【2013备考】各地名校试题解析分类汇编(一)理科数学:4数列1

合集下载

2013备考各地试题解析分类汇编(一)文科数学:4数列1

2013备考各地试题解析分类汇编(一)文科数学:4数列1

各地解析分类汇编:数列(1)1.【云南师大附中2013届高三高考适应性月考卷(三)文】设等差数列{}n a 的前n 项和为n S ,若29a =-,376a a +=-,则当n S 取最小值时,n =A .9B .8C .7D .6【答案】D【解析】375526,3a a a a +==-∴=- , 2,92(2)21n d a n n ∴==-+-=-, 671,1,a a ∴=-=6S ∴最小. 故选D .2 【云南省玉溪一中2013届高三第三次月考文】数列{a n }的通项公式是a n,若前n 项和为10,则项数n 为( )A .120B .99C .11D .121 【答案】A 【解析】由n a ===,所以121)10n a a a +++=+++= ,即110-=,即11=,解得1121,120n n +==.选A. 3 【云南省玉溪一中2013届高三第三次月考文】已知定义在R 上的函数()()f x g x 、满足()()x f x a g x =,且'()()()'(f x g x f x g x <,25)1()1()1()1(=--+g f g f ,若有穷数列()()f n g n ⎧⎫⎨⎬⎩⎭(n N *∈)的前n 项和等于3231,则n 等于( ) A .4 B .5 C .6 D . 7 【答案】B 【解析】2()'()()()'()[]'()()f x f xg x f x g x g x g x -=,因为'()()()f x g x f x g x <,所以2()'()()()'()[]'0()()f x f xg x f x g x g x g x -=<,即函数()()x f x a g x =单调递减,所以01a <<.又25)1()1()1()1(=--+g f g f ,即152a a -+=,即152a a +=,解得2a =(舍去)或12a =.所以()1()()2x f x g x =,即数列()1()()2n f n g n =为首项为112a =,公比12q =的等比数列,所以111()(1)1121()112212n nnn a q S q --==⨯=---,由1311()232n -=得11()232n =,解得5n =,选B. 4 【山东省师大附中2013届高三上学期期中考试数学文】在等比数列{}375,2,8,n a a a a ===则A.4±B.4C.4-D.5【答案】B【解析】因为,因为225320a a q q ==>,又253716a a a ==,所以54a =,选B. 5 【山东省师大附中2013届高三上学期期中考试数学文】首项为20-的等差数列,从第10项起开始为正数,则公差d 的取值范围是 A.209d >B.52d ≤C.20592d <≤ D.20592d ≤< 【答案】C【解析】由题意知数列{}n a 满足10900a a >⎧⎨≤⎩,即20902080d d -+>⎧⎨-+≤⎩,所以20952d d ⎧>⎪⎪⎨⎪≤⎪⎩,即20592d <≤,选C.6 【山东省实验中学2013届高三第三次诊断性测试文】已知各项为正的等比数列{}n a 中,4a 与14a 的等比数列中项为22,则1172a a +的最小值 A.16 B.8 C. 22 D.4 【答案】B【解析】由题意知224149a a a ==,即9a =。

2013年全国高考理科数学试题分类汇编4:数列Word版含答案

2013年全国高考理科数学试题分类汇编4:数列Word版含答案

2013 年全国高考理科数学试题分类汇编 4:数列一、选择题1 .( 2013 年高考上海卷(理) ) 在数列 { a n } 中, a n 2n1, 若一个 7 行 12 列的矩阵的第 i行第 j 列的元素 aa a j a a j ,( i 1,2, ,7; j 1,2, ,12 ) 则该矩阵元素能取到 i,j i i 的不同数值的个数为( ) (A)18 (B)28 (C)48 (D)63【答案】 A.2 .( 2013 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对) ) 已知数列 a n 满足 3a n 1 a n 0, a 2 4 的前10, 则 a n 项和等于 3 (A) 6 1 3 10 (B) 1 1 3 10 (C) 3 1 3 10 (D) 3 1+3 10 9【答案】 C3 .