八年级上册数学 全册全套试卷同步检测(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学 全册全套试卷同步检测(Word 版 含答案)
一、八年级数学三角形填空题(难)
1.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =___________________,△APE 的面积等于6.
【答案】1.5或5或9
【解析】
【分析】
分为两种情况讨论:当点P 在AC 上时:当点P 在BC 上时,根据三角形的面积公式建立方程求出其解即可.
【详解】
如图1,当点P 在AC 上.∵△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,∴CE =4,AP =2t .
∵△APE 的面积等于6,∴S △APE =
12AP •CE =12
AP ×4=6.∵AP =3,∴t =1.5. 如图2,当点P 在BC 上.则t >3∵E 是DC 的中点,∴BE =CE =4. ∵PE ()43=7-PE t t =-- ,∴S =12EP •AC =12
•EP ×6=6,∴EP =2,∴t =5或t =9. 总上所述,当t =1.5或5或9时,△APE 的面积会等于6.故答案为1.5或5或9.
【点睛】
本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.
2.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.
【答案】(2m ) (1024m ) 【解析】
【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.
【详解】
解:∵∠A 1=∠A 1CE-∠A 1BC=
12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=
224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:(
)2m ;()1024
m . 【点睛】
此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.
3.如图,△AEF 是直角三角形,∠AEF=900,B 为AE 上一点,BG⊥AE 于点B ,GF∥BE,且AD =BD =BF ,∠BFG=600
,则∠AFG 的度数是___________。

【答案】20°
【解析】
根据平行线的性质,可知∠A=∠AFG ,∠EBF=∠BFG=600
,然后根据等腰三角形的性
质,可知∠BDF=2∠A ,∠A+∠AFB=3∠A=∠EBF ,因此可得∠AFG=20°
. 故答案为:20°.
4.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为_____.
【答案】5
【解析】
【分析】
根据多边形的内角和公式(n ﹣2)•180°与外角和定理列式求解即可
【详解】
解:设这个多边形的边数是n ,
则(n ﹣2)•180°﹣360°=180°,
解得n =5.
故答案为5.
【点睛】
本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关. 5.如图,在ABC ∆中,AD 是BC 边上的高,AE 平分BAC ∠,若130∠=,
220∠=,则B ∠=__________.
【答案】50°
【解析】
【分析】
由角平分线的定义和已知可求出∠BAC ,由AD 是BC 边上的高和已知条件可以求出∠C,然后运用三角形内角和定理,即可完成解答.
【详解】
解:∵AE 平分BAC ∠,若130∠=
∴BAC ∠=2160∠=;
又∵AD 是BC 边上的高,220∠=
∴C ∠=90°
-270∠= 又∵BAC ∠+∠B+∠C=180°
∴∠B=180°-60°-70°=50°
故答案为50°.
【点睛】
本题考查了角平分线、高的定义以及三角形内角和的知识,考查知识点较多,灵活运用所学知识是解答本题的关键.
6.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC =_____度.
【答案】45
【解析】
【分析】
根据三角形全等的判定和性质,先证△ADC ≌△BDF ,可得BD=AD ,可求
∠ABC=∠BAD=45°.
【详解】
∵AD ⊥BC 于D ,BE ⊥AC 于E
∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,
又∵∠BFD=∠AFE (对顶角相等)
∴∠EAF=∠DBF ,
在Rt △ADC 和Rt △BDF 中,
CAD FBD BDF ADC BF AC ∠∠⎧⎪∠∠⎨⎪⎩
===, ∴△ADC ≌△BDF (AAS ),
∴BD=AD ,
即∠ABC=∠BAD=45°.
故答案为45.
【点睛】
三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
二、八年级数学三角形选择题(难)
7.如图,在ABC ∆中,点D 在BC 上,点O 在AD 上,如果3AOB S ∆=,2BOD S ∆=,1ACO S ∆=,那么COD S ∆=(

