2015-2016学年高一下学期期中考试数学试题(含答案)
浙江省宁海中学2015-2016学年高一下学期期中考试数学试卷Word版含答案
宁海中学 高一期中考试数学试题卷一.选择题(每小题5分,共40分)1.在等差数列{}n a 中,已知120a =,前n 项和为n S 且813S S =,当n S 取得最大时n 的值为( )A .9B .10C .12D .10或112.关于x 的不等式,2|1||2|1x x a a -+-≤++的解集为空集,则a 的取值范围为( )A .(0,1)B .(-1,0)C .(1,2)D .(,1)-∞-3.已知5sin()413x π+=-,则sin 2x 的值等于( )A .120169B .119169C .120169-D .119169-4.在ABC ∆中2cos 22B a c c+=(a 、b 、c 分别为角A 、B 、C 的对边),则ABC ∆的形状为( )A .正三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 5.在数列{}n a 中,1112,n(1)n n a a a l n+==++,则n a 等于( )A .2n l n +B .2(1)n n l n +-C . 2n nl n +D .1n n l n ++ 6.已知正项等比数列{}n a 满足7652a a a =+,若存在两项,m n a a14a =,则14m n+的最小值为( )A .32 B .53 C .256D .不存在 7.设0,0a b >>,则以下不等式中不恒成立是( )A .|1||5|6x x --+≤B .3322a b ab +≥C .22222a b a b ++≥+ D≥ 8.数列{}n a 的通项公式为2n a kn n =+满足12345a a a a a <<<<,且1n n a a +>对8n ≥恒成立,则实数k 的取值范围是( ) A .11(,)317--B .11(,)917--C .11(,)311--D .11(,)911-- 二.填空题(第9题每空2分,10-12题每空3分,13-15题每空4分,共36分) 9.α为第三象限角,3cos 25α=-,则s i n 2_______α=,tan(2)_________4πα+=,在以sin 2α为首项,tan(2)4πα+为公差的等差数列{}n a 中,其前n 项和达到最大时__________.n =10.设,a b 都是正数,且22260a b a b +--=,则11a b+的最小值为__________,此时ab 值为__________.11.在四边形ABCD 中,已知,AD DC AB BC ⊥⊥,1,2,120AB AD BAD ==∠=︒,则______,_______.BD AC ==二O 一 五学年第 二 学 期12.已知数列{}n a 满足111,31nn n a a a a +==+,则_________n a =,若1n n nb a a +=,则n b 的前n 项和为_____________.13.数列{}n a 的前n 项和为n S 数列{}n a 的各项按如下规则排列11212312,,,,,,,23344455, 341,,,556若存在正整数k ,使110,10k k S S +<≥,则__________.k a =14.已知αβ、均为钝角,sin αβ==,则_________.αβ+= 15.关于x 的不等式229|3|x x x kx ++-≥在[1,5]上恒成立,则实数k 的取值范围为____________. 三.解答题16.已知函数()2cos (sin cos )f x x x x =+. (1)求5()4f π的值; (2)求函数()f x 的最小正周期及单调递增区间.17.已知实数a 满足不等式|2|2a +<,解关于x 的不等式(1)(1)0.ax x +->18.在ABC ∆中,a b c 、、分别为内角A 、B 、C 所对边,且2sin (2)sin a A b c B =+(2)sin c b C ++. (1)求A 的大小;(2)求sin sin B C +的最大值.19.设a R ∈函数2() (||1)f x ax bx a x =+-≤. (1)若|(0)|1f ≤,|(1)|1f ≤求证5|()|4f x ≤; (2)当1b =,若()f x 的最大值为178,求实数a 的值.20.设各项均为正数的数列{}n a 的前n 项和为n S ,已知2132a a a =+数列是公差为1的等差数列,数列{}n b 满足1111,,22n n n b b b n++==,记数列{}n b 的前n 项和为n T . (1)求数列{}n a 、{}n b 的通项公式及前n 项和; (2λ≤恒成立,求实数λ的取值范围.宁海中学 高一期中考试数学答案一.选择题(每题5分,共40分)二.填空题(9、10、11、12每题6分,其余每题4分共36分) 9.45 17- 6 10. 11.12.132n -31n n + 13. 57 14. 74π15. (]10.6-三.解答题:(第16题14分,其余各题均15分,共74分.) 16.解(1)2()2sin cos 2cos 2cos 21f x x x x Sin x x =+=++2)14x =++二O 一 五学年第 一 学 期552()sin()124244f πππ∴=+=+=(2)())4f x x π=+ T π∴=222242k x k πλλππ-≤+≤+K Z ∈388k x k ππππ∴-≤≤+ K Z ∈单调递增区间为3,88k k πλππ⎡⎤-+⎢⎥⎣⎦ K Z ∈ 17.解(2)2a +< 40a ∴-<<(1)(1)0a x x +-= 11x ∴= 21x a=- 1110a a a++=> 1a <-或0a >41a ∴-<<-当的不等式解集为1(,1)a -当10a -<<的不等式解集为1(1,)a-当0a =时 不等式解集为∅ 18.解(1)由条件的222222a b bc c bc =+++ 222a b c bc ∴=++又2222a b c bc =+- c o s A 1c o s2A ∴=- 120A =︒ (2)120A =︒ 60BC ∴+=︒1sin sin sin sin(60)sin sin 2B C B B B B B ∴+=+︒-=-1sin sin(60)2B B B =+=+︒ 060B ︒<<︒ 6060120B ∴︒<+︒<︒ ∴当30B =︒时 sin sin B C +的最大值为1 19.(1)证:(0)1f a =≤ (1)1f b =≤22()(1)1f x a x bx a x b x ∴=-+≤-+ 21x x =-+ 11x -≤≤ 2215()1()24f x x x x ∴=-+=--+5()4f x ∴≤(2)解:1b =当1a ≤时 5()4f x ≤()f x 的最大值为178矛盾 1a ∴> 当1a >时1( 1.0)2a -∈- ()f x ∴在1(1,)2a--是减函数 1(,1)2a -是增函数(1)1f = (1)1f -=- max ()(1)1f x f ∴==不符题意当1a <-时 1(10,1)2a -- ()f x ∴在1(1,)2a--是增函数在1(,1)2a -是减函数 m a x1117()()248f x f a a a ∴=-=--= 28217a a --= 即281720a a ++= 18a ∴=-或2a =-1a <- 2a ∴=-20.解:(1){}nS 是公差为1的等差数列 (1)n +-2132a a a =+ 212333a a a a S ∴=++=2133()S S S ∴-= ))222312⎡⎤∴+-=⎢⎥⎣⎦11)(4)a =+110a ∴-= 11a ∴= n =2n S n = 21n a n =- *n N ∈1112n n b b n n +=+ 112b = 1()2n n b n ∴= 1()2nn b n ∴= 可得222n n n T +∴=-(2)令2()2nn nf n +==222111(1)(1)2(2)(1)(1)()2222n n n n n n n n n n n n f n f n +++++++-++-++-=-==- 3n ∴≥时 (1)()0f n f n +-< 2n <时 (1)()0f n f n +-> (1)(2)(3)(4)(5)f f f f f ∴<=>>>m a x3()(2)(3)2f n f f ∴=== 32λ∴≥。
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
江苏省南京市鼓楼区2015-2016学年高一下学期期中考试数学试题 含答案
高一(下)期中考试数学试卷注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.满分为160分,考试时间为120分钟.2.答题前,考生务必将自己的学校、姓名、考试号写在答题卡上.试题的答案写在答题卡的对应区域内.考试结束后,交回答题卡.一、填空题:本大题共14小题,每小题5分,共70分,请把答案填写在答题卡相应位置上.1.cos 75°=.2.sin 14°cos 16°+cos 14°sin 16°=.3.在平面直角坐标系内,若角α的终边经过点P(1,-2),则sin2α=.4.在△ABC中,若AC=错误!,∠A=45°,∠C=75°,则BC=.5.在△ABC中,若sin A︰sin B︰sin C=3︰2︰4,则cos C=.6.设等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6=.7.若等比数列{a n}满足a1+a3=5,a3+a5=20,则a5+a7=.8.若关于x的不等式ax2+x+b>0的解集是(-1,2),则a+b =.9.若关于x的不等式1+错误!≤0的解集是[-2,1),则k=.10.若数列{a n}满足a11=错误!,错误!-错误!=5(n∈N*),则a1=.11.已知正数a,b满足错误!+错误!=2,则a+b的最小值是.12.下列四个数中,正数的个数是.①错误!-错误!,a>b>0,m>0;②(n+3+错误!)-(错误!+错误!),n∈N*;③2(a2+b2)-(a+b) 2,a,b∈R;④错误!-2,x∈R.13.在斜三角形ABC中,角A,B,C所对的边分别为a,b,c,若错误!+tan Ctan B=1,则错误!=.14.若数列{a n}的前n项和S n=2n,则a1+2 a2+3 a3+…+n a n=.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本题满分14分)设f(x)=x2-(t+1)x+t (t,x∈R).(1)当t=3时,求不等式f(x)>0的解集;(2)已知f(x)≥0对一切实数x成立,求t的值.16.(本题满分14分)设函数f(x)=2cos2 x+2错误!sin x cos x(x∈R).(1)求函数f(x)的最小正周期;(2)在0<x≤错误!的条件下,求f(x)的取值范围.17.(本题满分14分)在△ABC中,a,b,c分别为角A,B,C的对边,且cos(B-C)-2sin B sin C=-错误!。
高一数学下学期第一次月考试卷(含解析)-人教版高一全册数学试题
2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.04.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]6.已知,且,则tanφ=()A.B.C.﹣D.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.28.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.14.函数y=2cos(ωx)的最小正周期是4π,则ω=.15.已知tanα=2,则tan2α的值为.16.已知sin(﹣x)=,则cos(﹣x)=.三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.22.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷参考答案与试题解析一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+【考点】诱导公式的作用.【分析】由诱导公式逐步化简可得原式等于﹣tan60°+sin90°,为可求值的特殊角,进而可得答案.【解答】解:由诱导公式可得:tan 300°+sin 450°=tan(360°﹣60°)+sin(360°+90°)=﹣tan60°+sin90°=﹣+1=1﹣,故选B2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β【考点】命题的真假判断与应用.【分析】根据角的X围以及终边相同角的关系分别进行判断即可.【解答】解:A.∵0°角满足小于90°,但0°角不是锐角,故A错误,B.当k=2n时,β=k•90°=n•180°,当k=2n+1时,β=k•90°=k•180°+90°,则A⊆B成立,C.﹣950°12′=﹣4×360°+129°48′,∵129°48′是第二象限角,∴﹣950°12′是第二象限角,故C错误,D.α,β终边相同,则α=β+k•360°,k∈Z,故D错误,故选:B3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.0【考点】命题的真假判断与应用.【分析】根据空间点的对称性分别进行判断即可.【解答】解:①点P(a,b,c)关于横轴(x轴),则x不变,其余相反,即对称点是P1(a,﹣b,﹣c);故①错误,②点P(a,b,c)关于yOz坐标平面的对称,则y,z不变,x相反,即对称点P2(﹣a,b,c);故②错误③点P(a,b,c)关于纵轴(y轴)的对称,则y不变,x,z相反,即对称点是P3(﹣a,b,﹣c);故③错误,④点P(a,b,c)关于坐标原点的对称,则x,y,z都为相反数,即对称点为P4(﹣a,﹣b,﹣c).故④正确,故选:C4.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.【考点】任意角的三角函数的定义.【分析】根据三角函数的大小建立方程求出a的值即可得到结论.【解答】解:∵α是第二象限的角,其终边上一点为P(a,),且cosα=a,∴a<0,且cosα=a=,平方得a=﹣,则sinα===,故选:A.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]【考点】复合三角函数的单调性.【分析】利用正弦函数的单调性,确定单调区间,结合x的X围,可得结论.【解答】解:由正弦函数的单调性可得≤﹣2x≤(k∈Z)∴﹣﹣kπ≤x≤﹣﹣kπk=﹣1,则故选C.6.已知,且,则tanφ=()A.B.C.﹣D.【考点】同角三角函数间的基本关系.【分析】先由诱导公式化简cos(φ)=﹣sinφ=确定sinφ的值,再根据φ的X 围确定cosφ的值,最终得到答案.【解答】解:由,得,又,∴∴tanφ=﹣故选C.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.2【考点】空间中的点的坐标.【分析】求出对称点的坐标,然后求解距离.【解答】解:点A(1,2,﹣1),点C与点A关于平面xoy对称,可得C(1,2,1),点B与点A关于x轴对称,B(1,﹣2,1),∴|BC|==4故选:B.8.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值【考点】三角函数的周期性及其求法.【分析】直线y=a与正切曲线y=tanωx两相邻交点间的距离,便是此正切曲线的最小正周期.【解答】解:因为直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离就是正切函数的周期,∵y=tanωx的周期是:,∴直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离是:.故选:B.9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称【考点】正弦函数的对称性.【分析】将x=0代入函数得到f(0)=2sin(﹣)=﹣1,从而可判断A、B;将代入函数f(x)中得到f()=0,即可判断C、D,从而可得到答案.【解答】解:令x=0代入函数得到f(0)=2sin(﹣)=﹣1,故A、B不对;将代入函数f(x)中得到f()=0,故是函数f(x)的对称中心,故C 对,D不对.故选C.10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.【考点】三角函数的化简求值.【分析】由已知的sinθ<tanθ,移项并利用同角三角函数间的基本关系变形后得到tanθ(1﹣cosθ)大于0,由余弦函数的值域得到1﹣cosθ大于0,从而得到tanθ大于0,可得出θ为第一或第三象限,若θ为第一象限角,得到sinθ和cosθ都大于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围;若θ为第三象限角,得到sinθ和cosθ都小于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围,综上,得到满足题意的θ的X围.【解答】解:∵sinθ<tanθ,即tanθ﹣sinθ>0,∴tanθ(1﹣cosθ)>0,由1﹣cosθ>0,得到tanθ>0,当θ属于第一象限时,sinθ>0,cosθ>0,∴|cosθ|<|sinθ|化为cosθ<sinθ,即tanθ>1,则θ∈(,);当θ属于第三象限时,sinθ<0,cosθ<0,∴|cosθ|<|sinθ|化为﹣cosθ<﹣sinθ,即tanθ>1,则θ∈(,),综上,θ的取值X围是.故选C11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα【考点】三角函数的化简求值.【分析】利用同角三角函数基本关系式、三角函数值在各个象限的符号即可得出.【解答】解:∵π<α<,∴==,同理可得=,∴原式=﹣(1﹣sinα)﹣(1﹣cosα)=﹣2+cosα+sinα.故选:A.12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.【考点】圆的标准方程.【分析】设扇形和内切圆的半径分别为R,r.由弧长公式可得2π=R,解得R.再利用3r=R=6即可求得扇形的内切圆的半径.【解答】解:设扇形和内切圆的半径分别为R,r.由2π=R,解得R=6.由题意可得3r=R=6,即r=2.∴扇形的内切圆的半径为2.故选:A.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.