( 2013 年高考新课标1(理)) 设 A n B n C n 的三边长分别为 a n , b n , c n , A n B n C n 的面积为 S n , n 1,2,3, , 若 b 1 c 1,b 1 c 1 2a 1 , a n 1 a n , b n 1cn an, c n 1 b n a n , 则 ( )2 2 A.{ Sn} 为递减数列B.{ Sn} 为递增数列C.{ S2n-1 } 为递增数列 ,{ S2n} 为递减数列D.{ S2n-1 } 为递减数列 ,{ S2n} 为递增数列【答案】 B4 .( 2013 年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数y=f (x) 的图 像如图所示 , 在区间a,b 上可找到 n(n 2) 个不同的数 x 1,x 2 ...,x n , 使得 f (x 1 ) f (x 2 ) f (x n )则 n 的取值范围是x 1 = = ,x 2 x n(A) 3,4 (B) 2,3,4 (C) 3,4,5 (D) 2,3【答案】 B5 .( 2013 年普通高等学校招生统一考试福建数学(理)试题(纯 WORD版))已知等比数列{ a n }第 1 页共 19 页的公比为q, 记 b n a m( n 1) 1 a m( n 1) 2 ... a m (n 1) m ,cn am(n 1) 1 am( n 1) 2 ... am (n1) m (m, n N * ), 则以下结论一定正确的是 ( ) A. 数列 {b n } 为等差数列 , 公差为 q mB. 数列 { b n } 为等比数列 , 公比为 q 2mC.数列 { c n }为等比数列, 公比为 q m2D. 数列 { c n } 为等比数列 , 公比为 q mm【答案】 C6 (. 2013 年普通高等学校招生统一考试新课标Ⅱ 卷数学(理)(纯 WORD 版含答案))等比数列 a n 的前 n 项和为 S n , 已知 S 3a 2 10a 1 , a 5 9 , 则 a 1 1 (B) 1 1 1(A) 3 (C) (D)3 9 9 【答案】 C7 (. 2013 年高考新课标 1(理))设等差数列 a n 的前 n 项和为 S n , S m 1 2, S m 0,S m 1 3 , 则 m ( )A.3B.4C.5D.6【答案】 C8 .( 2013 年普通高等学校招生统一考试辽宁数学 (理)试题( WORD 版))d 0 下面是关于公差的等差数列a n 的四个命题 : p 1 : 数列 a n 是递增数列; p 2 : 数列 na n 是递增数列; p 3 : 数列a n 是递增数列;p 4 : 数列 a n 3nd 是递增数列; n 其中的真命题为(A)p 1, p 2 (B) p 3 , p 4 (C) p 2 , p 3 (D) p 1, p 4 【答案】 D9 .( 2013 年高考江西卷(理) ) 等比数列 x,3x+3,6x+6,.. 的第四项等于A.-24B.C.12D.240 【答案】 A 二、填空题10.( 2013 年高考四川卷(理))在等差数列 { a n } 中 , a2a18 , 且 a4为 a2和 a3的等比中项 ,求数列 { a n} 的首项、公差及前n 项和 .【答案】解 : 设该数列公差为 d , 前 n 项和为s n . 由已知 , 可得第2 页共 19 页2a 1 2d 8, a 1 3d2a 1 d a 1 8d .所以 a 1 d 4,d d 3a 10 ,解得a 14,d 0 , 或 a 1 1,d 3 , 即数列a n 的首相为 4, 公差为 0, 或首相为 1,公差为 3.所以数列的前 n项和 s4n 或s n 3n 2 nn 211(. 2013 年普通高等学校招生统一考试新课标Ⅱ 卷数学(理)(纯 WORD 版含答案))等差数列 an 的前 n 项和为 S , 已知 S0, S 25 , 则 nS 的最小值为 ________. n 10 15 n 【答案】49 12.( 2013 年高考湖北卷(理) ) 古希腊毕达哥拉斯学派的数学家研究过各种多边形数. 如三角 形 数 1,3,6,10,, 第 n 个 三 角 形 数为n n11 n2 1n . 记 第 n 个k 边 形 数为2 2 2 N n,k k3 , 以下列出了部分 k 边形数中第 n 个数的表达式 : 三角形数N n,3 1 n 2 1 n2 2 正方形数N n,4 n 2 五边形数N n,5 3 n 2 1 n 2 2 六边形数N n,6 2n 2 n可以推测 N n,k 的表达式 , 由此计算 N 10,24 ___________.选考题【答案】 100013.