A .13
B .12
C .32
D .23
【答案】D
【解析】
【分析】
根据三角形的面积公式结合3AOB S ∆=,2BOD S ∆=求出AO 与DO 的比,再根据
1ACO S ∆=,即可求得COD S ∆的值.
【详解】
∵3AOB S ∆=,2BOD S ∆=,且AD 边上的高相同,
∴AO :DO=3:2.
∵△ACO 和△COD 中,AD 边上的高相同,
∴S △AOC :S △COD = AO :DO=3:2,
∵1ACO S ∆=,
∴COD S ∆=
23. 故选D .
【点睛】
本题考查了三角形的面积及等积变换,利用同底等高的三角形面积相等是解题的关键.
8.已知,如图,AB ∥CD ,则图中α、β、γ三个角之间的数量关系为( )
A .α-β+γ=180°
B .α+β-γ=180°
C .α+β+γ=360°
D .α-β-γ=90°
【答案】B
【解析】
【分析】
延长CD 交AE 于点F ,利用平行证得β=∠AFD ;再利用三角形外角定理及平角定义即可得到答案.
【详解】
如图,延长CD 交AE 于点F
∵AB ∥CD
∴β=∠AFD
∵∠FDE+α=180°
∴∠FDE=180°
-α ∵γ+∠FDE=∠ADF
∴γ+180°
-α=β ∴α+β-γ=180°
故选B
【点睛】
本题考查平行线的性质以及三角形外角定理的应用,熟练掌握相关性质定理是解题关键.
9.已知非直角三角形ABC中,∠A=45°,高BD与CE所在直线交于点H,则∠BHC的度数是()
A.45°B.45° 或135°C.45°或125°D.135°
【答案】B
【解析】
【分析】
①△ABC是锐角三角形时,先根据高线的定义求出∠ADB=90°,∠BEC=90°,然后根据直角三角形两锐角互余求出∠ABD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;
②△ABC是钝角三角形时,根据直角三角形两锐角互余求出∠BHC=∠A,从而得解.【详解】
①如图1,
△ABC是锐角三角形时,
∵BD、CE是△ABC的高线,
∴∠ADB=90°,∠BEC=90°,
在△ABD中,∵∠A=45°,
∴∠ABD=90°-45°=45°,
∴∠BHC=∠ABD+∠BEC=45°+90°=135°;
②如图2,△ABC是钝角三角形时,
∵BD 、CE 是△ABC 的高线,
∴∠A+∠ACE=90°,∠BHC+∠HCD=90°,
∵∠ACE=∠HCD (对顶角相等),
∴∠BHC=∠A=45°.
综上所述,∠BHC 的度数是135°或45°.
故选B.
【点睛】
本题主要考查了三角形的内角和定理,三角形的高线,难点在于要分△ABC 是锐角三角形与钝角三角形两种情况讨论,作出图形更形象直观.
10.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )
A .2γαβ=+
B .2γαβ=+
C .γαβ=+
D .180γαβ=--
【答案】A
【解析】
【分析】
【详解】 分析:根据三角形的外角得:∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',代入已知可得结论. 详解:
由折叠得:∠A=∠A',
∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
∵∠A=α,∠CEA′=β,∠BDA'=γ,
∴∠BDA'=γ=α+α+β=2α+β,
故选A.
点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
11.下列多边形中,不能够单独铺满地面的是()
A.正三角形B.正方形C.正五边形D.正六边形
【答案】C
【解析】
【分析】
由镶嵌的条件知,在一个顶点处各个内角和为360°.
【详解】
∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;
∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;
∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;
∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.
故选C.
【点睛】
几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
12.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()
A.4B.5C.6D.9
【答案】C
【解析】
【分析】
根据三角形的三边关系可判断x的取值范围,进而可得答案.
【详解】
解:由三角形三边关系定理得7-2<x<7+2,即5<x<9.
因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.
4,5,9都不符合不等式5<x<9,只有6符合不等式,
故选C.
【点睛】
本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.
三、八年级数学全等三角形填空题(难)
13.如图,ABC
∆中,90
ACB
∠=︒,//
AC BD,BC BD
=,在AB上截取BE,使BE BD
=,过点B作AB的垂线,交CD于点F,连接DE,交BC于点H,交BF于点G,7,4
BC BG
==,则AB=____________.
【答案】
65
8
【解析】
【分析】
过点D作DM⊥BD,与BF延长线交于点M,先证明△BHE≌△BGD得到∠EHB=∠DGB,再由平行和对顶角相等得到∠MDG=∠MGD,即MD=MG,在△△BDM中利用勾股定理算出MG的长度,得到BM,再证明△ABC≌△MBD,从而得出BM=AB即可.
【详解】
解:∵AC∥BD,∠ACB=90°,
∴∠CBD=90°,即∠1+∠2=90°,
又∵BF⊥AB,
∴∠ABF=90°,
即∠8+∠2=90°,
∵BE=BD,
∴∠8=∠1,
在△BHE和△BGD中,
81
43
BE BD
∠=∠
∠=∠