【考点】正切函数的定义域.【分析】根据正弦函数的定义域,我们构造关于x的不等式,解不等式,求出自变量x的取值X围,即可得到函数的定义域.【解答】解:要使函数的解析式有意义自变量x须满足:≠kπ+,k∈Z解得:故函数的定义域为故答案为14.函数y=2cos(ωx)的最小正周期是4π,则ω=±.【考点】三角函数的周期性及其求法.【分析】利用周期公式列出关于ω的方程,求出方程的解即可得到ω的值.【解答】解:∵=4π,∴ω=±.故答案为:±15.已知tanα=2,则tan2α的值为﹣.【考点】二倍角的正切.【分析】由条件利用二倍角的正切公式求得tan2α的值.【解答】解:∵tanα=2,∴tan2α===﹣,故答案为:﹣.16.已知sin(﹣x)=,则cos(﹣x)= ﹣.【考点】运用诱导公式化简求值.【分析】原式中的角度变形后,利用诱导公式化简,将已知等式代入计算即可求出值.【解答】解:∵sin(﹣x)=,∴cos(﹣x)=cos[+(﹣x)]=﹣sin(﹣x)=﹣.故答案为:﹣三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.【考点】三角函数的化简求值.【分析】把已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系变形求出2sinαcosα的值,进而判断出sinα﹣cosα的正负,利用完全平方公式及同角三角函数间的基本关系求出sinα﹣cosα的值,联立求出sinα与cosα的值,即可确定出的值.【解答】解:把sinα+cosα=①,两边平方得:(sinα+cosα)2=1+2sinαcosα=,∴2sinαcosα=﹣,∵α∈(0,π),∴sinα>0,cosα<0,即sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②,解得:sinα=,cosα=﹣,则==﹣.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的定义域和值域.【分析】(1)根据最低点M可求得A;由x轴上相邻的两个交点之间的距离可求得ω;进而把点M代入f(x)即可求得φ,把A,ω,φ代入f(x)即可得到函数的解析式.(2)根据x的X围进而可确定当的X围,根据正弦函数的单调性可求得函数的最大值和最小值.确定函数的值域.【解答】解:(1)由最低点为得A=2.由x轴上相邻的两个交点之间的距离为得=,即T=π,由点在图象上的故∴又,∴(2)∵,∴当=,即时,f(x)取得最大值2;当即时,f(x)取得最小值﹣1,故f(x)的值域为[﹣1,2]19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.【考点】三角函数的化简求值.【分析】利用韦达定理可求得sinθ+cosθ=,sinθ•cosθ=,利用同角三角函数基本关系式即可解得m,将所求的关系式化简为sinθ+cosθ,即可求得答案.【解答】解:∵sinθ和cosθ为方程2x2﹣mx+1=0的两根,∴sinθ+cosθ=,sinθ•cosθ=,∵(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ=1+2sinθcosθ,∴m2=1+2×,解得:m=±2,∴+=+=sinθ+cosθ=.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.【考点】余弦函数的定义域和值域.【分析】由求出的X围,由余弦函数的性质求出cos(2x﹣)的值域,根据解析式对a分类讨论,由原函数的值域分别列出方程组,求出a、b的值.【解答】解:由得,,∴cos(2x﹣),当a>0时,∵函数的值域是[﹣5,1],∴,解得,当a<0时,∵函数的值域是[﹣5,1],∴,解得,综上可得,或.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域.【分析】(Ⅰ)由题目所给的解析式和图象可得所求;(Ⅱ)由x∈[﹣,﹣]可得2x+∈[﹣,0],由三角函数的性质可得最值.【解答】解:(Ⅰ)∵f(x)=3sin(2x+),∴f(x)的最小正周期T==π,可知y0为函数的最大值3,x0=;(Ⅱ)∵x∈[﹣,﹣],∴2x+∈[﹣,0],∴当2x+=0,即x=时,f(x)取最大值0,当2x+=,即x=﹣时,f(x)取最小值﹣322.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?【考点】函数y=Asin(ωx+φ)的图象变换;三角函数的周期性及其求法;正弦函数的单调性.【分析】(1)由函数的解析式求得周期,由求得x的X围,即可得到函数的单调增区间(2)由条件可得,再根据函数y=Asin(ωx+∅)的图象变换规律得出结论.【解答】解:(1)由函数,可得周期等于 T==π.由求得,故函数的递增区间是.(2)由条件可得.故将y=sin2x的图象向左平移个单位,再向上平移个单位,即可得到f(x)的图象.。
精品:【全国百强校】重庆市第一中学2015-2016学年高一下学期期中考试数学试题(原卷版)
重庆市第一中学2015-2016学年高一下学期期中考试数学试题一、选择题(每小题5分,共60分)1.在等差数列{}n a ,12a =,3510a a +=,则公差d =( )A .-1B .1C .2D .32.不等式111x ≤-的解集为( )A .(,1)[2,)-∞+∞B .(,0](1,)-∞+∞C .(1,2]D .[2,)+∞3.甲、乙两名同学八次数学测试成绩如茎叶图所示,则甲同学成绩的众数与乙同学成绩的中位数依次为() A .85,86 B .85,85, C .86,85 D .86,864.运行如下的程序框图,输出的n 值为( )A .4B .3C .2D .15.(原创)ABC ∆中,角090C =,若(,1),(2,2)AB t AC ==,则t =( )A .-1B .1C .-3D .3 6.已知21()sin x f x x ⎧-⎪=⎨⎪⎩ 00x x >≤,则下列结论正确的是( ) A .()f x 为偶函数 B .()f x 为增函数 C . ()f x 为周期函数 D .()f x 值域为()1,-+∞7.从向阳小区抽取100户居民进行月用电量调查,为制定阶梯电价提供数据,发现其用电量都在50到350度之间,制作频率分布直方图的工作人员精心大意,位置t 处未标明数据,你认为t =( )A .0.0041B .0.0042C .0.0043D .0.00448.(原创)已知递减的等比数列{}n a 满足22a =,前三项和为7,则12n a a a 取最大值时n =( ) A .2 B .3 C .2或3 D .3或49.(原创)设a 为实数,则下列不等式一定不成立的是( )A .24a a >B .2lg lg a a <C .20a a +≤D .12a a+< 10.锐角ABC ∆三边长分别为,1,2x x x ++,则x 的取值范围是( )A .(1,3)-B .(1,3)C .(3,)+∞D .(1,3)(3,)+∞11.(原创)设G 为ABC ∆的重心,2AG AM =,则( ) A .2136BM BA BC =-+ B .2136BM BA BC =+ C .2136BM BA BC =- D .2136BM BA BC =-- 12.已知函数()(1)f x x m x =+,关于x 的不等式()()f x f x m >+的解集记为T ,若区间11,22T ⎡⎤-⊆⎢⎥⎣⎦,则实数m 的取值范围是( )A. B. C.(-∞ D.13(0,+ 二、填空题(每小题5分,共20分)13.(原创)重庆某教育研究机构对重庆38个区县中学生体重进行调查,按地域把它们分成甲、乙、丙、丁四个组,对应区县个数为4,10,16,8,若用分层抽样抽取9个城市,则丁组应抽取的区县个数为__________.14. ABC ∆中,05,7,120AB AC B ===,则ABC ∆的面积为__________.15.设0,0x y >>,且312()2x y -=,则14x y+的最小值为__________. 16.(原创)对数列{}n a 前n 项和为n S ,0n a >(1,2,n =),121a a ==,且对2n ≥有12()n n a a a a +++1211()n n a a a a -+=+++,则1223341n n S S S S S S S S -++++=__________.三、解答题 (共70分.)17.(10分)已知数列{}n a 前n 项和为212n S n n =-+. (1)求{}n a 的通项公式;(2)求数列{}n a 的前10项和10T .18.(12分)在ABC ∆中,角,,A B C 对边分别为,,a b c ,角34C π=,且sin 2sin cos()B A A B =+. (1)证明:222b a =;(2)若ABC ∆面积为1,求边c 的长.19.(12分)某家父母记录了女儿玥玥的年龄(岁)和身高(单位cm )的数据如下:(1)试求y 关于x 的线性回归方程y bx a =+;(2)试预测玥玥10岁时的身高.(其中,121()()()ni ii n ii x x y y b x x ==--=-∑∑,a y bx =-)20.(12分)直角三角形ABC 中,角,,A B C 对边长分别为,,a b c ,090C ∠=.(1)若三角形面积为2,求斜边长c 最小值;(2)试比较n n a b +与n c *()n N ∈的大小,并说明理由.21.(12分)已知函数9()log (91)()x f x kx k R =++∈是偶函数.(1)求k 的值;(2)若函数94()log (3)3x g x a a =∙-的图象与()f x 的图象有且只有一个公共点,求a 的取值范围. 22. (12分)已知函数{}1:n a a t =,2221()n n n n n S n S a a +=++,1,2,n = (1)设{}n a 为等差数列,且前两项和23S =,求t 的值;(2)若13t =,证明:121n n a n ≤<+。
重庆市第八中学2018年高一数学下册期中检测题
重庆八中2015—2016学年度(下)半期考试高一年级数 学 试 题命题:邱长江 陈发帮 审核:李小平 打印:陈发帮 校对:邱长江第I 卷(选择题 共60分)一. 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.在数列1,1,2,3,5,8,,21,34,55,...x 中,x =( )A.11B.12C.13D.14 2.若等差数列{}n a 中,79416,1a a a +==,则12a的值是( )A.15B.30C.31D.64 3.0000sin130cos10sin 40sin10+=( ) A. C.12- D.12已知2,,,AB BC OA a OB b OC c ====,则下列等式中成立的是(A.31c b a =- B.2c b a =-C.2c a b =-D.3122c a b =-5.若2sin 23α=,则2sin ()4α-=( )A.23 B.12 C.13 D.166.若钝角三角形ABC 的面积为12,且1,AB BC =则AC =( ) 5 C.2 D.17.在四边形ABCD 中,(1,2)AC =,(4,2)BD =-,则该四边形的面积为( ) 8.若等差数列{}n a 的前n 项和2n S n =,则2241n n S a ++的最小值为( )A .题4图9.已知平面向量,a b 满足:||1,||2,a b a b ==与的夹角为3π.若ABC ∆中22,26AB a b AC a b =+=-,D 为边BC 的中点,则||AD =( )A.12B.5D.10.在ABC ∆中,内角,B C 对的边分别为b c ,.若2C B =,则cb的取值范围为( ) A.[2,2]- B.1(,1)2C.(0,2)D.(1,2)11.在ABC ∆中,内角,,A B C 的对边分别为,,a b c .若2220b c bc a ++-=,则0sin(30)=a Cb c--( ) A.12C.12-D.2-12.在ABC ∆中,003AP P B =,0120,2C AC ∠==.且对于边AB 上任意一点P ,当且仅当P 在0P 时,PB PC ⋅取得最小值,则下列结论一定正确的是( ) A.045BAC ∠=B.ABC S ∆=C.AC BC =D.AB =第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4小题,每小题5分,共20分,把答案填写在答题卡相应位置上.13.若数列,1,,7a b 是等差数列,则ba= .14.若平面向量a 与b 满足:||2,||1a b ==,||7a b +=,则a 与b 的夹角为 . 15.若022ππβα-<<<<,1cos()43πα+=,cos()42πβ-=,则cos()2βα+= .16.如图,在ABC ∆中,D 是边BC 上一点,AB =2AD AC =,1cos 3BAD ∠=,则sin C = .AB DC题16图三. 解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分10分.)已知等差数列{}n a 满足:3577,26.{}n a a a a =+=的前n 项和为.n S (Ⅰ)求n a 及n S ; (Ⅱ)令()nn S b n N n+=∈,求证:数列{}n b 为等差数列.18.(本小题满分12分.)已知平面内三个向量:(3,2),(1,2),(4,1).a b c ==-= (Ⅰ)若()//(2)a kc b a +-,求实数k 的值;(Ⅱ)设(,)d x y =,且满足()()a b d c +⊥-,||5d c -=,求d .19.(本小题满分12分.) 已知3110,tan 4tan 3παπαα<<+=-. (Ⅰ)求tan α的值; (Ⅱ)求225sin 8sincos11cos 822222ααααπα++-⎛⎫- ⎪⎝⎭的值.20.(本小题满分12分.)如图,,A B是海面上位于东西方向相距5(3+海里的两个观测点,现位于A 点北偏东045,B 点北偏西060的D 点有一艘轮船发出求救信号,位于B 点南偏西060且与B点相距C 点的救援船立即前往营救,其航行速度为30海里/小时,则该救援船达到D 点需要多长时间?21.(本小题满分12分.)在ABC ∆中,角,,A B C 的对边分别为c b a ,,,且满足2sin()6b C ac π+=+.(Ⅰ)求角B 的大小; (Ⅱ)若点M 为BC 中点,且AM AC =,求sin BAC ∠.题20图22.(本小题满分12分.)已知函数1()sin[()](01)3f x x ωπω=+<<的部分图像如图所示,其中P 为函数图像的最高点,,A B 是函数图像与x 轴的相邻两个交点,且1tan .2APB ∠= (Ⅰ)求函数()f x 的解析式;(Ⅱ)已知角,,αβθ满足:2121()()333f f αβππ-⋅-=,且3,tan 2.4παβθ+== 求sin()sin()cos 2θαθβθ++的值.x重庆八中2015—2016学年度(下)半期考试高一年级数学试题参考答案及评分标准一.选择题13. 2 14. 060三.解答题17.解:(1)由题意有,112721026a d a d +=⎧⎨+=⎩132a d =⎧⇒⎨=⎩21,(2)n n a n S n n ⇒=+=+...................5分 (2)(2)2n n S n n b n n n+===+,又12(1)1(n 2)n n b b n n --=+-+=≥, 所以,数列{}n b 为等差数列. ...................10分18.解:(1)因为(3,2)k(4,1)(34k,2k)a kc +=+=++,2(5,2)b a -=-,又()//(2)a kc b a +-, 所以162(34k)5(2k)0k .13+++=⇒=-. ..................6分 (2)因为(2,4),(4,1)a b d c x y +=-=--,所以222(4)4(1)06202(4)(1)5x y x x y y x y -+-===⎧⎧⎧⇒⎨⎨⎨==-+-=⎩⎩⎩或. ...................11分故(6,0)(2,2).d =或 (12)分19.解:(Ⅰ)由110tan tan 3αα+=-得23tan 10tan 30αα++=, 即tan 3α=-,或1t a n 3α=-, (5)分又34παπ<<,1tan 3α=-. ...................6分(Ⅱ)原式1-cos 1+cos 54sin 118ααα++-分=...................11分=. ...................12分20.解:在ABD ∆中,0006045105ADB ∠=+=, 由正弦定理可得:0sin sin 45AB BDADB =∠,sin 45BDBD =⇒= ...................5分在BCD ∆中,060CBD ∠=,由余弦定理可知:2222cos CD BD CB BD CB CBD =+-⋅⋅⋅∠,即22202cos60900CD =+-⋅=,故30CD =....................10分 所以130CDt ==(小时),救援船到达D 点需要1小时时间. ...........12分21.解答:(Ⅰ)12sin (sin cos )sin sin 2B C C A C ⋅=+...................2分sin sin cos sin sin sin cos cos sin sin B C B C A C B C B C C +=+=++, ..................4分sin cos sin sin B C B C C =+,cos 1B B =+,所以2sin()16B π-=,得3B π=. ………6分(Ⅱ)解法一:取CM 中点D ,连AD ,则AD CM ⊥,则CD x =,则3BD x =, 由(Ⅰ)知3B π=,,AD AC ∴=∴=,. (9)分由正弦定理知,4sin x BAC =∠sin BAC ∠=. ………12分解法二:由(Ⅰ)知3B π=,又M 为BC 中点,2a BM MC ∴==.在ABM ∆和ABC ∆中,由余弦定理分别得:22222()2cos ,2242a a a ac AM c c B c =+-⋅⋅⋅=+- 222222cos ,AC a c ac B a c ac =+-⋅=+-又AM AC =,2242a ac c ∴+-=22,a c ac +-3,2a c b ∴=∴=由正弦定理知:sin a BAC =∠sin BAC ∠=.22.(1)过点P 作PQ x ⊥轴于点Q ,设()f x 的周期为T ,则31tan tan 144tan tan()1tan tan 2144T TQPB QPA APB QPB QPA QPB QPA T T -∠-∠∠=∠-∠===+∠⋅∠+⋅ 解得443T T ==或,所以13=22ω或(舍),. ..................3分 所以()sin()26f x x ππ=+. ...................4分(2)由2121()()333f f αβππ-⋅-=得, sin sin αβ=又3,4παβ+=...................5分所以cos cos sin sin αβαβ-=cos cos αβ= 22sin()sin()(sin cos cos sin )(sin cos cos sin )cos 2cos sin θαθβθαθαθβθβθθθ++++=-2222sin cos cos sin cos (sin cos cos sin )cos sin cos cos sin θαβθθαβαβθαβθθ+++=-2222cos 623cos sin θθθθθθ++=-22tan 6231tan θθθ+=-. ..................11分9=-...................12分重庆八中2015-2016学年度(下)半期考试高一年级历 史 试 卷一、选择题(本大题共12小题。
