漳州市九年级下学期数学期中考试试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

漳州市九年级下学期数学期中考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)实数-3的相反数是()
A . 3
B .
C .
D . -2
2. (2分)(2017·平顶山模拟) 下列计算正确的是()
A . + =2
B . 3+ =3
C . + =
D . + =3+
3. (2分) (2019八下·乐山期末) 一种微粒的半径是4×10-5米,用小数表示为()
A . 0.0000004米
B . 0.000004米
C . 0.00004米
D . 0.0004米
4. (2分)(2019·二道模拟) 某物体的三视图如图所示,则该物体的形状是()
A . 正方体
B . 长方体
C . 圆柱体
D . 球体
5. (2分)自2017年3月3日至3月12日,互联网各平台共采集到关于两会的信息数据,有新闻319009篇,APP新闻90591篇,纸媒11333篇,微信98544篇,微博854223条,博客28015 篇,论坛30099篇,视频5824
条。

这组数据的中位数是()
A . 90591
B . 30099
C . 60345
D . 2815
6. (2分) (2018九上·清江浦期中) 如图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=()
A . 50°
B . 25°
C . 40°
D . 65°
7. (2分)在Rt△ABC中,∠C=90o , AC=4,AB=5,则sinB的值是()
A .
B .
C .
D .
8. (2分)(2017·苏州模拟) 某商店在节日期间开展优惠促销活动:购买原价超过200元的商品,超过200元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过200元的部分可以享受的优惠是()
A . 打八折
B . 打七折
C . 打六折
D . 打五折
9. (2分)如图,在▱ABCD中,AB=4,AD=3,过点A作AE⊥BC于E,且AE=3,连结DE,若F为线段DE 上一点,满足∠AFE=∠B,则AF=()
A . 2
B .
C . 6
D . 2
10. (2分)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为()
A . 15°
B . 30°
C . 60°
D . 90°
二、填空题 (共6题;共6分)
11. (1分) (2020八上·德江期末) 实数,,,中,无理数有________;
12. (1分)(2017·港南模拟) 已知a2﹣b2=5,a+b=﹣2,那么代数式a﹣b的值________.
13. (1分)(2018·平顶山模拟) 方程的解为________
14. (1分)(2018·肇庆模拟) 若扇形的圆心角为60°,弧长为2π,则扇形的半径为________;
15. (1分)(2019·道真模拟) 如图,AB是半圆O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,,AD=3.给出下列结论:①AC 平分∠BAD;②△ABC∽△ACE;③AB=3PB;④S△ABC=5,其中正确的是________(写出所有正确结论的序号).
16. (1分)如图,在△ABC中,∠ACB=90°,AB=10,AC=8,P是AB边上的动点(不与点B重合),点B关于直线CP的对称点是B′,连接B′A,则B′A长度的最小值是________.
三、解答题 (共8题;共78分)
17. (5分)(2017·蓝田模拟) 计算:|﹣3|﹣(π﹣3.14)0+ ﹣2cos45°.
18. (5分)(2017·新野模拟) 先化简,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.
19. (10分)(2017·威海模拟) 校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道L上确定点D,使CD与L垂直,测得CD的长等于24米,在L上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的长(结果保留根号);
(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.(参考数据:≈1.73,≈1.41)
20. (2分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”
四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:
类别频数(人数)频率
小说0.5
戏剧4
散文100.25
其他6
合计m1
(1)
计算m=________
(2)
在扇形统计图中,“其他”类所占的百分比为________
(3)
在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.
21. (10分)如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙O的两条切线,C、D为切点.
(1)
如图1,求⊙O的半径;
(2)
如图1,若点E是BC的中点,连接PE,求PE的长度;
(3)
如图2,若点M是BC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP 于点N,求证:AM=MN.
22. (16分)(2017·安岳模拟) 在平行四边形ABCD中,点E,F分别在边AD,AB上(均不与顶点重合),且∠BCD=120°,∠ECF=60°.
(1)如图1,若AB=AD,求证:△AEC≌△BFC;
(2)如图2,若AB=2AD,过点C作CM⊥AB于点M,求证:①AC⊥BC;②AE=2FM;
(3)如图3,若AB=3AD,试探究线段CE与线段CF的数量关系.
23. (15分)(2017·长春模拟) 已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).
(1)求tan∠OPQ的值;
(2)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.
①求抛物线C′的解析式;
②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.
24. (15分) (2018八上·重庆期末) 如图1,在平面直角坐标系中,直线AB与y轴交于点,与x轴交于点B,,直线CD与y轴交于点D,与x轴交于点,,直线AB与直线CD交于点Q,E为直线CD上一动点,过点E作x轴的垂线,交直线AB于点M,交x轴于点N,连接AE、BE.
(1)求直线AB、CD的解析式及点Q的坐标;
(2)当E点运动到Q点的右侧,且的面积为时,在y轴上有一动点P,直线AB上有一动点R,当的周长最小时,求点P的坐标及周长的最小值.
(3)在(2)问的条件下,如图2将绕着点B逆时针旋转得到,使点M与点G重合,点N与点H重合,再将沿着直线AB平移,记平移中的为,在平移过程中,设直线与x轴交于点F,是否存在这样的点F,使得为等腰三角形?若存在,求出此时点F的坐标;若不存在,说明理由
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共8题;共78分)
17-1、
18-1、19-1、
19-2、20-1、20-2、
20-3、21-1、21-2、
21-3、
22-1、
22-2、
22-3、23-1、
24-1、24-2、
24-3、。

相关文档
最新文档