=




∴△BHE
≌△BGD (ASA ),
∴∠EHB=∠DGB
∴∠5=∠6,∠6=∠7,
∵MD ⊥BD
∴∠BDM=90°,
∴BC ∥MD ,
∴∠5=∠MDG ,
∴∠7=∠MDG
∴MG=MD ,
∵BC=7,BG=4,
设MG=x ,在△BDM 中,
BD 2+MD 2=BM 2,
即()2227=4x x ++,
解得x=338
, 在△ABC 和△MBD 中
=8=1BC B ACB MDB D
∠∠∠∠⎧⎪=⎨⎪⎩
, ∴△ABC ≌△MBD (ASA )
AB=BM=BG+MG=4+
338=658. 故答案为:658
.
【点睛】
本题考查了全等三角形的判定和性质,勾股定理,适当添加辅助线构造全等三角形,利用全等三角形的性质求出待求的线段,难度中等.
14.如图,△ABC 中,AC =BC =5,∠ACB =80°,O 为△ABC 中一点,∠OAB =10°,∠OBA =30°,则线段AO 的长是_____.
【答案】5
【解析】
【分析】
作∠CAO 的平分线AD ,交BO 的延长线于点D ,连接CD ,由等边对等角得到∠CAB =∠CBA =50°,再推出∠DAB =∠DBA ,得到AD =BD ,然后可证△ACD ≌△BCD ,最后证△ACD ≌△AOD ,即可得AO =AC =5.
【详解】
解:如图,作∠CAO 的平分线AD ,交BO 的延长线于点D ,连接
CD ,
∵AC =BC =5,
∴∠CAB =∠CBA =50°,
∵∠OAB =10°,
∴∠CAD =∠OAD =1(CAB OAB)2∠-∠=()
150102︒︒-=20°, ∵∠DAB =∠OAD+∠OAB =20°+10°=30°,
∴∠DAB =30°=∠DBA ,
∴AD =BD ,∠ADB =120°,
在△ACD 与△BCD 中
AC BC AD BD CD CD =⎧⎪=⎨⎪=⎩
∴△ACD ≌△BCD (SSS )
∴∠CDA =∠CDB ,
∴∠CDA =∠CDB =()1360ADB 2︒-∠=()
13601202
︒︒-=120°, 在△ACD 与△AOD 中 CDA ADO 120AD AD
CAD OAD ︒
⎧∠=∠=⎪=⎨⎪∠=∠⎩
∴△ACD ≌△AOD (ASA )
∴AO=AC=5,
故答案为5.
【点睛】
本题考查全等三角形的判定和性质,作辅助线构造全等三角形是解决本题的关键.
15.如图,Rt△ABC中,∠ACB=90°,AC=BC,CF交AB于E,BD⊥CF,AF⊥CF,则下列结论:①∠ACF=∠CBD②BD=FC③FC=FD+AF④AE=DC中,正确的结论是____________(填正确结论的编号)
【答案】①②③
【解析】
【分析】
根据同角的余角相等,可得到结论①,再证明△ACF≌△CBD,然后根据全等三角形的性质判断结论②、③、④即可.
【详解】
解:∵BD⊥CF,AF⊥CF,
∴∠BDC=∠AFC=90°,
∵∠ACB=90°,
∴∠ACF+∠BCD=∠CBD+∠BCD=90°,
∴∠ACF=∠CBD,故①正确;
在△ACF和△CBD中,
BDC AFC
ACF CBD
AC BC
∠=∠