2015-2016年陕西省西安一中高一(下)期中数学试卷和答案
2015-2016学年陕西省西安一中高一(下)期中数学试卷一.选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(1)某学校为了了解2011年高考数学学科的考试成绩,在高考后对1200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ简单随机抽样法.Ⅱ系统抽样法.Ⅲ分层抽样法.问题与方法配对正确的是()A.(1)Ⅲ,(2)ⅠB.(1)Ⅰ,(2)ⅡC.(1)Ⅱ,(2)ⅢD.(1)Ⅲ,(2)Ⅱ2.(3分)下列命题正确:(1)终边相同的角的同名三角函数的值相等(2)若sinα>0,则α是第一、二象限的角(3)终边不同的角的同名三角函数的值不可能相等(4)三角函数的值确定,则角的大小就确定其中不正确的命题的个数()A.1个B.2个C.3个D.4个3.(3分)若将两个数a=8,b=17交换,使a=17,b=8,下面语句正确的一组是()A.B.C.D.4.(3分)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B 两样本的下列数字特征对应相同的是()A.众数B.平均数C.中位数D.方差5.(3分)若α,β都是第一象限角,且α<β,那么()A.sinα>sinβB.sinβ>sinαC.sinα≥sinβD.sinα与sinβ的大小不定6.(3分)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588B.480C.450D.1207.(3分)f(x)=asin(πx+α)+bcos(πx+β)+2,其中a、b、α、β为非零常数.若f(2015)=1,则f(2016)=()A.3B.8C.5D.不能确定8.(3分)先后抛掷两枚骰子,设出现的点数之和是12、11、10的概率依次是P1、P2、P3,则()A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P19.(3分)函数y=++的值域是()A.{3}B.{3,﹣1}C.{3,1,﹣1}D.{3,1,﹣1,﹣3}10.(3分)对具有线性相关关系的变量x,y测得一组数据如下表:根据上表,利用最小二乘法得他们的回归直线方程为=10.5x+,据此模型来预测当x=20时,y的估计值为()A.210B.211.5C.212D.212.511.(3分)为得到函数y=cos(2x+)的图象,只需将y=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度12.(3分)如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=二、填空题(本大题5小题每小题4分,共20分)13.(4分)函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=.14.(4分)三个人玩传球游戏,每个人都等可能地传给另两人(不自传),若从A发球算起,经4次传球又回到A手中的概率是.15.(4分)函数f(x)=sin(﹣2x+)的单调增区间为,单调减区间为.16.(4分)在抛掷一颗骰子的试验中,事件A表示“不大于4的偶数点出现”,事件B表示“小于5的点数出现”,则事件A+发生的概率为.(表示B的对立事件)17.(4分)某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为.三、解答题(本大题4小题共44分)18.(10分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)19.(12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考公式:=,=﹣b;参考数值:3×2.5+4×3+5×4+6×4.5=66.5)20.(10分)已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.21.(12分)已知角θ的终边经过点P(,m)(m≠0)且sinθ=试判断角θ所在的象限,并求cosθ和tanθ的值.2015-2016学年陕西省西安一中高一(下)期中数学试卷参考答案与试题解析一.选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(1)某学校为了了解2011年高考数学学科的考试成绩,在高考后对1200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ简单随机抽样法.Ⅱ系统抽样法.Ⅲ分层抽样法.问题与方法配对正确的是()A.(1)Ⅲ,(2)ⅠB.(1)Ⅰ,(2)ⅡC.(1)Ⅱ,(2)ⅢD.(1)Ⅲ,(2)Ⅱ【解答】解:(1)中由于1200名学生各个学生层次之间存在明显差别故(1)要采用分层抽样的方法(2)中由于总体数目不多,而样本容量不大故(2)要采用简单随机抽样故问题和方法配对正确的是:(1)Ⅲ(2)Ⅰ.故选:A.2.(3分)下列命题正确:(1)终边相同的角的同名三角函数的值相等(2)若sinα>0,则α是第一、二象限的角(3)终边不同的角的同名三角函数的值不可能相等(4)三角函数的值确定,则角的大小就确定其中不正确的命题的个数()A.1个B.2个C.3个D.4个【解答】解:(1)终边相同的角的同名三角函数的值相等,正确,(2)若s inα>0,则α是第一、二象限的角或者在y轴的正半轴,故(2)错误,(3)终边不同的角的同名三角函数的值不可能相等,错误,如sin=sin=,(4)三角函数的值确定,则角的大小不确定,错误比如sinx=,则x=,x=都可以,故(2)(3)(4)错误,故选:C.3.(3分)若将两个数a=8,b=17交换,使a=17,b=8,下面语句正确的一组是()A.B.C.D.【解答】解:先把b的值赋给中间变量c,这样c=17,再把a的值赋给变量b,这样b=8,把c的值赋给变量a,这样a=17.故选:B.4.(3分)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B 两样本的下列数字特征对应相同的是()A.众数B.平均数C.中位数D.方差【解答】解:A样本数据:82,84,84,86,86,86,88,88,88,88.B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错.平均数86,88不相等,B错.中位数分别为86,88,不相等,C错A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,D正确故选:D.5.(3分)若α,β都是第一象限角,且α<β,那么()A.sinα>sinβB.sinβ>sinαC.sinα≥sinβD.sinα与sinβ的大小不定【解答】解:∵α与β都是第一象限角,并且α<β,∴根据终边相同角可以相差2π的整数倍,可得sinα、sinβ的大小不能确定,故选:D.6.(3分)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588B.480C.450D.120【解答】解:根据频率分布直方图,成绩不低于60(分)的频率为1﹣10×(0.005+0.015)=0.8.由于该校高一年级共有学生600人,利用样本估计总体的思想,可估计该校高一年级模块测试成绩不低于60(分)的人数为600×0.8=480人.故选:B.7.(3分)f(x)=asin(πx+α)+bcos(πx+β)+2,其中a、b、α、β为非零常数.若f(2015)=1,则f(2016)=()A.3B.8C.5D.不能确定【解答】解:∵f(x)=asin(πx+α)+bcos(πx+β)+2,∴f(2015)=asin(2015π+α)+bcos(2015π+β)+2=1,∴﹣asinα﹣bcosβ+2=1,∴asinα+bcosβ=1;∴f(2016)=asin(2016π+α)+bcos(2016π+β)+2=asinα+bcosβ+2=1+2=3,故选:A.8.(3分)先后抛掷两枚骰子,设出现的点数之和是12、11、10的概率依次是P1、P2、P3,则()A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P1【解答】解:先后抛掷两枚骰子,出现的点数共有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36种其中点数之和是12的有1种,故P1=;点数之和是11的有2种,故P2=点数之和是10的有3种,故P3=故P1<P2<P3故选:B.9.(3分)函数y=++的值域是()A.{3}B.{3,﹣1}C.{3,1,﹣1}D.{3,1,﹣1,﹣3}【解答】解:当x是第一象限角时,sinx>0、cosx>0、tanx>0,则y=++=1+1+1=3;当x是第二象限角时,sinx>0、cosx<0、tanx<0,则y=++=1﹣1﹣1=﹣1;当x是第三象限角时,sinx<0、cosx<0、tanx>0,则y=++=﹣1﹣1+1=﹣1;当x是第四象限角时,sinx<0、cosx>0、tanx<0,则y=++=﹣1+1﹣1=﹣1;综上可得,函数y=++的值域是{﹣1,3},故选:B.10.(3分)对具有线性相关关系的变量x,y测得一组数据如下表:根据上表,利用最小二乘法得他们的回归直线方程为=10.5x+,据此模型来预测当x=20时,y的估计值为()A.210B.211.5C.212D.212.5【解答】解:由题意可知:==5,==54.因为回归直线方程经过样本中心,所以54=10.5×5+,=1.5,回归直线方程为:=10.5x+1.5,当x=20时,y的估计值为:10.5×20+1.5=211.5.故选:B.11.(3分)为得到函数y=cos(2x+)的图象,只需将y=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【解答】解:将函数y=sin2x的图象向左平移个单位长度,可得y=sin2(x+)=sin(2x+)=cos(2x+)的图象,故选:A.12.(3分)如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=【解答】解:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是P=.故选:D.二、填空题(本大题5小题每小题4分,共20分)13.(4分)函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=.【解答】解:由函数的图象可得A=,•T=﹣=•,求得ω=2.再根据五点法作图可得2×+φ=π,∴φ=,故f(x)=sin(2x+),∴f (0)=sin=,故答案为:.14.(4分)三个人玩传球游戏,每个人都等可能地传给另两人(不自传),若从A发球算起,经4次传球又回到A手中的概率是.【解答】解:记三个人为A、B、C,则经4次传球的所有可能可用树状图方式列出,如右图每一个分支为一种传球方案,则基本事件的总数为16,而又回到A手中的事件个数为6个,根据古典概型概率公式得P==.故答案为:.15.(4分)函数f(x)=sin(﹣2x+)的单调增区间为[kπ+,kπ+],k∈Z,单调减区间为[kπ+,kπ+],k∈Z.【解答】解:∵函数f(x)=sin(﹣2x+)=﹣sin(2x﹣),令2kπ﹣≤2x﹣≤2kπ+,求得kπ+≤x≤kπ+,可得该函数的单调减区间为[kπ+,kπ+],k∈Z.令2kπ+≤2x﹣≤2kπ+,求得kπ+≤x≤kπ+,可得该函数的单调增区间为[kπ+,kπ+],k∈Z.故答案为:[kπ+,kπ+],k∈Z;[kπ+,kπ+],k∈Z.16.(4分)在抛掷一颗骰子的试验中,事件A表示“不大于4的偶数点出现”,事件B表示“小于5的点数出现”,则事件A+发生的概率为.(表示B 的对立事件)【解答】解:随机抛掷一颗骰子一次共有6中不同的结果,其中事件A“出现不大于4的偶数点”包括2,4两种结果,P(A)==,事件B“出现小于5的点数”的对立事件,P(B)==,P()=,且事件A和事件是互斥事件,∴P(A+)=+=.故答案为:.17.(4分)某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为4.【解答】解:由题意可得:x+y=20,(x﹣10)2+(y﹣10)2=8,设x=10+t,y=10﹣t,则2t2=8,解得t=±2,∴|x﹣y|=2|t|=4,故答案为:4.三、解答题(本大题4小题共44分)18.(10分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【解答】解:(Ⅰ)由图看出,1日至13日13天的时间内,空气质量优良的是1日、2日、3日、7日、12日、13日共6天.由古典概型概率计算公式得,此人到达当日空气质量优良的概率P=;(Ⅱ)此人在该市停留期间两天的空气质量指数(86,25)、(25,57)、(57,143)、(143,220)、(220,160)(160,40)、(40,217)、(217,160)、(160,121)、(121,158)、(158,86)、(86,79)、(79,37)共13种情况.其中只有1天空气重度污染的是(143,220)、(220,160)、(40,217)、(217,160)共4种情况,所以,此人在该市停留期间只有1天空气重度污染的概率P=;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图看出从5日开始连续5、6、7三天的空气质量指数方差最大.19.(12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考公式:=,=﹣b;参考数值:3×2.5+4×3+5×4+6×4.5=66.5)【解答】解:(1)由数据作出散点图:分(2)…(6分)所以:=4.5,=3.5,b===0.7,a=3.5﹣0.7×=0.35,所以线性同归方程为:y'=0.7x+0.35…(9分)(3)x=100时,y'=0.7×100+0.35=70.35,所以预测生产100吨甲产品的生产能耗比技术改造前降低19.65吨标准煤…(12分)20.(10分)已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.【解答】解:(1)由最低点为得A=2.由x轴上相邻的两个交点之间的距离为得=,即T=π,由点在图象上的故∴又,∴(2)∵,∴当=,即时,f(x)取得最大值2;当即时,f(x)取得最小值﹣1,故f(x)的值域为[﹣1,2]21.(12分)已知角θ的终边经过点P(,m)(m≠0)且sinθ=试判断角θ所在的象限,并求cosθ和tanθ的值.【解答】解:由角θ的终边经过点P(,m)(m≠0),得|OP|=,∴sinθ==,解得m2=5,即m=,|OP|=2①当m=时,θ在第二象限,cosθ==,tanθ==﹣;②当m=﹣时,θ在第三象限,cosθ=,tanθ==.。
高一下学期期中考试数学试卷含答案(人教版)
第二学期期中考试 高一年级数学试题一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( ) A. 2 B. 3 C. -2 D. 不存在2.直线210x y ++=的斜率为k ,在y 轴上的截距为b ,则( ) A. 2,1k b == B. 2,1k b =-=- C. 2,1k b =-= D. 2,1k b ==- 3.过点()0,1且与直线210x y -+=垂直的直线方程是( ) A. 220x y -+= B. 210x y --= C. 210x y +-= D. 210x y ++=4.a , b , c 为三条不重合的直线, α, β,γ为三个不重合平面,现给出四个命题:①a ab b γγ⎫⇒⎬⎭;②c c ααββ⎫⇒⎬⎭;③αγαββγ⎫⇒⎬⎭;④c a a c αα⎫⇒⎬⎭.其中正确的是( ).A. ①②B. ③④C. ③D. ③②5.已知直线210x ay -+=与直线820ax y -+=平行,则实数a 的值为( ) A. 4 B. -4 C. -4或4 D. 0或46.圆x 2+y 2-4x=0的圆心坐标和半径分别为 ( ) A.(0,2),2B.(2,0),4C.(-2,0),2D.(2,0),27.圆()2211x y -+=与直线30x y -=的位置关系是( ) A. 相交 B. 相切 C. 相离 D. 直线过圆心.8.一个四面体的三视图如图所示,则该四面体的表面积是( )A. 1+3B. 2+3C. 1+22D. 22 9.已知点与关于对称,则点的坐标为( ) A. B. C.D. 10.如图,在正方体中,点为正方形的两条对角线的交点,点是棱的中点,则异面直线与所成角的正切值为( )A. B. C. D.11.正三棱柱111ABC A B C -(侧棱与底面垂直且底面为等边三角形)的底面边长为1,侧棱长为2,则1AC 与侧面11ABB A 所成的角为( ) A. 30 B. 45 C. 60 D. 9012、如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上 有两个动点E 、F ,且EF =12,则下列结论中错误..的是 ( ) A .AC ⊥BE B .EF ∥平面ABCDC .三棱锥A -BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等二.填空题(本大题共4小题,每小题5分,共20分)13.若直线的倾斜角为120,过点A (2,1),则直线的斜率为14.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角B′-AD-C ,此时∠B′AC=60°,那么这个二面角大小是15.若l 为一条直线,α,β,γ为三个互不重合的平面,给出下面四个命题:①α⊥γ,β⊥γ,则α⊥β;②α⊥γ,β∥γ,则α⊥β;③l ∥α,l ⊥β,则α⊥β.④若l ∥α,则l 平行于α内的所有直线。
