普宁市高中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普宁市高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 已知函数f (x )的定义域为[a ,b],函数y=f (x )的图象如下图所示,则函数f (|x|)的图象是( )
A .
B .
C .
D .
2. “双曲线C 的渐近线方程为y=±x ”是“双曲线C 的方程为﹣
=1”的( )
A .充要条件
B .充分不必要条件
C .必要不充分条件
D .不充分不必要条件
3. 下列计算正确的是( )
A 、213
3
x x x ÷= B 、4554
()x x = C 、45
5
4
x x x = D 、4455
0x x -
=
4. 不等式的解集为( ) A .或 B . C .
或
D .
5. 以下四个命题中,真命题的是( ) A .2
,2x R x x ∃∈≤-
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,2
0010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
6. “x >0”是“
>0”成立的( )
A .充分非必要条件
B .必要非充分条件
C .非充分非必要条件
D .充要条件
7. 半径R 的半圆卷成一个圆锥,则它的体积为( )
A .
πR 3
B .
πR 3
C .
πR 3
D .
πR 3
8. 下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;
④{}0∅⊆,正确的有( )个
A.个
B.个
C.个
D.个 9. 已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为
( )
A .{1}
B .{1,2}
C .{1,2,3}
D .{0,1,2}
10.过抛物线y 2=4x 焦点的直线交抛物线于A ,B 两点,若|AB|=10,则AB 的中点到y 轴的距离等于( ) A .1 B .2 C .3 D .4 11.函数()f x 在定义域R 上的导函数是'
()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'
(1)()0x f x -<,
设(0)a f =,b f =,2(log 8)c f =,则( )
A .a b c <<
B .a b c >>
C .c a b <<
D .a c b <<
12.观察下列各式:a+b=1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28
B .76
C .123
D .199
二、填空题
13.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .
【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.
14.设函数f (x )=则函数y=f (x )与y=的交点个数是 .
15.已知
是等差数列,
为其公差,
是其前项和,若只有
是
中的最小项,则可得出的结论中
所有正确的序号是___________ ①
②
③
④
⑤
16.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:
①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;
②若点P 到点A 的距离为
,则动点P 的轨迹所在曲线是圆;
③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;
④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝. 其中真命题是 (写出所有真命题的序号)
17.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .
18.【泰州中学2018届高三10月月考】设函数()f x '是奇函数()f x 的导函数,()10f -=,当0x >时,
()()0xf x f x -<',则使得()0f x >成立的x 的取值范围是__________. 三、解答题
19.如图,在边长为a 的菱形ABCD 中,∠ABC=60°,PC ⊥面ABCD ,E ,F 是PA 和AB 的中点. (1)求证:EF ∥平面PBC ; (2)求E 到平面PBC 的距离.
20.已知函数f(x)=(sinx+cosx)2+cos2x
(1)求f(x)最小正周期;
(2)求f(x)在区间[]上的最大值和最小值.
21.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE 沿DE折起到△A1DE的位置,使A1D⊥CD,如图
2.
(Ⅰ)求证:平面A1BC⊥平面A1DC;
(Ⅱ)若CD=2,求BD与平面A1BC所成角的正弦值;
(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.
22.已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且有最小值是.
(1)求f(x)的解析式;
(2)求函数h(x)=f(x)﹣(2t﹣3)x在区间[0,1]上的最小值,其中t∈R;
(3)在区间[﹣1,3]上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围.
23.(本小题满分12分)
ABC ∆的内角,,A B C 所对的边分别为,,a b c ,(sin ,5sin 5sin )m B A C =+,
(5sin 6sin ,sin sin )n B C C A =--垂直.
(1)求sin A 的值;
(2
)若a =ABC ∆的面积S 的最大值.
24.(本题满分12分)如图所示,在正方体ABCD —A 1B 1C 1D 1中, E 、F 分别是棱DD 1 、C 1D 1的中点. (1)求直线BE 和平面ABB 1A 1所成角θ的正弦值; (2)证明:B 1F ∥平面A 1BE .
A 1
B 1
C 1
D
D 1 C B
A E F
普宁市高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】B
【解析】解:∵y=f (|x|)是偶函数, ∴y=f (|x|)的图象是由y=f (x )把x >0的图象保留,
x <0部分的图象关于y 轴对称而得到的.
故选B .
【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f (x )的图象和函数f (|x|)的图象之间的关系,函数y=f (x )的图象和函数|f (x )|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题.
2. 【答案】C
【解析】解:若双曲线C 的方程为﹣
=1,则双曲线的方程为,y=±x ,则必要性成立,
若双曲线C 的方程为﹣
=2,满足渐近线方程为y=±x ,但双曲线C 的方程为
﹣
=1不成立,即充
分性不成立,
故“双曲线C 的渐近线方程为y=±x ”是“双曲线C 的方程为﹣
=1”的必要不充分条件,
故选:C
【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键.