∠=∠

⎪=


∴△ACF≌△CBD,
∴BD=FC,CD=AF,故结论②正确
∴FC=FD+CD=FD+AF,故结论③正确,
∵在Rt△AEF中,AE>AF,
∴AE>CD,故结论④错误.
综上所述,正确的结论是:①②③.
【点睛】
本题主要考查全等三角形的判定与性质,熟练掌握判定方法及全等的性质是解题的关键. 16.已知在△ABC 中,两边AB、AC的中垂线,分别交BC于E、G.若BC=12,EG=2,则
△AEG的周长是________.
【答案】16或12.
【解析】
【分析】
根据线段垂直平分线性质得出AE=BE,CG=AG,分两种情况讨论:①DE和FG的交点在
△ABC内,②DE和FG的交点在△ABC外.
【详解】
∵DE,FG分别是△ABC的AB,AC边的垂直平分线,∴AE=BE,CG=AG.分两种情况讨论:①当DE和FG的交点在△ABC内时,如图1.
∵BC=12,GE=2,∴AE+AG=BE+CG=12+2=14,△AGE的周长是AG+AE+EG=14+2=16.
②当DE和FG的交点在△ABC外时,如图2,△AGE的周长是AG+AE+EG= BE+CG
+EG=BC=12.
故答案为:16或12.
【点睛】
本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.
17.如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB.若AB=9,AC=5,则AM的长为
______.
【答案】7
【解析】
【分析】
过点E作EN⊥AC的延长线于点N,连接BE、EC,利用角平分线的性质、垂直平分线的性质得到EM=EN,EB=EC,证明Rt△BME≌Rt△CNE(HL),得到BM=CN,证明
Rt △AME ≌Rt △ANE (HL ),得到AM=AN ,由AM=AB-BM=AB-CN=AB-(AN-AC )=AB-AN+AC=AB-AM+AC ,即AM=9-AM+5,即可解答.
【详解】
解:如图,过点E 作EN ⊥AC 的延长线于点N ,连接BE 、EC ,
∵BD=DC ,DE ⊥BC
∵BE=EC .
∵AE 平分∠BAC ,EM ⊥AB ,EN ⊥AC ,
∴EM=EN ,∠EMB=∠ENC=90°.
在Rt △BME 和Rt △CNE 中,
BE EC EM EN =⎧⎨=⎩
, ∴Rt △BME ≌Rt △CNE (HL )
∴BM=CN ,
在RtAME 和Rt △ANE 中,
AE AE EM EN =⎧⎨=⎩
, ∴Rt △AME ≌Rt △ANE (HL )
∴AM=AN ,
∴AM=AB-BM=AB-CN=AB-(AN-AC )=AB-AN+AC=AB-AM+AC ,
即AM=9-AM+5
2AM=9+5
2AM=14
AM=7.
故答案为:7.
【点睛】
考查了全等三角形的性质与判定,解决本题的关键是证明Rt △BME ≌Rt △CNE (HL ),得到BM=CN ,证明Rt △AME ≌Rt △ANE (HL ),得到AM=AN .
18.已知△ABC 中,AB=BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出_____个.
【答案】7
【解析】
只要满足三边对应相等就能保证作出的三角形与原三角形全等,以腰为公共边时有6个,以底为公共边时有一个,答案可得.
解:以AB为公共边有三个,以CB为公共边有三个,以AC为公共边有一个,
所以一共能作出7个.
故答案为7
四、八年级数学全等三角形选择题(难)
19.如图所示,设甲、乙、丙、丁分别表示△ABC,△ACD,△EFG,△EGH.已知∠ACB=∠CAD=∠EFG=∠EGH=70°,∠BAC=∠ACD=∠EGF=∠EHG=50°,则叙述正确的是()
A.甲、乙全等,丙、丁全等B.甲、乙全等,丙、丁不全等
C.甲、乙不全等,丙、丁全等D.甲、乙不全等,丙、丁不全等
【答案】B
【解析】
【分析】
根据题意即是判断甲、乙是否全等,丙丁是否全等.运用判定定理解答.
【详解】
解:∵∠ACB=CAD=70°,∠BAC=∠ACD=50°,AC为公共边,
∴△ABC≌△ACD,即甲、乙全等;
△EHG中,∠EGH=70°≠∠EHG=50°,即EH≠EG,
虽∠EFG=∠EGH=70°,∠EGF=∠EHG=50°,
∴△EFG不全等于△EGH,即丙、丁不全等.
综上所述甲、乙全等,丙、丁不全等,B正确,
故选:B.
【点睛】
本题考查的是全等三角形的判定,但考生需要有空间想象能力.判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、HL .找着∠EGH=70°≠∠EHG=50°,即EH≠EG 是正确解决本题的关键.
20.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',连接AO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60°得到:②点O 与O '的距离为4;③150AOB ∠=︒;④S 四边形643AOBO ;⑤9634
AOC AOB S S +=+△△.其中正确的结论是( )
A .①②③④
B .①②③⑤
C .①②④⑤
D .①②③④⑤
【答案】D
【解析】
【分析】 证明△BO ′A ≌△BOC ,又∠OBO ′=60°,所以△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;
由△OBO ′是等边三角形,可知结论②正确;
在△AOO ′中,三边长为3,4,5,这是一组勾股数,故△AOO ′是直角三角形;进而求得∠AOB =150°,故结论③正确;
643AOO OBO AOBO S S S '∆'∆'=+=+四边形④正确;
如图②,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.利用旋转变换构造等边三角形与直角三角形,将S △AOC +S △AOB 转化为S △COO ″+S △AOO ″,计算可得结论⑤正确.
【详解】
解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,
又∵OB =O ′B ,AB =BC ,
∴△BO ′A ≌△BOC ,又∵∠OBO ′=60°,
∴△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,
故结论①正确;
如图①,连接OO ′,
∵OB =O ′B ,且∠OBO ′=60°,
∴△OBO ′是等边三角形,
∴OO ′=OB =4.
故结论②正确;
∵△BO ′A ≌△BOC ,∴O ′A =5.
在△AOO ′中,三边长为3,4,5,这是一组勾股数,
∴△AOO ′是直角三角形,∠AOO ′=90°,
∴∠AOB =∠AOO ′+∠BOO ′=90°+60°=150°,
故结论③正确;
2313446432AOO OBO AOBO S S S '∆'∆'=+=⨯⨯+⨯=+四边形, 故结论④正确;
如图②所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.
易知△AOO ″是边长为3的等边三角形,△COO ″是边长为3、4、5的直角三角形,
则23193436324
AOC AOB COO AOO AOCO S S S S S ∆∆∆''∆''''+==+=⨯⨯+⨯=+四边形, 故结论⑤正确.
综上所述,正确的结论为:①②③④⑤.
故选:D .
【点睛】
本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB 向不同方向旋转,体现了结论①﹣结论④解题思路的拓展应用.
21.如图(1),已知AB AC =,D 为BAC ∠的角平分线上一点,连接BD ,CD ;如图(2),已知AB AC =,D ,E 为BAC ∠的角平分线上两点,连接BD ,CD ,BE ,CE ;如图(3),已知AB AC =,D ,E ,F 为BAC ∠的角平分线上三点,连接BD ,CD ,BE ,CE ,BF ,CF ;……,依此规律,第6个图形中有全等三角形的对数是( )
A .21
B .11
C .6
D .42
【答案】A
【解析】
【分析】 根据条件可得图1中△ABD ≌△ACD 有1对三角形全等;图2中可证出△ABD ≌△ACD ,△BDE ≌△CDE ,△ABE ≌△ACE 有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第6个图形中全等三角形的对数.
【详解】
解:∵AD 是∠BAC 的平分线,
∴∠BAD=∠CAD .
在△ABD 与△ACD 中,
AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩

