣4x﹣2,
由题意当x≥﹣2,F(x)min≥0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
∵∀x≥﹣2,kf(x)≥g(x)恒成立,∴F(0)=2k﹣2≥0,∴k≥1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
F'(x)=2ke x(x+1)+2ke x﹣2x﹣4=2(x+2)(ke x﹣1),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
∵x≥﹣2,由F'(x)>0得,∴;由F'(x)<0得
∴F(x)在单调递减,在单调递增﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
①当,即k>e2时,F(x)在[﹣2,+∞)单调递增,
,不满足F(x)min≥0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
②当,即k=e2时,由①知,,满足F(x)min≥0.﹣﹣﹣﹣﹣﹣﹣
③当,即1≤k<e2时,F(x)在单调递减,在单调递增
,满足F(x)min≥0.
综上所述,满足题意的k的取值范围为[1,e2].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
【点评】本题考查导数的几何意义,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
23.【答案】
【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|
=|a+b|得,
当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,
∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.
(2)证明:由(1)知a+b=2,
(a+b)2=a+b+2ab≤2(a+b)=4,
∴a+b≤2,
∴f(x)≥a+b=2≥a+b,
即f(x)≥a+b.
24.【答案】
【解析】(本题满分为12分)
解:(1)∵由题意得,sinA=sin(B+C),
∴sinBcosC+sinCcosB﹣sinCcosB﹣sinBsinC=0,…(2分)
即sinB(cosC﹣sinC)=0,
∵sinB≠0,
∴tanC=,故C=.…(6分)
(2)∵ab×=,
∴ab=4,①
又c=2,…(8分)
∴a2+b2﹣2ab×=4,
∴a2+b2=8.②
∴由①②,解得a=2,b=2.…(12分)
【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.。

相关文档
最新文档