3. 【答案】B 【解析】 试题分析:根据()
a
a β
ααβ⋅=可知,B 正确。
考点:指数运算。
4. 【答案】A 【解析】 令
得
,
;
其对应二次函数开口向上,所以解集为
或
,故选A
答案:A
5. 【答案】D
6. 【答案】A
【解析】解:当x >0时,x 2
>0,则
>0
∴“x >0”是“>0”成立的充分条件;
但
>0,x 2
>0,时x >0不一定成立
∴“x >0”不是“>0”成立的必要条件;
故“x >0”是“>0”成立的充分不必要条件;
故选A
【点评】判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件;②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件;③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.
7. 【答案】A
【解析】解:2πr=πR ,所以r=,则h=,所以V=
故选A
8. 【答案】C 【解析】
试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C. 考点:集合间的关系. 9. 【答案】B
【解析】解:图中阴影部分表示的集合中的元素是在集合A 中,但不在集合B 中.
由韦恩图可知阴影部分表示的集合为(C U B )∩A ,
又A={1,2,3,4,5},B={x∈R|x≥3},
∵C U B={x|x<3},
∴(C U B)∩A={1,2}.
则图中阴影部分表示的集合是:{1,2}.
故选B.
【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想.属于基础题.
10.【答案】D
【解析】解:抛物线y2=4x焦点(1,0),准线为l:x=﹣1,
设AB的中点为E,过A、E、B分别作准线的垂线,
垂足分别为C、G、D,EF交纵轴于点H,如图所示:
则由EG为直角梯形的中位线知,
EG====5,
∴EH=EG﹣1=4,
则AB的中点到y轴的距离等于4.
故选D.
【点评】本题考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想.
11.【答案】C
【解析】
考点:函数的对称性,导数与单调性.
【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不
可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数()f x 满足:
()()f a x f a x +=-或()(2)f x f a x =-,则其图象关于直线x a =对称,如满足(2)2()f m x n f x -=-,
则其图象关于点(,)m n 对称.
12.【答案】C
【解析】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.
继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a 10+b 10
=123,.
故选C .
二、填空题
13.【答案】2]
(02x #,02y #)上的点(,)x y 到定点(2,2),最大值为2,故MN 的取值
范围为2].
22y
x
B
14.【答案】 4 .
【解析】解:在同一坐标系中作出函数y=f
(x )=
的图象与函数y=的图象,如下图所
示,
由图知两函数y=f (x )与y=
的交点个数是4.
故答案为:4.
15.【答案】
①②③④
【解析】
因为只有
是
中的最
小项,
所以,,所以,故①②③正
确;
,故④正确;
,无法判断符号,故⑤错误,
故正确答案①②③④
答案:①②③④
16.【答案】 ①②④
【解析】解:对于①,∵BD 1⊥面AB 1C ,∴动点P 的轨迹所在曲线是直线B 1C ,①正确;
对于②,满足到点A 的距离为
的点集是球,∴点P 应为平面截球体所得截痕,即轨迹所在曲线为圆,
②正确;
对于③,满足条件∠MAP=∠MAC 1 的点P 应为以AM 为轴,以AC 1 为母线的圆锥,平面BB 1C 1C 是一个与轴AM 平行的平面,
又点P 在BB 1C 1C 所在的平面上,故P 点轨迹所在曲线是双曲线一支,③错误;
对于④,P 到直线C 1D 1 的距离,即到点C 1的距离与到直线BC 的距离比为2:1,
∴动点P 的轨迹所在曲线是以C 1 为焦点,以直线BC 为准线的双曲线,④正确;
对于⑤,如图建立空间直角坐标系,作PE ⊥BC ,EF ⊥AD ,PG ⊥CC 1,连接PF ,
设点P 坐标为(x ,y ,0),由|PF|=|PG|,得
,即x 2﹣y 2=1, ∴P 点轨迹所在曲线是双曲线,⑤错误.
故答案为:①②④.
【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.
17.【答案】1ln 2
【解析】
试题分析:()()111ln 2ln 2
f x k f x ''=∴== 考点:导数几何意义
【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.
(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.
18.【答案】()(),10,1-∞-⋃ 【解析】
三、解答题
19.【答案】
【解析】(1)证明:∵AE=PE ,AF=BF ,
∴EF ∥PB
又EF ⊄平面PBC ,PB ⊂平面PBC ,
故EF ∥平面PBC ;
(2)解:在面ABCD 内作过F 作FH ⊥BC 于H
∵PC ⊥面ABCD ,PC ⊂面PBC
∴面PBC ⊥面ABCD
又面PBC ∩面ABCD=BC ,FH ⊥BC ,FH ⊂面ABCD ∴FH ⊥面PBC
又EF||平面PBC ,故点E 到平面PBC 的距离等于点F 到平面PBC 的距离FH .