∴△ABD ≌△ACD .
∴图1中有1对三角形全等;
同理图2中,△ABE ≌△ACE ,
∴BE=EC ,
∵△ABD ≌△ACD .
∴BD=CD ,
又DE=DE ,
∴△BDE ≌△CDE ,
∴图2中有3对三角形全等,3=1+2;
同理:图3中有6对三角形全等,6=1+2+3;
∴第6个图形中有全等三角形的对数是1+2+3+4+5+6=21.
故选:A .
【点睛】
此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.
22.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E .连CD 分别交AE ,AB 于点F ,G ,过点A 做AH ⊥CD 交BD 于点H ,则下列结论:
①∠ADC=15°;②AF=AG;③AH=DF;④△ADF≌△BAH;⑤DF=2EH.其中正确结论的个数为()
A.5 B.4 C.3 D.2
【答案】B
【解析】
【分析】
①根据△ABC为等边三角形,△ABD为等腰直角三角形,可以得出各角的度数以及DA=AC,即可作出判断;②分别求出∠AFG和∠AGD的度数,即可作出判断;④根据三角形内角和定理求出∠HAB的度数,求证EHG DFA
∠=∠,利用AAS即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH,又由③可知
AH DF
=,即可作出判断.
【详解】
①正确:∵ABC
△是等边三角形,
∴60
BAC︒
∠=,∴CA AB
=.
∵ABD
△是等腰直角三角形,∴DA AB
=.
又∵90
BAD︒
∠=,∴150
CAD BAD BAC︒
∠=∠+∠=,
∴DA CA
=,∴()
1
18015015
2
ADC ACD︒︒︒
∠=∠=-=;
②错误:∵∠EDF=∠ADB-∠ADC=30°
∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG
∵∠AGD=90°-∠ADG=90°-15°=75°
∠AFG≠∠AGD
∴AF≠AG
③,④正确,由题意可得45
DAF ABH︒
∠=∠=,DA AB
=,
∵AE BD
⊥,AH CD
⊥.∴180
EHG EFG︒
∠+∠=.
又∵180?
DFA EFG
∠+∠=,∴EHG DFA
∠=∠,
在DAF
△和ABH中
()
AFD BHA
DAF ABH AAS
DA AB
∠=∠


∠=∠

⎪=

∴DAF
△≌ABH.∴DF AH
=.
⑤正确:∵150
CAD︒
∠=,AH CD
⊥,
∴75
DAH

∠=,又∵45
DAF︒
∠=,∴754530
EAH︒︒︒
∠=-=
又∵AE DB
⊥,∴2
AH EH
=,又∵=
AH DF,∴2
DF EH
=
【点睛】
本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.
23.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是()
A.PD=DQ B.DE=
1
2
AC C.AE=
1
2
CQ D.PQ⊥AB
【答案】D
【解析】
过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,
∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ 中,
FPD Q
PDE CDQ
PF CQ
∠=∠


∠=∠

⎪=

,∴△PFD≌△QCD,∴PD=DQ,DF=CD,∴A选项正确,
∵AE=EF,∴DE=
1
2
AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=
1
2
AP=
1
2
CQ,∴C选项正确,故选D.
24.已知111122
,
A B C A B C
△△的周长相等,现有两个判断:①若
2
12
12112
,
A A
B C
B A A C
==,则
11122
2
A B C A B C
△≌△;②若
12
=
A A
∠∠,
1122
=
A C A C,则
11122
2
A B C A B C
△≌△,对于上述的两个判断,下列说法正确的是()
A.①,②都正确B.①,②都错误
C.①错误,②正确D.①正确,②错误
【答案】A
【解析】
【分析】
根据SSS即可推出△111
A B C≅△
222
A B C,判断①正确;根据相似三角形的性质和判定和全等三角形的判定推出即可.
【详解】
解:①△111
A B C,△
222
A B C的周长相等,
1122
A B A B
=,
1122
AC A C
=,1122
B C B C
∴=,
∴△
111
A B C≅△
222
()
A B C SSS,
∴①正确;
②如图,延长11
A B到
1
D,使
1111
B D B C
=,,延长
22
A B到
2
D,使
2222
B D B C
=,
∴111111
A D A
B B C
=+,
222222
A D A
B B C
=+,
∵111122
,
A B C A B C
△△的周长相等,
1122
=
A C A C

1122
A D A D
=,
在△111
A B D和△
222
A B D中
1122
12
1122
=
=
A D A D
A A
A C A C
=


∠∠




∴△
111
A B D≅△
222
A B D(SAS)
∴12
=
D D
∠∠,
∵1111
B D B C
=,
2222
B D B C
=
∴1111
=
D D C B
∠∠,
2222
=
D D C B
∠∠,
又∵1111111
=
A B C D D C B
∠∠+∠,
2222222
=
A B C D D C B
∠∠+∠,
∴1112221
==2
A B C A B C D
∠∠∠,
在△111
A B C和△
222
A B C中
111222
12
1122
=
=
=
A B C A B C
A A
A C A C
∠∠