2015~2016学年第一学期初一数学期中考试试卷及答案
2015~2016学年第一学期初一数学期中考试试卷(考试时间:90分钟 满分:100分) 一、细心选一选 (每小题3分,共24分)1.下面的计算正确的是 ( )A .6a -5a =1B .a + 2a 2 =3a 3C .-(a -b ) =-a + bD .2(a + b ) =2a + b 2.在(-1)3,(-1)2012,-22,(-3)2这四个数中,最大的数与最小的数的差等于 ( ) A .10 B .8 C .5 D .13 3.下列各组代数式中,是同类项的是 ( )A .5x 2 y 与15xy B .-522 y 与15yx 2 C .5ax 2与15yx 2 D .83与x 34.给出下列判断:①单项式5×103x 2的系数是5;②x -2xy + y 是二次三项式;③多项式-3a 2 b +7a 2b 2-2ab +1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是( )A .1个B .2个C .3个D .4个5.有理数a ,b ,c 在数轴上的位置如图所示, 则a c ++c b --b a += ( )A .-2bB .0C .2cD .2c -2b 6.若m =3,n =5且m -n >0,则m + n 的值是 ( )A .-2B .-8或-2C .-8或8D .8或-27.上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为 ( ) A .a b x y++ B .ax by ab+ C .ax by a b++ D .2x y +8.观察图中每一个正方形各顶点所标数字的规律,2 012应标在 ( )A .第502个正方形左上角顶点处B .第502个正方形右上角顶点处C .第503个正方形左上角顶点处D .第503个正方形右上角顶点处二、认真填一填 (每小题2分,共20分)9.-23的倒数为 ;绝对值等于3的数是 .10.钓鱼岛是钓鱼岛列岛的主岛,是中国固有领土,位于中国东海,面积4 384 000 m 2,将这个数据用科学记数法可表示为 m 2. 11.比较大小,用“<”“>”或“一”连接:(1) -34--(-23) (2) -3.14 -π-12.已知4x 2m y m+n 与3x 6 y 2是同类项,则m -n = .13.数轴上与表示-2的点距离3个长度单位的点所表示的数是 . 14.已知代数式x -2y 的值是12,则代数式-2x + 4y -1的值是 .15·若a ,b 互为相反数,c ,d 互为倒数,m 到原点的距离为2,则代数式m —cd +a b m+的值为 .16.定义新运算“⊗”,规定:a ⊗b =13a -4b ,则12⊗(-1) = .17.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .18.观察表一,寻找规律.表二,表三,表四分别是从表一中截取的一部分,其中a + b + c的值为 .三、耐心解一解 (共56分)19.计算:(每小题3分,共12分)(1) -10-(-16)+(-24); (2) 5÷(-35)×53(3) -22×7-(-3)×6+5 (4) (113+18-2.75)×(-24)+(-1)2014+(-3)3.20.化简:(每小题3分,共6分)(1) 2x +(5x -3y )一(3x + y ); (2) 3(4x 2-3x +2)-2(1-4x 2-x ).21.(5分) 将-2.5,12,2,-2,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来.22.(5分) 已知多项式A,B,其中A=x2-2x + 1,小马在计算A+B时,由于粗心把A+B看成了A-B求得结果为-3x2-2x-1,请你帮小马算出A+B的正确结果.23.(本题满分8分)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如左下表:(1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?(3) 如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.8千米,下降2.9千米,再上升1.6千米.若要使飞机最终比起飞点高出1千米,问第4个动作是上升还是下降,上升或下降多少千米?24.(10分) 在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移a格(当a 为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移b格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b).例如,从A到B记为:A→B (+1,+3);从C到D记为:C→D (+1,-2).回答下列问题:(1) 如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程.(2) 若点A运动的路线依次为:A→M(+2,+3),M→N (+1,-1),N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M,N,P,Q的位置.(3) 在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是;n与q满足的数量关系是.25.(10分) 如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,a +(c-7)2=0.且a,b满足2(1) a=,b=,c=.(2) 若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.2015~2016学年第一学期初一数学期中考试试卷参考答案1.C 2.D 3.B 4.A 5.B 6.B 7.C 8.C 9.-323或-310.4.384×10611.< > 12.4 13.-5,1 14.-2 15. 1 16.8 17.3018.76 19.(1) -18 (2) -1259 (3) -5 (4) 5 20.(1) 4x -4y (2) 20x 2-7x + 421.画图略,-2.5<-2-<0<12<2<-(-3) 22.B =4x 2 + 2 A +B =5x 2-2x + 323.解:(1) +4.4+(-3.2)+1.1+(-1.5) =0.8(km) 答:这架飞机比起飞点高了0.8千米 (2) 2×( 4.4++ 3.2-+ 1.1++ 1.5-=20.4(升),答:4个动作表演完,一共消耗20.5升燃油. (3) 3.8-2.9+1.6-1=1.5, 答:第4个动作下降1.5千米. 24.(1) 1+3+2+1+3+4=14 (2)(3) m + p =5,n + q =0 25.(1) a =2,b =1,c =7 (2) 4 (3) AB =3t + 3,AC =5t + 9,BC =2t + 6 (4) 不变,始终为12.。
高一数学期中试卷带答案
高一数学期中试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.函数f (x )=x 2+2ax -b 在(-∞,1)上为减函数,则a 的取值范围为( ) A .[-1,+∞) B .(-∞,-1] C .[1,+∞) D .(-∞,1]2. 化简( ) A . B . C .D .3.若圆x +y =4和圆x +y +4x -4y +4=0关于直线l 对称,则l 的方程为( ) A .x +y=0 B .x +y-2=0 C .x-y-2=0 D .x-y+2=04.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为A .B .C .D . 5.(2015•惠州模拟)复数z=的虚部是( )A .B .iC .D .6.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是 ( ) A .② B .③ C .②③ D .①②③7.设,则( ▲ )A. B. C. D.8.设∈(0, ),β∈[0, ],那么2-的取值范围是A.(0,) B.(-,) C.(0,π) D.(- ,π)9.在△ABC中,分别为角所对的边,若,,则的值为()A. B. C.1 D.10.函数的值域是,则函数的值域为()A. B. C. D.11.已知( )A. B. C. D.12.函数的零点是A.3B.C.4D.13.一名小学生的年龄和身高(单位:cm)的数据如下:由散点图可知,身高y与年龄x之间的线性回归直线方程为,预测该学生10岁时的身高为()A .154B .153C .152D .15114.已知|a|=,|b|=4,且a 与b 的夹角为,则a·b 的值是A .1B .±1C .2D .±215.已知函数的定义域为,且为偶函数,则实数的值可以是( )A. B. C. D.16.某程序框图如图所示,该程序运行后输出的n值是8,则从集合中所有满足条件的S值为()A.0 B.1 C.3 D.417.(2009•锦州一模)下表是x与y之间的一组数据,则y关于x的线性回归方程x+必过点()x 0123A.(2,2)B.(1.5,2)C.(1,2)D.(1.5,4)18.函数的反函数的图像为()19.下列四式不能化简为的是()A.(+)+B.(+)+(+)C.+D.+20.下列说法中,正确的是()A.向量则向量B.锐角必是第一象限角,第一象限角必是锐角C.余弦函数在第一象限单调递减D.是终边相同的角二、填空题21.(2016年苏州B4)对一批产品的长度(单位:毫米)进行抽样检测,样本容量为400,右图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则样本中三等品的件数为_______.22.函数y=的定义域是23.内接于以为圆心,半径为的圆,且,则的边的长度为_________.24.函数的定义域为__________________; 25.定义运算为执行如图所示的程序框图输出的S 值,则的值为 .26.如图,是一个平面图形的水平放置的斜二侧直观图,则这个平面图形的面积等于 .27.平行投影与中心投影之间的区别是_____________;28.已知点,则向量在方向上的投影为_________. 29.若函数的定义域为[-2,2],则函数的定义域为 ______.30.函数的值域___________. 三、解答题31.(8分)已知集合A ={x|3≤x<10},集合B ={x|2x -8≥0}.(1)求A ∪B ; (2)求∁R (A∩B ).32.已知f(x)= (x -1)2+1的定义域与值域均为[1,b],求b 的值.33.(10分)集合A ={x|3≤x<10},集合B ={x|2x -8≥0}. (1)求A ∪B ; (2)求∁R (A∩B ).34.已知函数.(Ⅰ)判断函数的奇偶性,并加以证明;(Ⅱ)用定义证明在上是减函数;(Ⅲ)函数在上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程)35.(本小题满分13分)已知函数的图象经过点(2,),其中且。
河南省周口市商水县第一高级中学高一下学期期中考试数学(文)试题Word版含答案
商水一高2015—2016学年度下学期期中考试高一数学(文科)试题命题人:胡东亮一、选择题(单项选择 共60分)1.若sin α=45,且α是第二象限角,则tan α等于A .-43 B.34 C .±34 D .±432.下列命题中:①若0a b ⋅=,则0a =或0b =;②若a b =,()()0a b a b +⋅-=;③若a b a c ⋅⋅=,则b c =;④若a ∥b ,b ∥c ,则a ∥c ;其中正确的个数为 A .1 B .2C .3D .43.在△ABC 中,cosAcosB >sinAsinB ,则△ABC 为A . 锐角△ B. Rt △ C.钝角△ D.无法判定4.已知O ,A ,B ,C 为同一平面内的四个点,若2AC →+CB →=0,则OC →= A.23OA →-13OB → B .-13OA →+23OB → C .2OA →-OB → D .-OA →+2OB → 5.已知角θ的顶点与坐标原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则sin ⎝ ⎛⎭⎪⎫2θ+π4的值为A .-7 210 B.7 210 C .-210 D.2106.函数)(x f 是周期为π的偶函数,且当)2,0[π∈x 时,1tan 3)(-=x x f ,则)38(πf 的值是 A .4-B .2-C .0D .2 7.已知函数y =tan(2x +φ)的图像过点⎝⎛⎭⎪⎫π12,0,则φ的值可以是 A .-π6 B 。
π6 C .-π12 D.π128.给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x).f(y),f(x+y)=)()(1)()(y f x f y f x f -+下列函数中不满足其中任何一个等式的是A f(x)=X 3B f(x)=sinxC f(x)=x 2logD f(x)=tanx 9.在△ABC 中,AB =4,∠ABC=30°,D 是BC 上的一点,且AD →·AB →=AD →·AC →,AFBDEG则AD →·AB →的值为( )A .0B .-4C .8D .4 10.已知θ∈(0,π),且sin ⎝⎛⎭⎪⎫θ-π4=210,则tan 2θ=A .43B .34C .-247 D..24711.设向量a 与b 满足|a|=2,b 在a 方向上的投影为1,若存在实数λ,使得a 与a -λb 垂直,则λ=A.12 B .1 C .2 D .3 12.如图,在△ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确...的是 A .12DG AG =B .2CG GF =C .23BG BE = D .0GA GB GC ++=二 填空题(本大题共20分)13.(1+tan17°)(1+tan28°)=________ 14.化简:AB CD EC EB ++-= .15.已知f 1(x)=sin ⎝ ⎛⎭⎪⎫32π+x cos x ,f 2(x)=sin xsin(π+x),设f(x)=f 1(x)-f 2(x),则f(x)的单调递增区间是________________. 16.将函数f(x)=2sin ⎝⎛⎭⎪⎫2x -π4+1的图像向左平移π8个单位长度,再向下平移1个单位长度,得到函数g(x)的图像,则函数g(x)具有性质________.(填入所有正确性质的序号)①最大值为2,图像关于直线x =3π4对称; ②在⎝ ⎛⎭⎪⎫-π2,0上单调递增,且为偶函数; ③最小正周期为π;④图像关于点⎝ ⎛⎭⎪⎫π4,0对称;⑤在⎝ ⎛⎭⎪⎫0,π4上单调递增,且为奇函数.三 解答题(本大题共70分)17.(本小题满分10分)已知-π2<x <0,sinx +cosx =15,求: (1)sinx -cosx 的值;(2)求3sin 2x 2-2sin x 2cos x 2+cos 2x2tanx +1tanx 的值.18. (本小题满分12分)已知=(6,1),,且。
浙江省宁波市余姚三中2015-2016学年高一(下)期中数学考试卷(解析汇报版)
2015-2016学年省市余三中高一(下)期中数学试卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题的四个选项中,只有一项是符合题目要求的.)1.已知等差数列{a n }的前n 项和为S n ,若a 3+a 7=10,则S 9=( )A .9B .10C .45D .902.在△ABC 中,三边a ,b ,c 满足a 2=b 2+c 2+bc ,则角A 等于( )A .30°B .60°C .120°D .150°3.已知实数列﹣1,x ,y ,z ,﹣2成等比数列,则xyz 等于( )A .﹣4B .±4C .﹣2D .±24.若α,β为锐角,且满足cos α=,则sin β的值为( )A .B .C .D .5.一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了3个伙伴;第2天,4只蜜蜂飞出去,各自找回了3个伙伴如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中蜜蜂的总只数为( )A .243B .729C .1024D .40966.在△ABC 中,则C 等于( )A .B .C .D .7.一艘向正东航行的船,看见正北方向有两个相距10海里的灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的北偏西30°,另一灯塔在船的北偏西15°,则这艘船的速度是每小时( )A .5海里B .海里C .10海里D .海里8.化简的结果是( )A .﹣cos1B .cos 1C . cos 1D .9.在△ABC 中,若,则△ABC 的形状是( )A .直角三角形B .等腰或直角三角形C .不能确定D .等腰三角形10.等差数列{a n }和{b n }的前n 项的和分别为S n 和T n ,对一切自然数n 都有,则=( )A .B .C .D .二、填空题(本题共7小题,每小题4分,共28分.将答案填在答题卷相应位置上.)11.在等比数列{a n }中,若a 1>0,a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5= .12.已知sin (α+45°)=,则sin2α= .13.已知△ABC 的角A ,B ,C 所对的边为a ,b ,c ,A=60°,b=1,c=4,则a= , = .14.sin2α=,且<α<,则cos α﹣sin α的值为 .15.已知某企业的月平均利润增长率为a ,则该企业利润年增量长率为 .16.设当x=θ时,函数f (x )=sinx+2cosx 取得最大值,则cos θ= .17.设f (x )=,利用课本中推导等差数列前n 项和的公式的方法,可求得f (﹣5)+f (﹣4)+…+f (0)+…+f (5)+f (6)的值为 .三、解答题(本大题共5小题,满72分.解答应写出文字说明,证明过程或演算步骤.)18.