( 2013 年普通高等学校招生全国统一招生考试江苏卷(数学) (已校对纯 WORD 版含附加题) )在正项等比数列{ an } 中 , a5 12 ,a6a7 3, 则满足a1 a2an a1a2an的最大正整数n 的值为_____________.【答案】1214.( 2013 年高考湖南卷(理))设Sn 为数列an的前n 项和 , Sn( 1)nan12n,nN , 则(1) a3 _____;(2)S1S2 S100___________.【答案】1 ; 1( 110016 3 21)第3 页共19页15.( 2013 年普通高等学校招生统一考试福建数学 (理) 试题(纯 WORD版))当 x R, x1时 ,有如下表达式 : 1x x 2 ... x n... 1 1 .x 1 1 1 1 1 1 两边同时积分得 :21dx 2 xdx 2 x 2dx ... 2 x n dx ... 2 dx. 0 0 0 00 1 x从而得到如下等式 : 11 1 ( 1 )21 ( 1 ) 3 ... 1 ( 1 )n1 ... ln 2.2 2 23 2 n 1 2 请根据以下材料所蕴含的数学思想方法, 计算 :0 11 1 1 2 1 2 1 3 1 n 1 n1 C n2 2C n( 2 )3 C n ( 2 ) ... n 1C n ( 2)_____ 【答案】 n 1 [( 3 ) n 1 1]1 216.( 2013 年普通高等学校招生统一考试重庆数学(理)试题(含答案)) 已知a n 是等差数 列, a 1 1, 公差 d0 , S n 为其前 n 项和 , 若 a 1 , a 2 , a 5 成等比数列 , 则S 8 _____【答案】6417.( 2013 年上海市春季高考数学试卷( 含答案 ) )若等差数列的前 6 项和为 23, 前 9 项和为57, 则数列的前 n 项和 S n =__________.【答案】 5 n 27 n6 618.( 2013 年普通高等学校招生统一考试广东省数学(理)卷(纯 WORD 版))在等差数列 an 中 , 已知 a 3 a 8 10 , 则 3a5 a 7 _____. 【答案】2019.( 2013 年高考陕西卷(理) )观察下列等式 :12 112 2 2 3 122232 61222324210照此规律 ,2- 2232-n-1n2 (- 1) n 1第 n 个等式可为___1( -1)2n(n 1)____.【答案】2- 2232-n-1n2( -1)n1n(n 1) 1 ( -1)220.( 2013 年高考新课标1(理))若数列 { a n } 的前 n项和为 Sn=2a n1, 则数列 {a n } 的通项3 3第 4 页共 19 页公式是 a n =______.【答案】 a n = ( 2)n 1 .21.( 2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图 , 互不 - 相同的点 A1 , A2, X n , 和 B1, B2, B n , 分别在角 O的两条边上 , 所有 A n B n相互平行 , 且所有梯形 A n B n B n 1 A n 1的面积均相等 . 设 OA n a n . 若 a11, a22, 则数列a n的通项公式是_________.【答案】 a n3n 2, n N *22.( 2013 年高考北京卷(理))若等比数列 { an} 满足a2+a4=20, a3+a5=40, 则公比q=_______;前n 项和 Sn=___________.【答案】 2, 2n 1 223.( 2013 年普通高等学校招生统一考试辽宁数学(理)试题( WORD版))已知等比数列a n是递增数列 , S n是a n 的前 n 项和 , 若 a1,a3是方程 x25x 4 0 的两个根 , 则S6____________. 【答案】63三、解答题24.( 2013 年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))设函数f n (x) 1 x x2x2x n n) , 证明 : 22 2n2(x R, n N3( Ⅰ) 对每个 n N n , 存在唯一的x n[ 2,1] , 满足 f n( x n )0 ;31( Ⅱ ) 对任N n , 由 ( Ⅰ ) 中x n构成的数列x n满足0 x n x n p .意pn【答案】解: ( Ⅰ) n 2 3 4 n当 x 0时,y x 2是单调递增的f n( x) 1 x x 2 x2x2x 2是 x的n 2 3 4n第 5 页共 19 页单调递增函数 , 也是 n 的单调递增函数 .且 f n (0) 1 0, f n (1) 1 1 0 . 