∠∠




∴△
111
A B C≅△
222
A B C(AAS),
∴②正确;
综上所述:①,②都正确.
故选:A.
【点睛】
本题考查了全等三角形的判定、等腰三角形的性质,能构造全等三角形、综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,而AAA和SSA不能判断两三角形全等.
五、八年级数学轴对称三角形填空题(难)
25.如图,在ABC
∆中,AB AC
=,点D和点A在直线BC的同侧,
,82,38
BD BC BAC DBC
=∠=︒∠=︒,连接,
AD CD,则ADB
∠的度数为__________.
【答案】30°
【解析】
【分析】
先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD
∠的度数,然后作点D关于直线AB的对称点E,连接BE、CE、AE,如图,则BE=BD,∠EBA=∠DB,
∠BEA=∠BDA,进而可得∠EBC=60°,由于BD=BC,从而可证△EBC是等边三角形,可得
∠BEC=60°,EB=EC,进一步即可根据SSS证明△AEB≌△AEC,可得∠BEA的度数,问题即得解决.
【详解】
解:∵AB AC
=,82
BAC
∠=︒,∴
180
49
2
BAC
ABC
︒-∠
∠==︒,
∵38
DBC
∠=︒,∴493811
ABD
∠=︒-︒=︒,
作点D关于直线AB的对称点E,连接BE、CE、AE,如图,则BE=BD,∠EBA=∠DBA=11°,∠BEA=∠BDA,
∴∠EBC=11°+11°+38°=60°,
∵BD=BC ,∴BE=BC ,∴△EBC 是等边三角形,∴∠BEC =60°,EB=EC ,
又∵AB=AC ,EA=EA ,
∴△AEB ≌△AEC (SSS ),∴∠BEA =∠CEA =
1302
BEC ∠=︒, ∴∠ADB =30°.
【点睛】
本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D 关于直线AB 的对称点E ,构造等边三角形和全等三角形的模型是解题的关键.
26.如图,BD 是ABC 的角平分线,AE BD ⊥,垂足为F ,且交线段BC 于点E ,
连结DE ,若50C ∠=︒,设 ABC x CDE y ∠=︒∠=︒,
,则y 关于x 的函数表达式为_____________.
【答案】80y x =-
【解析】
【分析】
根据题意,由等腰三角形的性质可得BD 是AE 的垂直平分线,进而得到AD =ED ,求出BED ∠的度数即可得到y 关于x 的函数表达式.
【详解】
∵BD 是ABC ∆的角平分线,AE BD ⊥
∴1122
ABD EBD ABC x ∠=∠=∠=︒,90AFB EFB ∠=∠=︒ ∴1902BAF BEF x ∠=∠=︒-
︒ ∴AB BE =
∴AF EF =
∴AD ED =
∴DAF DEF ∠=∠
∵180BAC ABC C ∠=︒-∠-∠,50C ∠=︒
∴130BAC x ∠=︒-︒
∴130BED BAD x ∠=∠=︒-︒
∵CDE BED C ∠=∠-∠
∴1305080y x x ︒=-︒-︒=︒-︒
∴80y x =-,
故答案为:80y x =-.
【点睛】
本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.
27.如图,在Rt △ABC 中,∠C =30°,将△ABC 绕点B 旋转α(0<α<60°)到△A′BC′,边AC 和边A′C′相交于点P ,边AC 和边BC′相交于Q.当△BPQ 为等腰三角形时,则
α=__________.
【答案】20°或40°
【解析】
【分析】
过B 作BD ⊥AC 于D ,过B 作BE ⊥A'C'于E ,根据旋转可得△ABC ≌△A'BC',则BD=BE ,进而得到BP 平分∠A'PC ,再根据∠C=∠C'=30°,∠BQC=∠PQC',可得∠CBQ=∠C'PQ=θ,即可得出∠BPQ=12(180°-∠C'PQ )=90°-12
θ,分三种情况讨论,利用三角形内角和等于180°,即可得到关于θ的方程,进而得到结果.
【详解】
如图,过B 作BD ⊥AC 于D ,过B 作BE ⊥A'C'于E ,
由旋转可得,△ABC≌△A'BC',则BD=BE,∴BP平分∠A'PC,
又∵∠C=∠C'=30°,∠BQC=∠PQC',
∴∠CBQ=∠C'PQ=θ,
∴∠BPQ=1
2
(180°-∠C'PQ)=90°-
1
2
θ,
分三种情况:
①如图所示,当PB=PQ时,∠PBQ=∠PQB=∠C+∠QBC=30°+θ,∵∠BPQ+∠PBQ+∠PQB=180°,
∴90°-1
2
θ+2×(30°+θ)=180°,
解得θ=20°;
②如图所示,当BP=BQ时,∠BPQ=∠BQP,
即90°-1
2
θ=30°+θ,
解得θ=40°;
③当QP=QB时,∠QPB=∠QBP=90°-1
2θ,
又∵∠BQP=30°+θ,
∴∠BPQ+∠PBQ+∠BQP=2(90°-1
2
θ)+30°+θ=210°>180°(不合题意),
故答案为:20°或40°.
【点睛】
本题主要考查了等腰三角形的性质以及旋转的性质的运用,解决问题的关键是利用全等三角形对应边上高相等,得出BP平分∠A'PC,解题时注意分类思想的运用.