(1)求和:S n =1.(2)a n =,求此数列的前n 项和S n .19.在△ABC 中,角A ,B ,C 的对边分别为,.(Ⅰ)求sinC 的值;(Ⅱ)求△ABC 的面积.20.已知数列{a n }的前n 项和S n 满足a n +2S n S n ﹣1=0(n ≥2),a 1=1,(1)求证数列数列是等差数列(2)求a n .21.已知函数f (x )=cos 2x+sinxcosx ,x ∈R(1)求f ()的值;(2)若sina=,且a ∈(,π),求f (+).22.已知数列{a n }的前n 项和S n =,数列{b n }的通项为b n =f (n ),且f (n )满足:①f (1)=;②对任意正整数m ,n ,都有f (m+n )=f (m )f (n )成立.(1)求a n 与b n ;(2)设数列{a n b n }的前n 项和为T n ,求T n .2015-2016学年省市余三中高一(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题的四个选项中,只有一项是符合题目要求的.)1.已知等差数列{an }的前n项和为Sn,若a3+a7=10,则S9=()A.9 B.10 C.45 D.90【考点】等差数列的前n项和.【分析】利用等差数列的通项公式和前n项和公式求解.【解答】解:∵等差数列{an }的前n项和为Sn,a3+a7=10,∴S9=(a1+a9)===45.故选:C.2.在△ABC中,三边a,b,c满足a2=b2+c2+bc,则角A等于()A.30° B.60° C.120°D.150°【考点】余弦定理.【分析】由已知可得:b2+c2﹣a2=﹣bc,从而根据余弦定理可得cosA==﹣,结合围0<A<π,即可得解.【解答】解:∵a2=b2+c2+bc,∴b2+c2﹣a2=﹣bc,∴cosA===﹣,由于0<A<π,∴解得:A=120°,故选:C.3.已知实数列﹣1,x,y,z,﹣2成等比数列,则xyz等于()A.﹣4 B.±4 C.﹣2 D.±2【考点】等比数列的性质.【分析】根据等比数列的性质得到xz的乘积等于y的平方等于(﹣1)×(﹣2),开方即可求出y的值,然后利用zx的积与y的值求出xyz即可.【解答】解:∵xz=(﹣1)×(﹣2)=2,y2=2,∴y=﹣(正不合题意),∴xyz=﹣2.故选C.4.若α,β为锐角,且满足cosα=,则sinβ的值为()A. B. C. D.【考点】两角和与差的正弦函数.【分析】由条件利用同角三角函数的基本关系求得sinα、sin(α+β)的值,再利用两角和差的正弦公式求得sinβ=sin[(α+β)﹣α]的值.【解答】解:α,β为锐角,且满足cosα=,∴sinα==,sin(α+β)==,则sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=﹣×=,故选:C.5.一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了3个伙伴;第2天,4只蜜蜂飞出去,各自找回了3个伙伴如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中蜜蜂的总只数为( )A .243B .729C .1024D .4096【考点】等比数列的前n 项和.【分析】设第n 天蜂巢中的蜜蜂数量为a n ,由题意可得数列{a n }成等比数列,它的首项为4,公比q=4,由通项公式易得答案.【解答】解:设第n 天蜂巢中的蜜蜂数量为a n ,由题意可得数列{a n }成等比数列,它的首项为4,公比q=4∴{a n }的通项公式:a n =4•4n ﹣1=4n ,∴到第6天,所有的蜜蜂都归巢后,蜂巢中一共有a 6=46=4096只蜜蜂.故选:D6.在△ABC 中,则C 等于( )A .B .C .D .【考点】两角和与差的正切函数.【分析】利用两角和的正切公式,求出tan (A+B )的三角函数值,求出A+B 的大小,然后求出C 的值即可.【解答】解:由tanA+tanB+=tanAtanB 可得tan (A+B )==﹣=因为A ,B ,C 是三角形角,所以A+B=120°,所以C=60°故选A7.一艘向正东航行的船,看见正北方向有两个相距10海里的灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的北偏西30°,另一灯塔在船的北偏西15°,则这艘船的速度是每小时( )A .5海里B .海里C .10海里D .海里【考点】解三角形的实际应用.【分析】根据题意,作出对应的三角形,结合三角形的边角关系即可得到结论.【解答】解:设两个灯塔分别为C ,D ,则CD=10,由题意,当船在B 处时,∠ABC=60°,∠CBD=∠CDB=15°,即CD=BC=10.在直角三角形CAB 中,AB=BCcos60°=10×=5,则这艘船的速度是=10海里/小时,故选:C .8.化简的结果是( )A .﹣cos1B .cos 1C . cos 1D .【考点】二倍角的余弦.【分析】利用二倍角公式,同角三角函数关系式即可化简求值.【解答】解:. 故选:C .9.在△ABC 中,若,则△ABC 的形状是( )A .直角三角形B .等腰或直角三角形C .不能确定D .等腰三角形【考点】三角形的形状判断.【分析】把已知等式的左边利用同角三角函数间的基本关系切化弦,右边利用正弦定理变形,然后根据二倍角的正弦函数公式化简,由A 和B 为三角形的角,根据正弦函数图象与性质得到A 与B 角度之间的关系,根据角度之间的关系即可得到三角形ABC 的形状.【解答】解:由正弦定理得: ==2R ,(R 为三角形外接圆的半径)∴a=2RsinA ,b=2RsinB ,∴变形为: =,化简得:2sinBcosB=2sinAcosA ,即sin2B=sin2A ,由A 和B 为三角形的角,得到2A=2B 或2A+2B=180°,即A=B 或A+B=90°,则△ABC 的形状是等腰三角形或直角三角形.故选B10.等差数列{a n }和{b n }的前n 项的和分别为S n 和T n ,对一切自然数n 都有,则=( )A .B .C .D .【考点】等差数列的性质;等差数列的前n 项和.【分析】利用等差数列的前n 项和公式分别表示出等差数列{a n }和{b n }的前n 项的和分别为S n 和T n ,利用等差数列的性质化简后,得到a 5=S 9,b 5=T 9,然后将n=9代入已知的等式中求出的值,即为所求式子的值.【解答】解:∵S 9==9a 5,T n ==9b 5,∴a 5=S 9,b 5=T 9,又当n=9时, ==,则===.故选B二、填空题(本题共7小题,每小题4分,共28分.将答案填在答题卷相应位置上.)11.在等比数列{a n }中,若a 1>0,a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5= 5 .【考点】等比数列的性质;等比数列的通项公式.【分析】由{a n }是等比数列,a 2a 4+2a 3a 5+a 4a 6=25,利用等比数列的通项公式知a 32+2a 3a 5+a 52=25,再由完全平方和公式知(a 3+a 5)2=25,再由a n >0,能求出a 3+a 5的值.【解答】解:∵{a n }是等比数列,且a 1>0,a 2a 4+2a 3a 5+a 4a 6=25,∴a 32+2a 3a 5+a 52=25,即 (a 3+a 5)2=25.再由a 3=a 1•q 2>0,a 5=a 1•q 4>0,q 为公比,可得a 3+a 5=5,故答案为:5.12.已知sin (α+45°)=,则sin2α= .【考点】三角函数的化简求值.【分析】利用两角和的正弦函数化简已知条件,利用平方即可求出所求结果.【解答】解:sin(α+45°)=,可得(sinα+cosα)=,可得(1+2sinαcosα)=.∴sin2α=.故答案为:.13.已知△ABC的角A,B,C所对的边为a,b,c,A=60°,b=1,c=4,则a= , = .【考点】正弦定理;余弦定理.【分析】由已知及余弦定理可求a的值,由正弦定理可得=,从而得解.【解答】解:由余弦定理可得:a2=b2+c2﹣2bccosA=1+16﹣2×=13,可得a=,由正弦定理可得: ===.故答案为:,.14.sin2α=,且<α<,则cosα﹣sinα的值为﹣.【考点】二倍角的正弦;同角三角函数间的基本关系.【分析】根据二倍角的正弦公式和同角三角函数的基本关系求出(cosα﹣sinα)2,然后由角的围求出结果.【解答】解;∵sin2α=2sinαcosα= sin2α+cos2α=1∴(cosα﹣sinα)2=1﹣=∵<α<∴cosα﹣sinα=﹣故答案为:﹣15.已知某企业的月平均利润增长率为a,则该企业利润年增量长率为(1+a)12﹣1 .【考点】函数的值.【分析】由月平均增长率计算出每月的产量,进而求出一年的总产量,由增长率公式求解.【解答】解:某企业的月平均利润增长率为a,设第1年1月份的产值为1,则第1年的总产值是下面等比数列的各项和:1,(1+a),(1+a)2,…,(1+a)11,即S=,1第2年的总产值是等比数列(1+a)12,(1+a)13,…,(1+a)23的各项和,=.即S2因此,年平均增长率为=(1+a)12﹣1.∴该企业利润年平均增长率为(1+a)12﹣1.故答案为:(1+a)12﹣1.16.设当x=θ时,函数f(x)=sinx+2cosx取得最大值,则cosθ= .【考点】两角和与差的正弦函数;正弦函数的定义域和值域.【分析】把f(x)化简为一个角的正弦函数即可求解.【解答】解:∵f(x)=sinx+2cosx=(sinx+cosx)设cosα=,sinα=即f(x)=sin(x+α)当x=θ时,函数f(x)=sinx+2cosx=sin(x+α)取得最大值即θ+α=+2k π k ∈Z∴cos θ=cos (+2k π﹣α)=sin α=故答案为:17.设f (x )=,利用课本中推导等差数列前n 项和的公式的方法,可求得f (﹣5)+f (﹣4)+…+f (0)+…+f (5)+f (6)的值为 3 .【考点】数列的求和.【分析】根据课本中推导等差数列前n 项和的公式的方法﹣倒序相加法,观察所求式子的特点,应先求f (x )+f (1﹣x )的值.【解答】解:∵f (x )=∴f (x )+f (1﹣x )=+=+==,即 f (﹣5)+f (6)=,f (﹣4)+f (5)=,f (﹣3)+f (4)=,f (﹣2)+f (3)=,f (﹣1)+f (2)=,f (0)+f (1)=,∴所求的式子值为: =3.故答案为:3三、解答题(本大题共5小题,满72分.解答应写出文字说明,证明过程或演算步骤.)18.(1)求和:S n =1.(2)a n =,求此数列的前n 项和S n .【考点】数列的求和;数列递推式.【分析】(1)分组分别利用等差数列与等比数列的前n 项和公式即可得出.(2)利用“裂项求和”方法即可得出.【解答】解:(1)S n =(1+2+…+n )+=+=+1﹣.(2)a n =,∴此数列的前n 项和S n =++…+==﹣.19.在△ABC 中,角A ,B ,C 的对边分别为,.(Ⅰ)求sinC 的值;(Ⅱ)求△ABC 的面积.【考点】正弦定理;同角三角函数基本关系的运用.【分析】(Ⅰ)由cosA=得到A 为锐角且利用同角三角函数间的基本关系求出sinA 的值,根据三角形的角和定理得到C=π﹣﹣A ,然后将C 的值代入sinC ,利用两角差的正弦函数公式化简后,将sinA 和cosA 代入即可求出值;(Ⅱ)要求三角形的面积,根据面积公式S=absinC 和(Ⅰ)可知公式里边的a 不知道,所以利用正弦定理求出a 即可.【解答】解:(Ⅰ)∵A 、B 、C 为△ABC 的角,且>0,∴A 为锐角,则sinA==∴∴sinC=sin (﹣A )=cosA+sinA=;(Ⅱ)由(Ⅰ)知sinA=,sinC=,又∵,∴在△ABC 中,由正弦定理,得∴a==,∴△ABC 的面积S=absinC=×××=.20.已知数列{a n }的前n 项和S n 满足a n +2S n S n ﹣1=0(n ≥2),a 1=1,(1)求证数列数列是等差数列(2)求a n .【考点】数列递推式;等差关系的确定.【分析】(1)a n +2S n S n ﹣1=0(n ≥2),a 1=1,可得S n ﹣S n ﹣1+2S n S n ﹣1=0,化为:﹣=2,即可证明.(2)由(1)可得: =1+2(n ﹣1)=2n ﹣1.可得S n ,再利用递推关系即可得出.【解答】(1)证明:∵a n +2S n S n ﹣1=0(n ≥2),a 1=1,∴S n ﹣S n ﹣1+2S n S n ﹣1=0,化为:﹣=2, ∴数列数列是等差数列,首项为1,公差为2.(2)解:由(1)可得: =1+2(n ﹣1)=2n ﹣1.∴S n =,n=1时也成立.∴n ≥2时,a n =S n ﹣S n ﹣1=,∴a n =.21.已知函数f (x )=cos 2x+sinxcosx ,x ∈R(1)求f ()的值;(2)若sina=,且a ∈(,π),求f (+).【考点】三角函数中的恒等变换应用;运用诱导公式化简求值.【分析】(1)把x=代入函数,利用特殊角的三角函数值即可求解;(2)利用两角和与差的正弦函数公式化为一个角的正弦函数,根据sin α的值求出cos α,代入f ()进行化简.【解答】解:(1)f ()=cos 2+sin=()2+(2)f (x )=cos 2x+sinxcosx===∴f ()===∵sin α=,且α∈(,π)∴cos α=﹣f ()==22.已知数列{a n }的前n 项和S n =,数列{b n }的通项为b n =f (n ),且f (n )满足:①f (1)=;②对任意正整数m ,n ,都有f (m+n )=f (m )f (n )成立.(1)求a n 与b n ;(2)设数列{a n b n }的前n 项和为T n ,求T n .【考点】数列的求和;抽象函数及其应用.【分析】(1)根据条件结合数列的递推公式以及等比数列的定义进行求解即可.(2)求出数列{a n b n }的通项公式,利用错位相减法进行求解即可.【解答】解:(1)∵数列{a n }的前n 项和S n =,∴当n ≥2时,a n =S n ﹣S n ﹣1=﹣=n ,当n=1时,a 1=S 1=满足a n =n ,即a n =n .∵对任意正整数m ,n ,都有f (m+n )=f (m )f (n ),∴当m=1时,f (1+n )=f (1)f (n )=f (n ),即f (n )是公比q=的等比数列,则b n =f (n )=•()n ﹣1=()n ,(2)a n b n =n •()n ,则T n =1•()+2•()2+3•()3+…+n •()n ,①T n =()2+2•()3+3•()4+…+(n ﹣1)•()n +n •()n+1,②两式相减得T n =+()2+()3+()4+…+()n ﹣n •()n+1=﹣n •()n+1=1﹣()n ﹣n •()n+1即T n =2﹣()n+1﹣n •()n+2•2016年6月14日。
高一数学下学期期中试卷(实验班,含解析)-人教版高一全册数学试题
2015-2016学年某某省某某市余姚中学高一(下)期中数学试卷(实验班)一.选择题:本大题共8小题,每小题5分,共40分.1.关于直线l:x+1=0,以下说法正确的是()A.直线l倾斜角为0 B.直线l倾斜角不存在C.直线l斜率为0 D.直线l斜率不存在2.设a,b,c分别是△ABC中,∠A,∠B,∠C所对边的边长,则直线sinA•x+ay+c=0与bx﹣sinB•y+sinC=0的位置关系是()A.平行 B.重合 C.垂直 D.相交但不垂直3.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面4.在直角坐标系中,已知两点M(4,2),N(1,﹣3),沿x轴把直角坐标平面折成直二面角后,M,N两点的距离为()A. B. C. D.5.若动点A(x1,y1),B(x2,y2)分别在直线l1:x+y﹣7=0和l2:x+y﹣5=0上移动,则线段AB的中点M到原点的距离的最小值为()A.2 B.3 C.3 D.46.在△ABC中,a,b,c分别为A,B,C的对边,若sinA、sinB、sinC依次成等比数列,则()A.a,b,c依次成等差数列B.a,b,c依次成等比数列C.a,c,b依次成等差数列D.a,c,b依次成等比数列7.如图,三棱锥P﹣ABC,已知PA⊥面ABC,AD⊥BC于D,BC=CD=AD=1,设PD=x,∠BPC=θ,记函数f(x)=tanθ,则下列表述正确的是()A.f(x)是关于x的增函数B.f(x)是关于x的减函数C.f(x)关于x先递增后递减 D.关于x先递减后递增8.正四面体ABCD的棱长为2,棱AD与平面α所成的角θ∈[,],且顶点A在平面α内,B,C,D均在平面α外,则棱BC的中点E到平面α的距离的取值X围是()A.[,1] B.[,1] C.[,] D.[,]二.填空题:本大题共7小题,共36分9.已知圆C的方程为x2+y2﹣6x﹣8y=0,则圆心C的坐标为;过点(3,5)的最短弦的长度为.10.某几何体的三视图如图所示(单位:cm),则该几何体的体积为cm3,表面积为cm2.11.已知x,y∈R且满足不等式组,当k=1时,不等式组所表示的平面区域的面积为,若目标函数z=3x+y的最大值为7,则k的值为.12.若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于;点A坐标(p,q),曲线C方程:y=,直线l过A点,且和曲线C只有一个交点,则直线l的斜率取值X围为.13.已知三个球的半径R1,R2,R3满满足R1+R3=2R2,记它们的表面积分别为S1,S2,S3,若S1=1,S3=9,则S2=.14.已知函数f(x)=|x2﹣2x﹣3|,若a<b<1,且f(a)=f(b),则u=2a+b的最小值为.15.设直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),对于下列四个命题:A.M中所有直线均经过一个定点B.存在定点P不在M中的任一条直线上C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上D.M中的直线所能围成的正三角形面积都相等其中真命题的代号是(写出所有真命题的代号).三.解答题:本大题共5小题,总共74分.16.已知圆M:(x﹣1)2+(y﹣1)2=4,直线l过点P(2,3)且与圆M交于A,B两点,且|AB|=2.(Ⅰ)求直线l方程;(Ⅱ)设Q(x0,y0)为圆M上的点,求x02+y02的取值X围.17.在△ABC中,设边a,b,c所对的角为A,B,C,且A,B,C都不是直角,(bc﹣8)cosA+accosB=a2﹣b2.(Ⅰ)若b+c=5,求b,c的值;(Ⅱ)若,求△ABC面积的最大值.18.设常数a∈R,函数f(x)=(a﹣x)|x|.