在直角三角形FBH 中,∠FBC=60°,FB=,FH=FBsin ∠FBC=
a ,
故点E 到平面PBC 的距离等于点F 到平面PBC 的距离,
等于a .
20.【答案】
【解析】解:(1)∵函数f (x )=(sinx+cosx )2
+cos2x=1+sin2x+cos2x=1+sin (2x+),
∴它的最小正周期为
=π.
(2)在区间
上,2x+∈[,],故当2x+=时,f (x )取得最小值为 1+×(﹣)
=0,
当2x+=时,f(x)取得最大值为1+×1=1+.
21.【答案】
【解析】
【分析】(Ⅰ)在图1中,△ABC中,由已知可得:AC⊥DE.在图2中,DE⊥A1D,DE⊥DC,即可证明DE⊥平面A1DC,再利用面面垂直的判定定理即可证明.
(Ⅱ)如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为.
(Ⅲ)设CD=x(0<x<6),则A1D=6﹣x,利用=
(0<x<6),即可得出.
【解答】(Ⅰ)证明:在图1中,△ABC中,DE∥BC,AC⊥BC,则AC⊥DE,
∴在图2中,DE⊥A1D,DE⊥DC,
又∵A1D∩DC=D,∴DE⊥平面A1DC,
∵DE∥BC,∴BC⊥平面A1DC,
∵BC⊂平面A1BC,∴平面A1BC⊥平面A1DC.
(Ⅱ)解:如图建立空间直角坐标系:A1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),
E(2,0,0).
则,,
设平面A1BC的法向量为
则,解得,即
则BE与平面所成角的正弦值为
(Ⅲ)解:设CD=x(0<x<6),则A1D=6﹣x,在(2)的坐标系下有:A1(0,0,6﹣x),B(3,x,0),∴==(0<x<6),
即当x=3时,A1B长度达到最小值,最小值为.
22.【答案】
【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3﹣x)=f(x)
则对称轴x=,
f(x)存在最小值,
则二次项系数a>0
设f(x)=a(x﹣)2+.
将点(0,4)代入得:
f(0)=,
解得:a=1
∴f(x)=(x﹣)2+=x2﹣3x+4.
(2)h(x)=f(x)﹣(2t﹣3)x
=x2﹣2tx+4=(x﹣t)2+4﹣t2,x∈[0,1].
当对称轴x=t≤0时,h(x)在x=0处取得最小值h(0)=4;
当对称轴0<x=t<1时,h(x)在x=t处取得最小值h(t)=4﹣t2;
当对称轴x=t≥1时,h(x)在x=1处取得最小值h(1)=1﹣2t+4=﹣2t+5.
综上所述:
当t≤0时,最小值4;
当0<t<1时,最小值4﹣t2;
当t≥1时,最小值﹣2t+5.
∴.
(3)由已知:f (x )>2x+m 对于x ∈[﹣1,3]恒成立,
∴m <x 2﹣5x+4对x ∈[﹣1,3]恒成立,
∵g (x )=x 2﹣5x+4在x ∈[﹣1,3]上的最小值为,
∴m <
.
23.【答案】(1)
45
;(2)4. 【解析】 试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于sin ,sin ,sin A B C 的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得cos A ,由同角关系得sin A ;(2)由于已知边及角A ,因此在(1)中等式22265bc b c a +-=中由基本不等式可求得10bc ≤,从而由公式 1sin 2S bc A =可得面积的最大值.
试题解析:(1)∵(sin ,5sin 5sin )m B A C =+,(5sin 6sin ,sin sin )n B C C A =--垂直,
∴222
5sin 6sin sin 5sin 5sin 0m n B B C C A ∙=-+-=,
考点:向量的数量积,正弦定理,余弦定理,基本不等式.111] 24.【答案】解:(1)设G 是AA 1的中点,连接GE ,BG .∵E 为DD 1的中点,ABCD —A 1B 1C 1D 1为正方体,∴GE ∥AD ,又∵AD ⊥平面ABB 1A 1,∴GE ⊥平面ABB 1A 1,且斜线BE 在平面ABB 1A 1内的射影为BG ,∴Rt △BEG 中的∠EBG 是直线BE 和平面ABB 1A 1所成角,即∠EBG =θ.设正方体的棱长为a ,∴a GE =,a BG 25=,a GE BG BE 2
322=+=,
∴直线BE 和平面ABB 1A 1所成角θ的正弦值为:=θsin 3
2=BE GE ;……6分 (2)证明:连接EF 、AB 1、C 1D ,记AB 1与A 1B 的交点为H ,连接EH . ∵H 为AB 1的中点,且B 1H =21C 1D ,B 1H ∥C 1D ,而EF =21C 1D ,EF ∥C 1D , ∴B 1H ∥EF 且B 1H =EF ,四边形B 1FEH 为平行四边形,即B 1F ∥EH , 又∵B 1F ⊄平面A 1BE 且EH ⊆平面A 1BE ,∴B 1F ∥平面A 1BE . ……12分。