28.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=_____cm.
【答案】8cm.
【解析】
【详解】
解:如图,延长ED交BC于M,延长AD交BC于N,作DF∥BC,
∵AB=AC,AD平分∠BAC,
∴AN⊥BC,BN=CN,
∵∠EBC=∠E=60°,
∴△BEM为等边三角形,
∴△EFD为等边三角形,
∵BE=6cm,DE=2cm,
∴DM=4,
∵△BEM为等边三角形,
∴∠EMB=60°,
∵AN⊥BC,
∴∠DNM=90°,
∴∠NDM=36°,
∴NM=2,
∴BN=4,
∴BC=8.
29.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.
【答案】10
3
或10
【解析】
【分析】
根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.
【详解】
当PO=QO时,△POQ是等腰三角形,如图1所示
当点P在AO上时,
∵PO=AO-AP=10-2t,OQ=t
当PO=QO时,
102t t
-=
解得
10
3 t=
当PO=QO时,△POQ是等腰三角形,如图2所示当点P在BO上时
∵PO=AP-AO=2t-10,OQ=t
当PO=QO时,
210
t t
-=
解得10
t=
故答案为:10
3
或10
【点睛】
本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.
30.如图,在边长为6的菱形ABCD中,∠DAB=60°,E是AB的中点,F是AC上一个动点,则EF+BF的最小值是________ .
【答案】33
【解析】
试题解析:∵在菱形ABCD中,AC与BD互相垂直平分,
∴点B、D关于AC对称,
连接ED,则ED就是所求的EF+BF的最小值的线段,
∵E为AB的中点,∠DAB=60°,
∴DE⊥AB,
∴22
AD AE
-22
63
-3
∴EF+BF的最小值为3.
六、八年级数学轴对称三角形选择题(难)
31.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是()
A .32°
B .64°
C .65°
D .70°
【答案】B
【解析】
【分析】 此题涉及的知识点是三角形的翻折问题,根据翻折后的图形相等关系,利用三角形全等的性质得到角的关系,然后利用等量代换思想就可以得到答案
【详解】
如图,在△ABC 中,∠B=32°,将△ABC 沿直线m 翻折,点B 落在点D 的位置
∠B=∠D=32° ∠BEH=∠DEH
∠1=180︒-∠BEH -∠DEH=180︒-2∠DEH
∠2=180︒-∠D -∠DEH -∠EHF
=180︒-∠B -∠DEH -(∠B+∠BEH)
=180︒-∠B -∠DEH -(∠B+∠DEH)
=180︒-32°-∠DEH -32°-∠DEH
=180︒-64°-2∠DEH
∴∠1-∠2=180︒-2∠DEH -(180︒-64°-2∠DEH)
=180︒-2∠DEH -180︒+64°+2∠DEH
=64°
故选B
【点睛】
此题重点考察学生对图形翻折问题的实际应用能力,等量代换是解本题的关键
32.在Rt ABC ∆中,90ACB ∠=︒,点D E 、是AB 边上两点,且CE 垂直平分,AD CD 平分,6BCE AC cm ∠=,则BD 的长为( )
A .6cm
B .7cm
C .8cm
D .9cm
【答案】A
【解析】
【分析】 根据CE 垂直平分AD ,得AC=CD ,再根据等腰在三角形的三线合一,得
ACE ECD ∠=∠,结合角平分线定义和90ACB ︒∠=,得
30ACE ECD DCB ︒∠=∠=∠=,则BD CD AC ==.
【详解】
∵CE 垂直平分AD
∴AC=CD =6cm ,ACE ECD ∠=∠
∵CD 平分BCE ∠
∴BCD ECD ∠=∠
∴30ACE ECD DCB ︒∠=∠=∠=
∴60A ︒∠=
∴30B BCD ︒∠==∠
∴6CD BD AC cm ===
故选:A
【点睛】
本题考查的知识点主要是等腰三角形的性质的“三线合一”性质定理及判定“等角对等边”,熟记并能熟练运用这些定理是解题的关键.
33.如图,在Rt △ABC 中,AC =BC ,∠ACB =90°,D 为AB 的中点,E 为线段AD 上一点,过E 点的线段FG 交CD 的延长线于G 点,交AC 于F 点,且EG =AE ,分别延长CE ,BG 交于点H ,若EH 平分∠AEG ,HD 平分∠CHG 则下列说法:①∠GDH =45°;②GD =ED ;③EF =2DM ;④CG =2DE +AE ,正确的是( )
A.①②③B.①②④C.②③④D.①②③④
【答案】B
【解析】
【分析】
首先证明△AEC≌△GEC(SAS),推出CA=CG,∠A=∠CGE=45°,推出DE=DG,故②正确;再证明△EDC≌△GDB,推出∠CED=∠BGD,ED=GD,由三角形外角的性质得出
∠HDG=∠HDE,进而得出∠GDH=∠EDH=45°,即可判断①正确;
通过证明△EDC和△EMD是等腰直角三角形,得到ED MD,再通过证明
△EFC≌△EDC,得到EF=ED,从而可判断③错误;由CG=CD+DG,CD=AD,ED=GD,变形即可判断④正确.
【详解】
∵AC=BC,∠ACB=90°,AD=DB,
∴CD⊥AB,CD=AD=DB,∠A=∠CBD=45°.