(Ⅰ)若a=1,求f(x)的单调区间;(Ⅱ)若f(x)是奇函数,且关于x的不等式mx2+m>f[f(x)]对所有的x∈[﹣2,2]恒成立,某某数m的取值X围.19.如图,在四棱锥E﹣ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE,,F 为线段DE上的一点.(Ⅰ)求证:平面AED⊥平面ABCD;(Ⅱ)若二面角E﹣BC﹣F与二面角F﹣BC﹣D的大小相等,求DF的长.20.已知数列{a n}中,a1=1,a2=,且a n+1=(n=2,3,4…).(1)求数列{a n}的通项公式;(2)求证:对一切n∈N*,有a k2<.2015-2016学年某某省某某市余姚中学高一(下)期中数学试卷(实验班)参考答案与试题解析一.选择题:本大题共8小题,每小题5分,共40分.1.关于直线l:x+1=0,以下说法正确的是()A.直线l倾斜角为0 B.直线l倾斜角不存在C.直线l斜率为0 D.直线l斜率不存在【考点】直线的斜率;直线的倾斜角.【分析】根据直线方程判断即可.【解答】解:直线l:x+1=0,即x=﹣1,直线和x轴垂直,故直线l的斜率不存在,故选:D.2.设a,b,c分别是△ABC中,∠A,∠B,∠C所对边的边长,则直线sinA•x+ay+c=0与bx﹣sinB•y+sinC=0的位置关系是()A.平行 B.重合 C.垂直 D.相交但不垂直【考点】正弦定理的应用;直线的一般式方程与直线的平行关系;直线的一般式方程与直线的垂直关系.【分析】要寻求直线sinA•x+ay+c=0与bx﹣sinB•y+sinC=0的位置关系,只要先求两直线的斜率,然后由斜率的关系判断直线的位置即可.【解答】解:由题意可得直线sinA•x+ay+c=0的斜率,bx﹣sinB•y+sinC=0的斜率∵k1k2===﹣1则直线sinA•x+ay+c=0与bx﹣sinB•y+sinC=0垂直故选C.3.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【考点】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选D.4.在直角坐标系中,已知两点M(4,2),N(1,﹣3),沿x轴把直角坐标平面折成直二面角后,M,N两点的距离为()A. B. C. D.【考点】点、线、面间的距离计算.【分析】设一、二象限所在的半平面为α,三、四象限所在的半平面为β,可得α⊥β.作MC⊥x轴于点C,连结NC、MN,可得MC⊥平面β,Rt△MNC中算出直角边CM、之长,再利用勾股定理算出MN长,即得M,N两点的距离.【解答】解:过点M作MC⊥x轴于点C,连结NC、MN设一、二象限所在的半平面为α,三、四象限所在的半平面为β,∵α﹣l﹣β是直二面角,α∩β=l,MC⊥l∴MC⊥平面β∵C的坐标(4,0),得MC==3∴Rt△MNC中,MN===故选:C5.若动点A(x1,y1),B(x2,y2)分别在直线l1:x+y﹣7=0和l2:x+y﹣5=0上移动,则线段AB的中点M到原点的距离的最小值为()A.2 B.3 C.3 D.4【考点】两点间的距离公式;中点坐标公式.【分析】根据题意可推断出M点的轨迹为平行于直线l1、l2且到l1、l2距离相等的直线l进而根据两直线方程求得M的轨迹方程,进而利用点到直线的距离求得原点到直线的距离为线段AB的中点M到原点的距离的最小值为,求得答案.【解答】解:由题意知,M点的轨迹为平行于直线l1、l2且到l1、l2距离相等的直线l,故其方程为x+y﹣6=0,∴M到原点的距离的最小值为d==3.故选C6.在△ABC中,a,b,c分别为A,B,C的对边,若sinA、sinB、sinC依次成等比数列,则()A.a,b,c依次成等差数列B.a,b,c依次成等比数列C.a,c,b依次成等差数列D.a,c,b依次成等比数列【考点】等比数列的性质.【分析】根据等比中项的性质得:sin2B=sinAsinC,由正弦定理得b2=ac,则三边a,b,c 成等比数列.【解答】解:因为sinA、sinB、sinC依次成等比数列,所以sin2B=sinAsinC,由正弦定理得,b2=ac,所以三边a,b,c依次成等比数列,故选:B.7.如图,三棱锥P﹣ABC,已知PA⊥面ABC,AD⊥BC于D,BC=CD=AD=1,设PD=x,∠BPC=θ,记函数f(x)=tanθ,则下列表述正确的是()A.f(x)是关于x的增函数B.f(x)是关于x的减函数C.f(x)关于x先递增后递减 D.关于x先递减后递增【考点】空间点、线、面的位置;棱锥的结构特征.【分析】由PA⊥平面ABC,AD⊥BC于D,BC=CD=AD=1,利用x表示PA,PB,PC,由余弦定理得到关于x的解析式,进一步利用x表示tanθ,利用基本不等式求最值;然后判断选项.【解答】解:∵PA⊥平面ABC,AD⊥BC于D,BC=CD=AD=1,PD=x,∠BPC=θ,∴可求得:AC=,AB=,PA=,PC=,BP=,∴在△PBC中,由余弦定理知:cosθ==∴tan2θ=﹣1=﹣1=,∴tanθ==≤=(当且仅当x=时取等号);所以f(x)关于x先递增后递减.故选:C.8.正四面体ABCD的棱长为2,棱AD与平面α所成的角θ∈[,],且顶点A在平面α内,B,C,D均在平面α外,则棱BC的中点E到平面α的距离的取值X围是()A.[,1] B.[,1] C.[,] D.[,]【考点】点、线、面间的距离计算.【分析】取平面DEA⊥平面α位置考虑,在△ADE中,求出cos∠DAE,再考虑特殊位置,可得结论.【解答】解:取平面DEA⊥平面α位置考虑即可.如图所示,在△ADE中,AD=2,DE=AE=,∴cos∠DAE==,棱AD与平面α所成的角为时,sin∠EAN=sin(﹣∠DAE)==,∴EN=()=或sin∠EAN=sin(+∠DAE)=∴EN=()=∴棱BC的中点E到平面α的距离的取值X围是[,].故选:C.二.填空题:本大题共7小题,共36分9.已知圆C的方程为x2+y2﹣6x﹣8y=0,则圆心C的坐标为(3,4);过点(3,5)的最短弦的长度为.【考点】直线与圆的位置关系.【分析】由圆C的方程为x2+y2﹣6x﹣8y=0,能求出圆C的圆心C的坐标和半径r,再求出(3,5),C(3,4)两点间的距离d,从而得到过点(3,5)的最短弦的长度为:2.【解答】解:∵圆C的方程为x2+y2﹣6x﹣8y=0,∴圆C的圆心C(3,4),圆心的半径r==5,∵过点(3,5)、C(3,4)的直线的斜率不存在,∴过点(3,5)的最短弦的斜率k=0,(3,5),C(3,4)两点间的距离d=1,∴过点(3,5)的最短弦的长度为:2=2=4.故答案为:(3,4),.10.某几何体的三视图如图所示(单位:cm),则该几何体的体积为cm3,表面积为cm2.【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体是由一个半球去掉后得到的几何体.【解答】解:由三视图可知:该几何体是由一个半球去掉后得到的几何体.∴该几何体的体积==cm3,表面积=++=cm2.故答案分别为:;.11.已知x,y∈R且满足不等式组,当k=1时,不等式组所表示的平面区域的面积为,若目标函数z=3x+y的最大值为7,则k的值为 2 .【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到k的值.然后即可得到结论.【解答】解:若k=1,则不等式组对应的平面区域如图:则A(1,﹣1),B(1,3),由得,即C(,),不等式组所表示的平面区域的面积为S=×4×(﹣1)=2×=,由z=3x+y得y=﹣3x+z,平移直线y=﹣3x+z,则由图象可知当直线y=﹣3x+z经过点C时,直线y=﹣3x+z的截距最大,此时z最大,为3x+y=7由,解得,即A(2,1),此时A在kx﹣y﹣k﹣1=0上,则2k﹣1﹣k﹣1=0,得k=2.故答案为:;2;12.若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于9 ;点A 坐标(p,q),曲线C方程:y=,直线l过A点,且和曲线C只有一个交点,则直线l的斜率取值X围为{}∪(,1] .【考点】二次函数的性质.【分析】由一元二次方程根与系数的关系得到a+b=p,ab=q,再由a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a,b的方程组,求得a,b后得答案.求出直线与圆相切时,直线的斜率,过(﹣1,0)、(1,0)直线的斜率,即可得出结论.【解答】解:由题意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:a=4,b=1;解②得:a=1,b=4.∴p=a+b=5,q=1×4=4,则p+q=9.点A坐标(5,4),直线的方程设为y﹣4=k(x﹣5),即kx﹣y﹣5k+4=0曲线C方程:y=表示一个在x轴上方的圆的一半,圆心坐标为(0,0),圆的半径r=1.由圆心到直线的距离d==1,可得k=,过(﹣1,0)、(5,4)直线的斜率为=,过(1,0)、(5,4)直线的斜率为1,∴直线l的斜率取值X围为{}∪(,1].故答案为:9,{}∪(,1].13.已知三个球的半径R1,R2,R3满满足R1+R3=2R2,记它们的表面积分别为S1,S2,S3,若S1=1,S3=9,则S2= 4 .【考点】球的体积和表面积.【分析】表示出三个球的表面积,求出三个半径,利用R1+R3=2R2,得出+=2,代入计算可得结论.【解答】解:因为S1=4πR12,所以R1=,同理:R2=,R3=,由R1+R3=2R2,得+=2,因为S1=1,S3=9,所以2=1+3,所以S2=4.故答案为:4.14.已知函数f(x)=|x2﹣2x﹣3|,若a<b<1,且f(a)=f(b),则u=2a+b的最小值为3﹣2.【考点】分段函数的应用.【分析】作出函数f(x)的图象,由a<b<1且f(a)=f(b),可求得(a﹣1)2+(b﹣1)2=8,a<﹣1,0<b<1,利用直线和圆的位置关系,结合线性规划的知识进行求解即可.【解答】解:作出f(x)的图象如图,由图可知,f(x)的对称轴为:x=1.∵a<b<1且f(a)=f(b),∴a<﹣1,﹣1<b<1,则|a2﹣2a﹣3|=|b2﹣2b﹣3|,即a2﹣2a﹣3=﹣(b2﹣2b﹣3),则(a﹣1)2+(b﹣1)2=8,a<﹣1,﹣1<b<1,则(a,b)的轨迹是圆上的一个部分,(黑色部分),由u=2a+b得b=﹣2a+u,平移b=﹣2a+u,当直线b=﹣2a+u和圆在第三象限相切时,截距最小,此时u最小,此时圆心(1,1)到直线2a+b﹣u=0的距离d=,即|u﹣3|=2,得u=3﹣2或u=3+2(舍),故答案为:3﹣215.设直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),对于下列四个命题:A.M中所有直线均经过一个定点B.存在定点P不在M中的任一条直线上C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上D.M中的直线所能围成的正三角形面积都相等其中真命题的代号是BC (写出所有真命题的代号).【考点】命题的真假判断与应用;过两条直线交点的直线系方程.【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n 边形,其所有边均在M中的直线上,故C正确;D.如下图,M中的直线所能围成的正三角形有两类,其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC 型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确.故答案为:BC.三.解答题:本大题共5小题,总共74分.16.已知圆M:(x﹣1)2+(y﹣1)2=4,直线l过点P(2,3)且与圆M交于A,B两点,且|AB|=2.(Ⅰ)求直线l方程;(Ⅱ)设Q(x0,y0)为圆M上的点,求x02+y02的取值X围.【考点】圆方程的综合应用;直线与圆的位置关系.【分析】(Ⅰ)分斜率存在和斜率不存在两种情况,分别由条件利用点到直线的距离公式,弦长公式求出斜率,可得直线l的方程.(Ⅱ)利用 x02+y02的几何意义.求解圆心与坐标原点的距离,转化求解即可.【解答】解:(Ⅰ)当直线L的斜率存在时,设直线L的方程为y﹣3=k(x﹣2),即kx﹣y+3﹣2k=0,作MC⊥AB于C,在直角三角形MBC中,BC=,MB=2,所以MC=1,又因为MC==1,解得k=,所以直线方程为3x﹣4y+6=0.当直线斜率不存在时,其方程为x=2,圆心到此直线的距离也为1,所以也符合题意,综上可知,直线L的方程为3x﹣4y+6=0或x=2.(Ⅱ)圆M:(x﹣1)2+(y﹣1)2=4,Q(x0,y0)为圆M上的点,x02+y02的几何意义是圆的上的点与坐标原点距离的平方,圆心到原点的距离为:,圆的半径为2,x02+y02的取值X围:[0,],即[0,6+4].17.在△ABC中,设边a,b,c所对的角为A,B,C,且A,B,C都不是直角,(bc﹣8)cosA+accosB=a2﹣b2.(Ⅰ)若b+c=5,求b,c的值;(Ⅱ)若,求△ABC面积的最大值.【考点】余弦定理;正弦定理.【分析】(Ⅰ)由已知利用余弦定理化简已知等式可得,又△ABC不是直角三角形,解得bc=4,又b+c=5,联立即可解得b,c的值.(Ⅱ)由余弦定理,基本不等式可得5=b2+c2﹣2bccosA≥2bc﹣2bccosA=8﹣8cosA,解得,可求,利用三角形面积公式即可得解三角形面积的最大值.【解答】(本题满分14分)解:(Ⅰ)∵,∴,∴,∵△ABC不是直角三角形,∴bc=4,又∵b+c=5,∴解得或…(Ⅱ)∵,由余弦定理可得5=b2+c2﹣2bccosA≥2bc﹣2bccosA=8﹣8cosA,∴,∴,所以.∴△ABC面积的最大值是,当时取到…18.设常数a∈R,函数f(x)=(a﹣x)|x|.(Ⅰ)若a=1,求f(x)的单调区间;(Ⅱ)若f(x)是奇函数,且关于x的不等式mx2+m>f[f(x)]对所有的x∈[﹣2,2]恒成立,某某数m的取值X围.【考点】函数单调性的判断与证明;函数的最值及其几何意义.【分析】(Ⅰ)a=1时,便可得出,从而可根据二次函数的单调性,即可分别求出x≥0和x<0时f(x)的单调区间,从而得出f(x)的单调区间;(Ⅱ)可由f(x)为奇函数得到a=0,从而得到f(x)=﹣x|x|,进一步求得f[f(x)]=x3|x|,从而可由mx2+m>f[f(x)]得到对于任意x∈[﹣2,2]恒成立,可由x∈[﹣2,2]得出,这样便可得出实数m的取值X围.【解答】解:(Ⅰ)当a=1时,;当x≥0时,,∴f(x)在内是增函数,在内是减函数;当x<0时,,∴f(x)在(﹣∞,0)内是减函数;综上可知,f(x)的单调增区间为,单调减区间为(﹣∞,0),;(Ⅱ)∵f(x)是奇函数,∴f(﹣1)=﹣f(1);即(a+1)•1=﹣(a﹣1)•1;解得a=0;∴f(x)=﹣x|x|,f[f(x)]=x3|x|;∴mx2+m>f[f(x)]=x3|x|,即对所有的x∈[﹣2,2]恒成立;∵x∈[﹣2,2],∴x2+1∈[1,5];∴;∴;∴实数m的取值X围为.19.如图,在四棱锥E﹣ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE,,F 为线段DE上的一点.(Ⅰ)求证:平面AED⊥平面ABCD;(Ⅱ)若二面角E﹣BC﹣F与二面角F﹣BC﹣D的大小相等,求DF的长.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(Ⅰ)推导出AE⊥CD,AD⊥CD,从而CD⊥面AED,由此能证明平面AED⊥平面ABCD.(Ⅱ)取AD,BC的中点G,H,连结EG,GH,EH,过F作FM||EG交AD于M,过M作NM||HG 交BC于N,连结FN,推导出∠EHG就是二面角E﹣BC﹣D的平面角,∠FNM就是二面角F﹣BC﹣D的平面角,由此能求出DF的长.【解答】证明:(Ⅰ)∵AE⊥面CDE,CD⊂面CDE,∴AE⊥CD,又∴是矩形,∴AD⊥CD,∴CD⊥面AED,又∵CD⊂面ABCD,∴平面AED⊥平面ABCD.解:(Ⅱ)取AD,BC的中点G,H,连结EG,GH,EH,过F作FM||EG交AD于M,过M作NM||HG交BC于N,连结FN,∵,∴且EG⊥AD,∵平面AED⊥平面ABCD,∴EG⊥面ABCD,GH⊥BC,∴EH⊥BC,∴∠EHG就是二面角E﹣BC﹣D的平面角,同理∠FNM就是二面角F﹣BC﹣D的平面角,由题意得∠EHG=2∠FNM,而,∴,∴,∴.20.已知数列{a n}中,a1=1,a2=,且a n+1=(n=2,3,4…).(1)求数列{a n}的通项公式;(2)求证:对一切n∈N*,有a k2<.【考点】数列递推式;数列的求和.【分析】(1)当n≥2时, =,从而=﹣(),进而得到=﹣(1﹣),由此能求出a n=,n∈N*.(2)当k≥2时, =,由此利用裂项求和法能证明对一切n∈N*,有a k2<.【解答】(1)解:∵a1=1,a2=,且a n+1=(n=2,3,4…),∴当n≥2时, =,两边同时除以n,得,∴=﹣(),∴=﹣=﹣(1﹣)∴=﹣(1﹣),n≥2,∴,∴a n=,n≥2,当n=1时,上式成立,∴a n=,n∈N*.(2)证明:当k≥2时, =,∴当n≥2时,=1+<1+ [()+()+…+()]=1+<1+=,又n=1时,,∴对一切n∈N*,有a k2<.。
2015—2016学年佛山市第一中学高一下学期期中考试数学试卷(含答案)