存在唯一 x n (0,1], 满足 f n( x n ) 0,且1 x 1 x 2 x 3 x n 0 当 x (0,1).时, f n ( x) 1 xx 2 x 3 x 4x n1 x2 1 x n 1 x x 2122 22 22 22x 14 1 x4 1 x0 f n ( x n ) 1 x n x n 21 (x n 2)(3x n 2) 0 x n24 1 x n [ ,1]3 综上 , 对每个 n N n , 存在唯一的x n [ 2 ,1] , 满足 f n ( x n ) 0 ;( 证毕 )3( Ⅱ) 由题知1x n x n p 0, f n ( x n ) 1 x n x n 2 x n 3 x n 4 x n n 022 32 42 n 223 4 n n 1 n pf n p ( x n p ) 1 x n p x n p x n p x n px n p x n p x n p 0 22 32 4 2 n 2 (n 1)2 (n p)2上 式 相 减: x n 2 x n 3 x n 4 x n n 2 x n p 3 x n p 4 x n p n x n p n 1 npx n x n x n p x n p22 32 42 n 2 p 22 32 42 n 2 ( n 1) 2 ( n p) 22 23 34 4 n n n1 n px n - x n p ( xn p - xnxn p -xn xn p - xn xn p - xn )( xn p xn p ) 2 2 3 2 4 2 n 2 (n 1) 2 (n p)21 1 1 xn - xn 1 .n n p n pn法二 :第 6 页共 19 页25 .( 2013 年高考上海卷(理)) (3 分 +6 分+9分 ) 给定常数 c0 , 定义函数f ( x) 2 | x c 4 | | x c |, 数列 a1 , a2 ,a3 , 满足 a n 1 f (a n ), n N * .(1) 若 a c 2 , 求 a 及 a ;(2) 求证 : 对任意 nN* , a1a c ,;1 2 3n n(3 ) 是否存在 a1 , 使得 a1 ,a2 ,a n ,成等差数列 ? 若存在 , 求出所有这样的a1 , 若不存在 , 说明理由 .【答案】 :(1) 因为c 0 , a1( c2) , 故 a2 f (a1) 2| a1 c4| |a1 c | 2 ,a3 f (a1) 2| a2 c 4| | a2 c | c 10第 7 页共 19 页(2) 要证明原命题 , 只需证明 f ( x) x c 对任意 x R 都成立 ,f ( x) x c2 | x c 4 | | x c | x c即只需证明2 | x c 4 | | x c | +x c 若 x c 0 , 显然有 2 | x c 4 | | x c | +x c=0 成立 ; 若 x c 0 , 则 2 |xc 4 | |x c | + x c x c 4 x c 显然成立 综上 , f ( x) x c 恒成立 , 即对任意的 nN *, a n 1 a n c (3) 由 (2)知, 若 { a n } 为等差数列 ,则公差 d c 0 , 故 n 无限增大时 , 总有 a n 0 此时 ,a n 1 f (a n ) 2(a nc 4)(a n c) a n c 8即 d c 8故a 2f (a 1 ) 2| a 1c 4| | a 1 c | a 1 c 8,即2 | a 1 c 4 | | a 1 c | a 1 c 8 ,当 a c 0 时 , 等式成立 , 且 n 2 时 , a 0 , 此时 { a } 为等差数列 , 满足题意 ; 1 n n 若 a 1 c 0 , 则 |a 1 c 4| 4 a 1 c 8 , 此时 , a 20,a 3 c 8, , a n ( n 2)(c 8) 也满足题意 ; 综上 , 满足题意的 a 1 的取值范围是 [c, ) { c 8}.26.( 2013 年普通高等学校招生全国统一招生考试江苏卷(数学) (已校对纯 WORD 版含附加题) ) 本小题满分10分 . k 个:1, 2, 2 , 3,,3 ,,3 ,4 , k- 1 k -1设 数 列 ( ) , ,( ) , 即 当 a n - -- , ,4 4- 1k - - - - 1 k( k )k ( ) k 11n k k 1k N 时 , a n k , 记 S n a 1 a 2 a n n N , 对2 2 (-1)于 l N , 定义集合 P ln S n 是 a n 的整数倍, n N ,且 1 n l (1) 求集合 P 11 中元素的个数 ; (2) 求集合 P 2000 中元素的个数 .【答案】 本题主要考察集合. 数列的概念与运算 . 