∵EH平分∠AEG,
∴∠AEH=∠GEH.
∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,
∴∠AEC=∠CEG.
∵AE=GE,EC=EC,
∴△AEC≌△GEC(SAS),
∴CA=CG,∠A=∠CGE=45°.
∵∠EDG=90°,
∴∠DEG=∠DGE=45°,
∴DE=DG,∠AEF=∠DEG=∠A=45°,
故②正确;
∵DE=DG,∠CDE=∠BDG=90°,DC=DB,
∴△EDC≌△GDB(SAS),
∴∠CED=∠BGD,ED=GD.
∵HD平分∠CHG,
∴∠GHD=∠EHD.
∵∠CED=∠EHD+∠HDE,∠BGD=∠GHD+∠HDG,
∴∠HDG=∠HDE.
∵∠EDG=∠ADC=90°,
∴∠GDH=∠EDH=45°,故①正确;
∵∠EDC=90°,ED=GD,
∴△EDC是等腰直角三角形,
∴∠DEG=45°.
∵∠GDH=45°,
∴∠EDH=45°,
∴△EMD是等腰直角三角形,
∴ED=2MD.
∵∠AEF=∠DEG=∠A=45°,
∴∠AFE=∠CFG=90°.
∵∠EDC=90°,
∴∠EFC=∠EDC=90°.
∵EH平分∠AEG,
∴∠AEH=∠GEH.
∵∠FEC=∠GEH,∠DEC=∠AEH,
∴∠FEC=∠DEC.
∵EC=EC,
∴△EFC≌△EDC,
∴EF=ED,
∴EF=2MD.
故③错误;
∵CG=CD+DG=AD+ED=AE+ED+ED,
∴CG=2DE+AE,
故④正确.
故选B.
【点睛】
本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.
34.如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于()
A.108°B.114°C.126°D.129°
【答案】C
【解析】
【分析】
按照如图所示的方法折叠,剪开,把相关字母标上,易得∠ODC和∠DOC的度数,利用三角形的内角和定理可得∠OCD的度数.
【详解】
解:展开如图,五角星的每个角的度数是,
1805
=36°. ∵∠COD =360°÷10=36°,∠ODC=36°÷2=18°,
∴∠OCD =180°-36°-18°=126°,故选C .
【点睛】
本题主要考查轴对称性质,解决本题的关键是能够理解所求的角是五角星的哪个角,解题时可以结合正五边形的性质解决.
35.如图,ABC △,AB AC =,56BAC ︒∠=,BAC ∠的平分线与AB 的垂直平分线交于O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与O 点恰好重合,则∠OEC 的度数为( )
A .132︒
B .130︒
C .112︒
D .110︒
【答案】C
【解析】
【分析】 连接OB 、OC ,根据角平分线的定义求出∠BAO ,根据等腰三角形两底角相等求出∠ABC ,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB ,根据等边对等角可得∠ABO=∠BAO ,再求出∠OBC ,然后判断出点O 是△ABC 的外心,根据三角形外心的性质可得OB=OC ,再根据等边对等角求出∠OCB=∠OBC ,根据翻折的性质可得OE=CE ,然后根据等边对等角求出∠COE ,再利用三角形内角和定理列式计算即可得出答案.
【详解】
如图,连接OB 、OC ,
∵56BAC ︒∠=,AO 为BAC ∠的平分线
∴11562822
BAO BAC ︒︒∠=∠=⨯= 又∵AB AC =,
∴()()
11180180566222
ABC BAC ︒︒︒︒∠=-∠=-= ∵DO 是AB 的垂直平分线, ∴OA OB =.
∴28ABO BAO ︒∠=∠=,
∴622834OBC ABC ABO ︒︒︒∠=∠-∠=-=
∵DO 是AB 的垂直平分线,AO 为BAC ∠的平分线
∴点О是ABC △的外心,
∴OB OC =,
∴34OCB OBC ︒∠=∠=,
∵将C ∠沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合
∴OE CE =,
∴34COE OCB ︒∠=∠=,
在OCE △中,1801803434112OEC COE OCB ︒︒︒︒︒∠=-∠-∠=--=
【点睛】
本题主要考查了线段垂直平分线上的点到线段两端点距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,做辅助线构造出等腰三角形是解决本题的关键.
36.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E .连CD 分别交AE ,AB 于点F ,G ,过点A 做AH ⊥CD 交BD 于点H ,则下列结论:
①∠ADC =15°;②AF =AG ;③AH =DF ;④△ADF ≌△BAH ;⑤DF =2EH .其中正确结论的个数为( )
A .5
B .4
C .3
D .2
【答案】B
【解析】
【分析】 ①根据△ABC 为等边三角形,△ABD 为等腰直角三角形,可以得出各角的度数以及DA=AC ,即可作出判断;②分别求出∠AFG 和∠AGD 的度数,即可作出判断;④根据三角形内角和。

相关文档
最新文档