2015—2016学年佛山市第一中学高一下学期期中考试数学试卷命题人:陈豪 审题人:雷沅江一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知向量,36(5,),(10,)55a b =-=-,则a 与b ( ) A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向 2. 若a >b >0,c <d <0,则一定有 ( )A.a b d c > B. a b d c < C. a b c d > D. a b c d< 3.等差数列{}n a 中,已知1a =13,254a a +=,n a =33,则n 为( )A .50B .49C .48D . 474. 若等比数列{}n a 的前n 项和r S n n +=2,则=r ( ) A. 2 B. 1 C. 0 D.1-5.已知数列{}n a 的前n 项和()21n S n n =+,则5a 的值为( )A .80B .40C .20D .16.己知函数()sin ()f x x x x R =∈, 先将()y f x =的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将得到的图象上所有点向右平行移动θ(0θ>)个单位长度,得到的图象关于直线x =34π对称, 则θ的最小值为( )A.6πB.3π C. 512π D. 23π 7. 若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是( ). A. 1ab ≥;B.2≤ C. 333a b +≥ D.112a b+≥. 8. 设,x y 满足约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩, 则2z x y =+的最大值为( )A .8B .7C .2D .19.如图,为了测量A C 、两点间的距离,选取同一平面上B D 、两点,测出四边形ABCD 各边的长度(单位:km ):5,8,3,5A B B C C D D A ====,且B ∠与D ∠互补,则AC 的长为( )km .A .7B .8C .9D .610. 在ABC ∆ 中有,123sin ,cos 135B A ==,则sin C 为 ( ) A.1665 B.5665 C.6365 D.1665或566511.函数x x x f sin )6sin()(-=π的最大值是( )A.12 B. 1C. 12D. 1212. 已知正项数列{}n a 满足:()()()2*113,2122181,n n a n a n a n n n N -=-+=++>∈ ,设1,n nb a =数列{}n b 的前n 项的和n S ,则n S 的取值范围为( )A .10,2⎛⎫ ⎪⎝⎭B .11,32⎡⎫⎪⎢⎣⎭C .11,32⎛⎫ ⎪⎝⎭D .11,32⎡⎤⎢⎥⎣⎦二、填空题:本答题共4小题,每小题5分.13.已知点(1,1)(0,3)(3,4)A B C -、、,则向量AB 在AC 方向上的投影为_________.14. 若,a b 是函数2()(0,0)f x x px q p q =-+>>的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于________. 15.设,x y 为实数,若 2241x y xy ++=则2x y +的最大值是 .16. 如图所示,在ABC ∆中,D 为边AC 的中点,3BC BE =, 其中AE 与BD 交于O 点,延长CO 交边AB 于F 点,则FO OC→→= .三、解答题:解答应写出文字说明,证明过程或演算步骤,有6题共70分. 17.(本小题满分10分)已知向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为120°.(1) 求b a⋅及|a +b |; (2)设向量a +b 与a -b 的夹角为θ,求cos θ的值.18.(本小题满分12分)化简并计算: (1) 已知1cos(),(,)232βπααπ-=-∈,sin()(0,),22απββ-=∈求cos()αβ+的值. 19.(本小题满分12分)在ABC ∆中,内角A 、B 、C 对应的边长分别为a 、b 、c , 已知21sin cos 2sin a b Ba Bbc C-=-.(1)求角A ; (2)若a =求b c +的取值范围.20.(本小题满分12分)设数列}{n a 的前n 项和为n S ,101=a ,1091+=+n n S a . ⑴求证:数列}{lg n a 是等差数列. ⑵设n T 是数列13{}(lg )(lg )n n a a +的前n 项和,求使21(5)4n T m m >- 对所有的*∈N n 都成立的最大正整数m的值.21.(本小题满分12分)设()f k 是满足不等式()122log log 52k x x -+⋅-≥()2k k N *∈的自然数x 的个数. (1)求()f k 的函数解析式;(2)()()()122n S f f nf n =++⋅⋅⋅+,求n S ; 22.(本小题满分12分)某国际化妆品生产企业为了占有更多的市场份额,拟在2016年巴西奥运会期间进行一系列促销活动,经过市场调查和测算,化妆品的年销量x 万件与年促销费t 万元之间满足3x -与1t +成反比例,如果不搞促销活动,化妆品的年销量只能是1万件,已知2016年生产化妆品的设备折旧,维修等固定费用为3万元,每生产1万件化妆品需再投入32万元的生产费用,若将每件化妆品的售价定为其生产成本的150%与平均每件促销费的一半的和,则当年生产的化妆品正好能销完。
高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题
某某省某某市长安区第一中学2015-2016学年高一下学期期末考试数学一、选择题:共12题1.不等式的解集为A. B.C. D.【答案】C【解析】本题考查一元二次不等式的解法.,即,解得.即不等式的解集为.选C.2.数列,,,,,,,则是这个数列的A.第10项B.第11项C.第12项D.第21项【答案】B【解析】本题考查数列的通项.由题意得,令,解得.选B.3.在数列中,,,则的值为A.52B.51C.50D.49【答案】A【解析】本题考查等差数列的性质.由得,所以为等差数列,所以==,所以.选A.4.=A. B. C. D.【答案】A【解析】本题考查同角三角函数的诱导公式及两角和的正弦公式.====.选A.【备注】.5.已知角的终边经过点,则的值等于A. B. C. D.【答案】D【解析】本题考查三角函数的定义.由题意得所以=,=,所以=.选D.6.若数列是等差数列,且,则A. B. C. D.【答案】B【解析】本题考查等差数列的性质,诱导公式.因为是等差数列,所以=,又所以,,所以===.选B.【备注】若,等差数列中.7.设,若是与的等比中项,则的最小值为A.8B.4C.1D.【答案】B【解析】本题考查等比数列性质,基本不等式.因为是与的等比中项,所以,即.所以===4(当且仅当时等号成立),即的最小值为4.选B.【备注】若,等比数列中.8.已知是等比数列,,则=A.16()B.16()C.)D.)【答案】C【解析】本题考查等比数列的通项与求和.由题意得的公比=,所以=,所以,令,则是以8为首项,为公比的等比数列,所以的前n项和=).选C.【备注】等比数列中,.9.在△中,已知,,若点在斜边上,,则的值为A.48 B.24 C.12 D.6【答案】B【解析】本题考查平面向量的线性运算和数量积.因为,,所以==,所以==+0=24.选B.【备注】.10.函数,,的部分图象如图所示,则A. B.C. D.【答案】D【解析】本题考查三角函数的性质和图象,解析式的求解.由图可得,,,即,即,所以,又过点,所以=2,由可得=.所以.选D.【备注】知图求式.11.已知向量,,且∥,则= A. B. C. D.【答案】C【解析】本题考查向量的坐标运算与线性运算,二倍角公式.因为∥,所以,即,即=-3,所以=====.选C.【备注】二倍角公式:,.12.设函数,若存在使得取得最值,且满足,则m的取值X围是A. B.C. D.【答案】C【解析】本题考查三角函数的性质与最值,一元二次不等式.由题意得,且=,解得,(),所以转化为,而,所以,即,解得或.选C.二、填空题:共6题13.不等式的解集是 .【答案】【解析】本题考查分式不等式,一元二次不等式.由题意得且,所以或.所以不等式的解集是.【备注】一元高次不等式的解法:穿针引线法.14.已知,,则的值为_______.【答案】3【解析】本题考查两角和与差的正切角公式.由题意得=== 3.【备注】=是解题的关键.15.已知向量a=,b=, 若m a+n b=(),则的值为______. 【答案】-3【解析】本题考查平面向量的坐标运算.由题意得===,即,解得,,所以.16.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得两船的俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距 m.【答案】【解析】本题考查解三角形的应用.画出图形,为炮台,为两船的位置;由题意得m,,,;在△中,=m.在Rt△中,,所以m;在△中,由余弦定理得=300.即,两条船相距m.【备注】余弦定理:.17.若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【答案】【解析】本题主要考查三角函数图象平移、函数奇偶性及三角运算.解法一f(x)=sin(2x+)的图象向右平移φ个单位得函数y=sin(2x+-2φ)的图象,由函数y=sin(2x+-2φ)的图象关于y轴对称可知sin(-2φ)=±1,即sin(2φ-)=±1,故2φ-=kπ+,k∈Z,即φ=+,k∈Z,又φ>0,所以φmin=.解法二由f(x)=sin(2x+)=cos(2x-)的图象向右平移φ个单位所得图象关于y轴对称可知2φ+=kπ,k∈Z,故φ=-,又φ>0,故φmin=.【备注】解题关键:解决三角函数的性质问题,一般化为标准型后结合三角函数的图象求解,注意正余弦函数的对称轴过曲线的最低点或最高点是解题的关键所在.18.已知分别为△的三个内角的对边,,且,则△面积的最大值为 . 【答案】【解析】本题考查正、余弦定理,三角形的面积公式.由正弦定理得=,又所以,即,所以=,所以.而,所以;所以≤=(当且仅当时等号成立).即△面积的最大值为.【备注】余弦定理:.三、解答题:共5题19.在△中,已知,,.(1)求的长;(2)求的值.【答案】(1)由余弦定理知,==,所以.(2)由正弦定理知,所以,因为,所以为锐角,则,因此【解析】本题考查二倍角公式,正、余弦定理.(1)由余弦定理知.(2)由正弦定理知,,因此.20.设是公比为正数的等比数列,,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前n项和.【答案】(1)设q为等比数列{a n}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{a n}的通项为a n=2·2n-1=2n(n∈N*)(2)S n=+n×1+×2=2n+1+n2-2.【解析】本题考查等差、等比数列的通项与求和.(1)求得q=2,所以a n=2n(n∈N*);(2)分组求和得S n=2n+1+n2-2.21.已知向量,,函数,且的图象过点.(1)求的值;(2)将的图象向左平移个单位后得到函数的图象,若图象上各最高点到点的距离的最小值为,求的单调递增区间.【答案】(1)已知,过点,解得(2)由(1)知,左移个单位后得到,设的图象上符合题意的最高点为,,解得,,解得,,由得,的单调增区间为【解析】本题考查平面向量的数量积,三角函数的图像与性质,三角恒等变换.(1)由向量的数量积求得,过点,解得;(2),求得,,其单调增区间为.22.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费用第一年是0.2万元,第二年是0.4万元,第三年是0.6万元,……,以后逐年递增0.2万元. 汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的总和平均摊到每一年的费用叫做年平均费用.设这种汽车使用x(x∈N*)年的维修总费用为g(x),年平均费用为f(x).(1)求出函数g(x),f(x)的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?【答案】(1)由题意,知使用x年的维修总费用为g(x)==0.1x+0.1x2,依题意,得f(x)=[10+0.9x+(0.1x+0.1x2)]=(10+x+0.1x2).(2)f(x)=++1≥2+1=3,当且仅当,即x=10时取等号.所以x=10时,y取得最小值3.所以这种汽车使用10年时,它的年平均费用最小,最小值是3万元.【解析】无23.把正奇数数列中的数按上小下大、左小右大的原则排成如下三角形数表:设是位于这个三角形数表中从上往下数第行、从左往右数第个数.(1)若,求,的值;(2)已知函数,若记三角形数表中从上往下数第行各数的和为,求数列的前项和.【答案】(1)三角形数表中前m行共有个数,所以第m行最后一个数应当是所给奇数列中的第项.故第m行最后一个数是.因此,使得的m是不等式的最小正整数解.由得,, 于是,第45行第一个数是,(2)第n行最后一个数是,且有n个数,若将看成第n行第一个数,则第n行各数成公差为的等差数列,故..故.因为,两式相减得..【解析】本题考查数列的概念,数列的通项与求和.(1)找规律得第m行最后一个数是.可得,求出第45行第一个数是,(2)..错位相减可得.。
XXX2015-2016学年高一数学上学期期中考试试卷
XXX2015-2016学年高一数学上学期期中考试试卷XXX2015-2016学年高一上学期期中考试数学试卷分为两卷,卷(Ⅰ)100分,卷(Ⅱ)50分,满分共计150分。
考试时间为120分钟。
卷(Ⅰ)一、选择题:本大题共10小题,每小题5分,共50分。
1.如果A={x|x>−1},那么正确的结论是A.A⊆B。
{0}∈A C。
{0}∈C2.函数f(x)=2−2x,则f(1)=A。
0 B.−2 C.2/2 D.−2/23.设全集I={x|x∈Z−3<x<3},A={1,2},B={−2,−1,2},则A∪(I∩B)等于A。
{1} B。
{1,2} C。
{2} D。
{0,1,2}4.与函数y=10lg(x−1)的定义域相同的函数是A。
y=x−1 B。
y=x−1 C。
y=1/(x−1) D。
y=x−15.若函数f(x)=3+3x−x与g(x)=3−3^(−x)的定义域均为R,则A。
f(x)与g(x)均为偶函数 B。
f(x)为偶函数,g (x)为奇函数C。
f(x)与g(x)均为奇函数 D。
f(x)为奇函数,g (x)为偶函数6.设a=log_3(2),b=ln2,c=5,则A。
a<b<XXX<c<a C。
c<a<b D。
c<b<a7.设函数y=x和y=1/2,则y的交点为(x,y),则x所在的区间是A.(,1)B.(1,2)C.(2,3)D.(3,4)8.已知函数f(x)是R上的偶函数,当x≥1时f(x)=x−1,则f(x)<0的解集是A.(−1,∞)B.(−∞,1)C.(−1,1)D.(−∞,−1)∪(1,∞)9.某商店同时卖出两套西服,售价均为168元,以成本计算,一套盈利20%,另一套亏损20%,此时商店A.不亏不盈B.盈利37.2元C.盈利14元D.亏损14元10.设函数f(x)在R上是减函数,则A。
f(a)>f(2a)B。
精品:安徽省淮南市第二中学2015-2016学年高一下学期期中考试数学试题(原卷版)
(考试时间:100分钟)一、选择题(本大题共10小题,每小题4分)1.设集合{}3A x x =>,⎭⎬⎫⎩⎨⎧<--=041x x x B ,则=B A ( )A. ∅B. )4,3(C. )1,2(-D. ),4(+∞2.设→a =(1,0),→b =(12,12),则下列结论中正确的是( ) A. →→=b a B .22=•→→b aC .)(→→-b a ⊥→bD .→a ∥→b3.已知△ABC 中,4=a ,34=b ,o A 30=,则B 等于( )A .30°B .30°或150°C .60°D .60°或120°4.设0ab >,下面四个不等式中,正确的是( )①||||a b a +>;②||||a b b +<;③||||a b a b +<-;④||||||a b a b +>-A .①和②B .①和③C .①和④D .②和④5.已知△ABC 中,3:1:1sin :sin :sin =C B A ,则此三角形的最大内角的度数是()A .60°B .90°C .120°D .135°6.已知等比数列{}n a 的公比为正数且25932a a a =⋅,12=a ,则=1a ( ) A.12 B. 2C. 2 D .227.△ABC 中,若∠C>90°,则B A tan tan ⋅与1的大小关系为( )A .1tan tan >⋅B A B. 1tan tan <⋅B AC .1tan tan =⋅B AD .不能确定8.在菱形ABCD 中,若2=AC ,则AB CA •等于( )A .2B .-2C AD .与菱形的边长有关9.对于任意实数x ,不等式04)2(2)2(2<----x a x a 恒成立,则实数a 的取值范围( )A .)2,(-∞B .]2,(-∞C .]2,2(-D .)2,2(-10.已知定义在),0[+∞上的函数)(x f 满足)2(3)(+=x f x f ,当)2,0[∈x 时,x x x f 2)(2+-=.设)(x f 在)2,22[n n -上的最大值为n a *)(N n ∈,且{}n a 的前n 项和为n S ,则n S 的取值范围是( ) A .)23,1[ B .]23,1[C .)2,23[ D .]2,23[二、填空题(本大题共5小题,每小题4分)11.若)3,4(=→a ,)12,5(-=→b ,则→a 在→b 上的投影为________________12.设等差数列{}n a 的前n 项和为n S ,若549=S ,则942a a a ++=________.13.关于x 的不等式022>-+bx ax 的解集是⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,3121, ,则ab 等于 14.已知数列{}n a 是以3为公差的等差数列,n S 是其前n 项和,若10S 是数列{}n S 中的唯一最小项,则数列{}n a 的首项1a 的取值范围是________.15.在△ABC 中,已知D 为BC 边上一点, BD BC 3=,2=AD ,∠ADB =135°, 若AB AC 2=,则BD =________.三、解答题(本大题共4小题)16.(本小题8分)已知→→b a ,是两个单位向量.(1)若323=-→→b a ,试求→→+b a 3的值;(2)若→→b a ,的夹角为o 60,试求向量→→→+=b a m 2与→→→-=a b n 2的夹角17.(本小题10分)已知单调递增的等比数列{}n a 满足28432=++a a a ,且23+a 是42,a a 的等差中项.(1)求数列{}n a 的通项公式;(2)若n n n a a b 21log =,求数列{}n b 的前n 项和n S18. (本小题10分)△ABC 的内角C B A ,,的对边分别为c b a ,,,已知B c C b a sin cos +=.(1)求B .(2)若2=b ,求△ABC 面积的最大值.19.(本小题12分)已知数列{}n a 的前n 项和为n S ,且443-=n n a S ,*N n ∈ (1)求数列{}n a 的通项公式;(2)设n n a a a c 22212log ......log log +++=,nn c c c T 1.......1121+++=, 求使n nT n n n k )92(12-≥+⋅恒成立的实数k 的取值范围.。
2015-2016年山东省临沂一中高一(下)期中数学试卷和答案