计数原理等基础知识 , 考察探究能力及运用 数学归纳法分析解决问题能力及推理论证能力.第 8页 共 19页(1) 解 :由 数列a n 的 定义 得 : a 11 , a 22 , a3 2 , a 43 , a 5 3 , a 6 3 , a 74 , a 8 4 , a 94 , a104 , a 11 5∴ S 1 1 , S 2 1 , S 3 3 , S 4 0 , S 3 , S 6 , S 2 , S 8 2 , S 9 6 , 5 6 7 S10 10 , S 11 5∴ S 1 1 a 1 , S 4 0 a 4 , S 5 1 a 5 , S 6 2 a 6 , S 111 a 11 ∴集合 P 11 中元素的个数为5 (2) 证明 : 用数学归纳法先证 (21) S i ( 2i 1) i i事实上 ,① 当 i 1时 ,Si( 2i 1) S 31 (2 1)3 故原式成立 ② 假设当 i m 时 , 等式成立 , 即(2 1)故原式成立 Sm(2 m 1) m m则: i m 1, 时 ,S( m 1)[ 2( m 1) 1} S ( m 1)( 2m 3} S m(2m 1) ( 2m 1) 2 (2m 2)2 m(2m 1) (2m 1) 2 (2m 2) 2(2m 2 5m 3) ( m 1)( 2m 3)综合①②得 :Si (2 i 1) i (2 i 1) 于是S( i 1)[ 2i 1} Si ( 2i 1} (2i 1) 2 i (2i 1) (2i 1)2 (2i 1)(i 1) 由上可知 : S i ( 2i 1} 是 (2i1) 的倍数 而 a1)( 2i 1} j 2i 1( j 1,2, ,2i 1) , 所以S S j i 1) 是 ( i i (2i 1) j i (2 i 1) ( 2a(i 1)( 2i 1} j ( j 1,2,,2i 1) 的倍数又S( i 1)[2i1}(i1)(2 1)不是2i2 的倍数 ,i而( 2 2)( 1,2, ,2 2) a(i1)(2i1} j i j i所以(22) (2 1)( 1) (22)不是S( i1)( 2i1) j S(i1)(2i1) j i i i j i第 9 页共 19 页a(i 1)( 2 i 1} j ( j 1,2, ,2i 2) 的倍数故当 l i(2i1) 时, 集合 P l 中元素的个数为 1 3 (2i -1) i 2 于是当 li( 2i 1) j (1 j 2i 1)时 , 集合 P l 中元素的个数为 i 2 j 又 2000 31 (2 31 1) 47 故集合 P 2000 中元素的个数为312 47 100827.( 2013 年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版)) 在公差为 d 的等 差数列 { a n } 中 , 已知 a 1 10 , 且 a 1 ,2a 2 2,5a 3 成等比数列 .(1) 求 d, a n ; (2) 若 d 0 , 求 | a 1 | | a 2 | | a 3 | | a n | . 【答案】 解:( Ⅰ) 由已知得到 :(2 a 2 2) 2 5a a 4(a d 1)2 50(a 2d ) (11 d ) 225(5 d )1 3 1 1 121 22d d2 125 25d d 2 3d 4 0d 4d 1 a n 4n 或 6 a n 11 n ; ( Ⅱ) 由 (1) 知 ,当 d0 时 , a n 11 n , ①当 1 n 11 时 ,a n0 | a 1 | | a 2 | | a 3 | | a n | a 1 a 2a 3a n n(10 11 n)n(21 n)2 2②当 12n 时 ,a n 0 | a 1 | | a 2 | | a 3 | | a n | a 1a 2 a 3 a 11 (a 12 a13 a n ) 2( a 1 a 2 a 3a 11 ) (a 1 a 2 a 3 11(21 11) n(21 n) n 2 21n 220 a n ) 2 2 2 2n(21n),(1 n 11) 所以 , 综上所述 :| a | | a | | a2;| a |n |1 2 3n221n 22012)2,( n28.( 2013 年高考湖北卷(理))已知等比数列a n 满足 :a2a310 , a1a2 a3125 .第 10 页共 19 页(I) 求数列 a n 的通项公式 ;(II) 是否存在正整数 m , 使得 1 1 1 1 ?若存在 , 求 m 的最小值 ; 若不存在 , 说 a 1 a 2a m 明理由 .