广东省广州市越秀区2018-2019学年九年级数学上学期期中模拟试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省广州市越秀区2018-2019学年九年级上学期期中数学模拟试卷一.选择题(共10小题,满分30分)
1.下面给出的是一些产品的图案,从几何图形的角度看,这些图案既是中心对称图形又是轴对称图形的是()
A.B.
C.D.
2.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=( )A.﹣1 B.4 C.﹣4 D.1
3.用配方法方程x2+6x﹣5=0时,变形正确的方程为()A.(x+3)2=14 B.(x﹣3)2=14 C.(x+6)2=4 D.(x ﹣6)2=4
4.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是( )A.B.﹣C.﹣D.
5.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()
A.y=(x﹣8)2+5 B.y=(x﹣4)2+5
C.y=(x﹣8)2+3 D.y=(x﹣4)2+3
6.在抛物线y=ax2﹣2ax﹣7上有A(﹣4,y1)、B(2,y2)、C(3,y3)三点,若抛物线开口向下,则y1、y2和y3的大小关系为()A.y1<y3<y2B.y3<y2<y1C.y2<y1<y3D.y1<y2<y3
7.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣x2﹣2x+2上的三点,则y1,y2,y3的大小关系为()
A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2
8.如图,△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,则点B到C′的距离是()
A.4 B.C.D.3
9.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,若设个位数字为a,则可列方程为( )
A.a2(a﹣4)2=10(a﹣4)+a﹣4
B.a2+(a+4)2=10a+a﹣4﹣4
C.a2+(a+4)2=10(a+4)+a﹣4
D.a2+(a﹣4)2=10a+(a﹣4)﹣4
10.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1<y2≤y0,则x0的取值范围是()
A.x0>﹣1 B.x0>﹣5 C.x0<﹣1 D.﹣2<x0<3
二.填空题(共6小题,满分18分,每小题3分)
11.若一元二次方程ax2﹣bx﹣2018=0有一个根为x=﹣1,则a+b= .
12.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A= °.
13.若二次函数y=(2﹣m)x|m|﹣3的图象开口向下,则m的值为.
14.若关于x的一元二次方程(k﹣1)x2+6x+3=0有实数根,则实数k的取值范围为.
15.从地面竖直向上抛出一小球,小球的高度h(单位:米)与小球运动时间t(单位:秒)的函数关系式是h=9。8t﹣4.9t2.若小球的高度为4.9米,则小球的运动时间为.
16.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A顺时针旋转90°后,得到△ACF,连接DF,下列结论中:①∠DAF=45°②△ABE≌△ACD③AD 平分∠EDF④BE2+DC2=DE2;正确的有(填序号)
三.解答题(共9小题,满分74分)
17.解方程:x2﹣4x﹣5=0.
18.如图,画出△ABC关于原点O对称的△A1B1C1,并写出点A1,B1,C1的坐标.
19.淮北市某中学七年级一位同学不幸得了重病,牵动了全校师生的心,该校开展了“献爱心”捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该校能收到多少捐款?20.如图,四边形ABCD是边长为1的正方形,点E,F分别在边AB 和BC上,△DCM是由△ADE逆时针旋转得到的图形.
(Ⅰ)旋转中心是点.
(Ⅱ)旋转角是度,∠EDM= 度.
(Ⅲ)若∠EDF=45°,求证△EDF≌△MDF,并求此时△BEF的周长.
21.从甲、乙两题中选做一题.如果两题都做,只以甲题计分.
题甲:若关于x一元二次方程x2﹣2(2﹣k)x+k2+12=0有实数根a,β.(1)求实数k的取值范围;
(2)设,求t的最小值.
题乙:如图所示,在矩形ABCD中,P是BC边上一点,连接DP 并延长,交AB的延长线于点Q.
(1)若=,求的值;
(2)若点P为BC边上的任意一点,求证:﹣=.
我选做的是题.
22.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)
23.(12分)如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点.
(1)抛物线与x轴的交点坐标为;
(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=6,并求出此时P点的坐标.
24.如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C.A (1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q,设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC 重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)将△OPQ绕着点P顺时针旋转90°,是否存t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.