2015-2016学年山东省临沂一中高一(下)期中数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项符合题目要求)1.(5分)已知空间中两点A(1,2,3),B(4,2,a),且|AB|=,则a=()A.1或2B.1或4C.0或2D.2或42.(5分)下列四个图各反映了两个变量的某种关系,其中可以看作具有较强线性相关关系的是()A.①③B.①④C.②③D.①②3.(5分)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法4.(5分)根据如图框图,当输入x为6时,输出的y=()A.1B.2C.5D.105.(5分)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离6.(5分)已知x,y的取值如下表:从散点图可以看出y与x线性相关,且回归方程为,则a=()A.3.25B.2.6C.2.2D.07.(5分)若角600°的终边上有一点(﹣4,a),则a的值是()A.B.C.D.8.(5分)已知一个扇形的周长是4cm,面积为1cm2,则扇形的圆心角的弧度数是()A.2B.3C.4D.59.(5分)设点A为圆(x﹣1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为()A.y2=2x B.(x﹣1)2+y2=4C.y2=﹣2x D.(x﹣1)2+y2=210.(5分)下列四个命题:①对立事件一定是互斥事件②若A、B为两个事件,则P(A∪B)=P(A)+P(B)③若事件A、B、C两两互斥,则P(A)+P(B)+P(C)=1④若事件A、B满足P(A)+P(B)=1则A、B是对立事件.其中错误命题的个数是()A.0B.1C.2D.311.(5分)若直线l:y=kx+1被圆C:x2+y2﹣2x﹣3=0截得的弦最短,则直线l 的方程是()A.x﹣y+1=0B.y=1C.x+y﹣1=0D.x=012.(5分)若直线y=x+b与曲线有公共点,则b的取值范围是()A.[,]B.[,3]C.[﹣1,]D.[,3]二、填空题(共4小题,每小题5分,共20分)13.(5分)圆x2+y2=1上的点到直线x﹣y=2的距离的最小值为.14.(5分)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的标号为.15.(5分)如果实数x,y满足(x+2)2+y2=3,则的最大值是.16.(5分)已知P(x0,y0)是圆C:x2+(y﹣4)2=1外一点,过点P作圆C的切线,切点为A、B.记四边形PACB的面积为f(P),当P(x0,y0)在圆D:(x+4)2+(y﹣1)2=4上运动时,f(P)的取值范围为.三、解答题(共70分)17.(10分)(1)化简:f(α)=(2)求值:tan675°+sin(﹣330°)+cos960°.18.(12分)已知tanα是关于x的方程2x2﹣x﹣1=0的一个实根,且α是第三象限角.(1)求的值;(2)求cosα+sinα的值.19.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?20.(12分)设关于x的一元二次方程x2+2ax+b2=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.21.(12分)已知圆的半径为,圆心在直线y=2x上,圆被直线x﹣y=0截得的弦长为,求圆的方程.22.(12分)在平面直角坐标系xOy中,已知圆C经过A(2,﹣2),B(1,1)两点,且圆心在直线x﹣2y﹣2=0上.(1)求圆C的标准方程;(2)过圆C内一点P(1,﹣1)作两条相互垂直的弦EF,GH,当EF=GH时,求四边形EGFH的面积.(3)设直线l与圆C相交于P,Q两点,PQ=4,且△POQ的面积为,求直线l 的方程.2015-2016学年山东省临沂一中高一(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项符合题目要求)1.(5分)已知空间中两点A(1,2,3),B(4,2,a),且|AB|=,则a=()A.1或2B.1或4C.0或2D.2或4【解答】解:∵点A(1,2,3),B(4,2,a),∴|AB|==,解这个方程,得a=2或4故选:D.2.(5分)下列四个图各反映了两个变量的某种关系,其中可以看作具有较强线性相关关系的是()A.①③B.①④C.②③D.①②【解答】解:∵两个变量的散点图,若样本点成带状分布,则两个变量具有线性相关关系,∴两个变量具有线性相关关系的图是①和④.故选:B.3.(5分)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法【解答】解:依据题意,第①项调查中,总体中的个体差异较大,应采用分层抽样法;第②项调查总体中个体较少,应采用简单随机抽样法.故选:B.4.(5分)根据如图框图,当输入x为6时,输出的y=()A.1B.2C.5D.10【解答】解:模拟执行程序框图,可得x=6x=3满足条件x≥0,x=0满足条件x≥0,x=﹣3不满足条件x≥0,y=10输出y的值为10.故选:D.5.(5分)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离【解答】解:圆(x+2)2+y2=4的圆心C1(﹣2,0),半径r=2.圆(x﹣2)2+(y﹣1)2=9的圆心C2(2,1),半径R=3,两圆的圆心距d==,R+r=5,R﹣r=1,R+r>d>R﹣r,所以两圆相交,故选:B.6.(5分)已知x,y的取值如下表:从散点图可以看出y与x线性相关,且回归方程为,则a=()A.3.25B.2.6C.2.2D.0【解答】解:∵点在回归直线上,计算得,∴回归方程过点(2,4.5)代入得4.5=0.95×2+a∴a=2.6;故选:B.7.(5分)若角600°的终边上有一点(﹣4,a),则a的值是()A.B.C.D.【解答】解:∵,∴.故选:A.8.(5分)已知一个扇形的周长是4cm,面积为1cm2,则扇形的圆心角的弧度数是()A.2B.3C.4D.5【解答】解:设扇形的弧长为:l,半径为r,所以2r+l=4,S面积=lr=1所以解得:r=1,l=2所以扇形的圆心角的弧度数是α===2故选:A.9.(5分)设点A为圆(x﹣1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为()A.y2=2x B.(x﹣1)2+y2=4C.y2=﹣2x D.(x﹣1)2+y2=2【解答】解:设P(x,y),则由题意,圆(x﹣1)2+y2=1的圆心为C(1,0),半径为1∵PA是圆的切线,且|PA|=1∴∴P点的轨迹方程为(x﹣1)2+y2=2故选:D.10.(5分)下列四个命题:①对立事件一定是互斥事件②若A、B为两个事件,则P(A∪B)=P(A)+P(B)③若事件A、B、C两两互斥,则P(A)+P(B)+P(C)=1④若事件A、B满足P(A)+P(B)=1则A、B是对立事件.其中错误命题的个数是()A.0B.1C.2D.3【解答】解:①对立事件一定是互斥事件,正确;②若A、B为两个事件,则P(A∪B)=P(A)+P(B)﹣P(A∩B),因此不正确;③若事件A、B、C两两互斥,∵(A∪B∪C)≠Ω,则P(A)+P(B)+P(C)≤1,因此不正确;④若事件A、B满足P(A)+P(B)=1,则A、B是对立事件,不一定正确,在一个圆内去掉两个点,事件A是“向圆内投针”,事件B,C分别表示圆内的两个点.其中错误命题的个数是3.故选:D.11.(5分)若直线l:y=kx+1被圆C:x2+y2﹣2x﹣3=0截得的弦最短,则直线l 的方程是()A.x﹣y+1=0B.y=1C.x+y﹣1=0D.x=0【解答】解:直线l是直线系,它过定点(0,1),要使直线l:y=kx+1被圆C:x2+y2﹣2x﹣3=0截得的弦最短,必须圆心(1,0)和定点(0,1)的连线与弦所在直线垂直;连线的斜率﹣1,弦的所在直线斜率是1.则直线l的方程是:y﹣1=x故选:A.12.(5分)若直线y=x+b与曲线有公共点,则b的取值范围是()A.[,]B.[,3]C.[﹣1,]D.[,3]【解答】解:曲线方程可化简为(x﹣2)2+(y﹣3)2=4(1≤y≤3),即表示圆心为(2,3)半径为2的半圆,如图依据数形结合,当直线y=x+b与此半圆相切时须满足圆心(2,3)到直线y=x+b 距离等于2,即解得或,因为是下半圆故可知(舍),故当直线过(0,3)时,解得b=3,故,故选:D.二、填空题(共4小题,每小题5分,共20分)13.(5分)圆x2+y2=1上的点到直线x﹣y=2的距离的最小值为.【解答】解:∵圆x2+y2=1的圆心为(0,0),半径为1,∴圆x2+y2=1上的点到直线x﹣y=2的距离的最小值为(0,0)到直线x﹣y=2的距离d减去半径1,由点到直线的距离公式可得d==,∴所求最小值为.故答案为:14.(5分)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的标号为①④.【解答】解:由茎叶图中的数据,我们可得甲、乙甲,乙两地某月14时的气温抽取的样本温度分别为:甲:26,28,29,31,31乙:28,29,30,31,32;可得:甲地该月14时的平均气温:(26+28+29+31+31)=29,乙地该月14时的平均气温:(28+29+30+31+32)=30,故甲地该月14时的平均气温低于乙地该月14时的平均气温;2=[(26﹣29)2+(28﹣29)2+(29﹣29)2+甲地该月14时温度的方差为:S甲(31﹣29)2+(31﹣29)2]=3.6乙地该月14时温度的方差为:S乙2=[(28﹣30)2+(29﹣30)2+(30﹣30)2+(31﹣30)2+(32﹣30)2]=2,故S甲2>S乙2,所以甲地该月14时的气温的标准差大于乙地该月14时的气温标准差.故答案为:①④.15.(5分)如果实数x,y满足(x+2)2+y2=3,则的最大值是.【解答】解:设=k,则y=kx表示经过原点的直线,k为直线的斜率.所以求的最大值就等价于求同时经过原点和圆上的点的直线中斜率的最大值,如图示:从图中可知,斜率取最大值时对应的直线斜率为正且与圆相切,此时的斜率就是其倾斜角∠EOC的正切值.易得|OC|=2,|CE|=r=,可由勾股定理求得|OE|=1,于是可得到k=tan∠EOC==,即为的最大值.故答案为:.16.(5分)已知P(x0,y0)是圆C:x2+(y﹣4)2=1外一点,过点P作圆C的切线,切点为A、B.记四边形PACB的面积为f(P),当P(x0,y0)在圆D:(x+4)2+(y﹣1)2=4上运动时,f(P)的取值范围为[2,4] .【解答】解:由题意得到圆心C(0,4),半径r=1;圆心D(﹣4,1),半径R=2,∴|CD|==5,∴|CN|=5﹣2=3,|CM|=5+2=7,当P位于图形中的N位置时,四边形ACBP面积最小,过P作圆C的切线,切点分别为A、B,连接AC,BC,可得出|AC|=|BC|=1,且CA⊥AP,CB⊥BP,在Rt△ACP中,根据勾股定理得:AP==2,=2S△ACP=AP•AC=2;此时S四边形ACBP当P位于图形中的M位置时,四边形ACBP面积最大,=4,同理得到S四边形ACBP综上,f(P)的范围为[2,4].故答案为:[2,4]三、解答题(共70分)17.(10分)(1)化简:f(α)=(2)求值:tan675°+sin(﹣330°)+cos960°.【解答】解:(1)f(α)==﹣=﹣cosα;(2)原式=tan(4×180°﹣45°)+sin(﹣360°+30°)+cos(3×360°﹣120°)=﹣tan45°+sin30°﹣cos60°=﹣1+﹣=﹣1.18.(12分)已知tanα是关于x的方程2x2﹣x﹣1=0的一个实根,且α是第三象限角.(1)求的值;(2)求cosα+sinα的值.【解答】解:∵2x2﹣x﹣1=0,∴,∴或tanα=1,又α是第三象限角,…(4分)(1).…(9分)(2)∵且α是第三象限角,∴,∴…(14分)19.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【解答】解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得x=0.0075,∴直方图中x的值为0.0075;(2)月平均用电量的众数是=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300)的用户有0.0025×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户.20.(12分)设关于x的一元二次方程x2+2ax+b2=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.【解答】解:设事件A为“方程有实根”.当a>0,b>0时,方程有实根的充要条件为a≥b(1)由题意知本题是一个古典概型,试验发生包含的基本事件共12个:(0,0)(0,1)(0,2)(1,0)(1,1)(1,2)(2,0)(2,1)(2,2)(3,0)(3,1)(3,2)其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含9个基本事件,∴事件A发生的概率为P==(2)由题意知本题是一个几何概型,试验的全部结束所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}满足条件的构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}∴所求的概率是21.(12分)已知圆的半径为,圆心在直线y=2x上,圆被直线x﹣y=0截得的弦长为,求圆的方程.【解答】解:设圆心(a,2a),由弦长公式求得弦心距d==,再由点到直线的距离公式得d==|a|,∴a=±2,∴圆心坐标为(2,4),或(﹣2,﹣4),又半径为,∴所求的圆的方程为:(x﹣2)2+(y﹣4)2=10或(x+2)2+(y+4)2=10.22.(12分)在平面直角坐标系xOy中,已知圆C经过A(2,﹣2),B(1,1)两点,且圆心在直线x﹣2y﹣2=0上.(1)求圆C的标准方程;(2)过圆C内一点P(1,﹣1)作两条相互垂直的弦EF,GH,当EF=GH时,求四边形EGFH的面积.(3)设直线l与圆C相交于P,Q两点,PQ=4,且△POQ的面积为,求直线l 的方程.【解答】解:(1)因为A(2,﹣2),B(1,1),所以k AB==﹣3,AB的中点为(,﹣),故线段AB的垂直平分线的方程为y+=(x﹣),即x﹣3y﹣3=0,…(2分)由,解得圆心坐标为(0,﹣1).…(3分)所以半径r满足r2=12+(﹣1﹣1)2=5.…(4分)故圆C的标准方程为x2+(y+1)2=5.…(5分)(2)∵EF=GH,∴C到直线EF,GH的距离相等,设为d …(6分)则=1,即d=…(7分)∴EF=GH=2=3…(8分)∴四边形EGFH的面积S=×=9…(9分)(3)设坐标原点O到直线l的距离为h,因为△POQ的面积S==,∴h=.①当直线l与x轴垂直时,由坐标原点O到直线l的距离为知,直线l的方程为x=或x=﹣,经验证,此时PQ≠4,不适合题意;…(11分)②当直线l与x轴不垂直时,设直线l的方程为y=kx+b,由坐标原点到直线l的距离为h==,得k2+1=25b2(*),…(12分)又圆心到直线l的距离为c=,所以PQ=2=4,即k2+1=(1+b)2(**),…(13分)由(*),(**)解得.…(15分)综上所述,直线l的方程为3x+4y﹣1=0或3x﹣4y+1=0.…(16分)。
河南省商丘市六校2015-2016学年高一数学下学期期中联考试题(扫描版)
河南省商丘市六校2015-2016学年高一数学下学期期中联考试题(扫描版)商丘六校2015—2016学年下期期中联考高一数学参考答案13.2214.2- 15.1sin x - 16.3617.(本题满分10分)解: (1)=116tan 352tan 4=+-αα …………5分 (2)3013tan 121tan 31tan 4122=+++ααα…………10分 18.(本小题满分12分)1.)sin()tan()tan()2cos()sin()(αππαπααπαπ--+----=x fαcos -= ……5分2.cos )(=-=ααf 19.(本小题满分12分) 解:(1)……4分(2)对称轴为62π+x =2π+k π, 即x =32π+2k π,k ∈Z …………8分(3)函数()f x 的单调减区间62π+x ∈[2π+2k π,π23+2k π] (Z k ∈) 即x ∈[32π+4k π,38π+4k π] (Z k ∈)…………12分20.(本小题满分12分)解:(1)由a =(1,2),得|a |=12+22=5,又|c |=25,所以|c |=2|a |.又因为c ∥a ,所以c =±2a ,所以c =(2,4)或c =(-2,-4).…………6分 (2)因为a +2b 与2a -b 垂直,所以且(a +2b )·(2a -b )=0,即2|a |2+3a·b -2|b |2=0,将|a |=5,|b |=52代入,得a·b =-52. 所以cos θ=a·b|a ||b |=-1.又由θ∈[0,π],得θ=π,即a 与b 的夹角为π.…………12分 21.(本小题满分12分)解: (1)),8(t n AB -=, ∵AB ⊥a , ∴028=+-t n ,即t n 28=-,--2分 又∵||5||AB OA =, ∴22285)8(⨯=+-t n ,即22855⨯=t ,∴8±=t , ∴)8,24(=或)8,8(--=.----------6分 (2)),8sin (t k -=θ,AC 与向量a 共线, ∴16sin 2+-=θk t ,-------7分k k k k t 32)4(sin 2sin )16sin 2(sin 2+--=+-=θθθθ,∵4>k , ∴140<<k ,∴当k 4sin =θ时,sin t θ取最大值为32k,--------10分由324k=,得8k =,此时,(4,8)6OC θπ==,∴32)8,4()0,8(=⋅=⋅. --------------12分 22.本小题满分12分)解:(1))cos 1(2cos 41)(2x x x f ---==3)cos 1(22--x []1,1cos -∈x , []5,3)(-∈∴x f …………3分(2)[]1,0cos 2,0∈∴⎥⎦⎤⎢⎣⎡∈x x π 由(1)得[]1)(max -=x f 所以m≥-1 …………6分 (3)由f (x )=1-2a cos x -2sin 2x=1-2a cos x -2(1-cos 2x )=2cos 2x -2a cos x —1=2⎝⎛⎭⎪⎫cos x -a 22-a 22-1,这里-1≤cos x ≤1.① 若-1≤a 2≤1,则当cos x =a 2时,f (x )min =-a 22-1; ② 若 a 2 >1,则当cos x =1时,f (x )min =1-2a ; ③ 若 a2<-1,则当cos x =-1时,f (x )min =1+2a⎪⎪⎩⎪⎪⎨⎧>-≤≤----<+=2,2122,122,21)(2a a a aa a a g 因此 …………12分。