【答案】 解 :(I) 由已知条件得 :a 2 5 , 又 a 2 q 1 10 , q 1或 3 , 所以数列a n 的通项或 a n 5 3n 2(II) 若 q 1, 1 11 1或 0 , 不存在这样的正整数m ;a 1 a 2 a m 5m 9 , 不存在这样的正整数 m .若 q 3, 1 1 1 9 1 1a 1 a 2 a m 10 31029.( 2013 年普通高等学校招生统一考试山东数学(理)试题(含答案) )设等差数列a 的前 n n 项和为 S n , 且S 44S 2 , a 2 n 2a n 1 .( Ⅰ) 求数列 a n 的通项公式 ;( Ⅱ) 设数列b n 前 n 项和为 T n , 且 T n a n 1 ( 为常数 ).令 c n b 2n (n N * ) . 求数 2n列 c n 的前 n 项和 R n .【答案】 解:( Ⅰ) 设等差数列an的首项为 a1 , 公差为 d ,由 S 44S 2 , a 2n 2a n 1得4a 1 6d 8a 1 4d a 1 (2n 1) 2a 1 2(n 1)d 1 ,解得 , a11,d 2因此an2n 1 ( n N * ) T nn2n 1( Ⅱ) 由题意知 :b n T nT n nn 1所以 n 1 2n22 时 ,2n 1第 11 页 共 19页2n 2 1 n 1故, c n b2n 22n 1 ( n 1)( 4)( n N *)R n 0 ( 1) 0 1 ( 1)1 2 ( 1) 2 3 ( 1) 3 (n 1) ( 1) n 1所以 4 4 4 4 4 ,1R n 0 ( 1)1 1 (1 ) 2 2 (1 )3(n 2) ( 1) n 1 (n 1) ( 1)n则 4 4 4 44 43R n ( 1 )1 ( 1 )2 ( 1 )3 (1 )n1 (n 1) (1 ) n 两式相减得 44 4 4 4 41 (1 )n 1)(1 )n4 4 (n 1 1 4 4 R n 1 3n 1 ) (4 4 n 1整理得9的前 n 项和Rn1 3n 1所以数列数列c n 9 (4 4n 1 ) 30.( 2013 年普通高等学校招生全国统一招生考试江苏卷(数学) (已校对纯 WORD 版含附加题) )本小题满分16 分 . 设 { a } 是首项为 a , 公差为 d 的等差数列 (d 0) , S 是其前 n 项和 . 记 n nb n nS n , n N* , 其中 c 为实数 .n 2 c (1) 若 c 0 , 且 b 1,b 2,b 4 成等比数列 , 证明 : S nk n 2S k ( k,n N * ); (2) 若 { b n } 是等差数列 , 证明 : c 0 . 【答案】 证明 : ∵ { a n } 是首项为 a , 公差为 d 的等差数列 ( d0) , S n 是其前 n 项和∴ S n na n(n 1) d2(1) ∵c 0 ∴b nS nan 1dn 2∵ b1, b2,b4成等比数列∴b2 2 b1b4∴ (a 1 d ) 2 a( a3 d )2 2∴1 ad 1 d 2 0 ∴1 d( a1 d ) 0 ∵ d 0 ∴ a 1 d∴ d 2a 2 4 22 2∴ S n na n(n 1) d na n(n 1) 2a n 2a2 2第 12 页共 19 页∴左边 = S nk (nk) 2 a n 2 k 2 a 右边 = n 2S kn 2 k 2a ∴左边 =右边∴原式成立(2) ∵ { b n } 是等差数列∴设公差为 d 1 , ∴ b n b 1 (n 1) d 1 带入b nnS n 得:n 2 cb 1 (n 1)d 1 nS n 1 d ) n 3 (b 1 d 1 a 1 2 cd 1 n c(d 1 b 1 ) 对n 2c ∴ (d 1 d ) n2 2n N 恒成立d 1 1 d 02 ∴ b 1 d 1 a 1 d 0 2 cd 1 0 c(d 1 b 1 ) 0由①式得 :d 1 1 d ∵ d 0 ∴ d 1 02 由③式得 :c 0法二 : 证 :(1)若 c0 , 则 a n a ( n 1)d , S n n[( n 1)d 2a], b n (n 1)d 2a .2 2 当 b 1, b 2,b 4 成等比数列 ,b 22b 1b 4 ,d 2 3d即:a a a , 得 : d 2 2ad , 又 d 0 , 故 d 2a .2 2 由此 : S nn 2 a , S nk ( nk) 2 a n 2k 2 a , n 2 S k n 2 k 2a . 故: S nkn 2S k ( k, n N * ).nS n n 2 (n 1)d 2a (2) b n 2, n 2 c n 2 c n 2 (n 1)d 2a c (n 1) d 2a c (n 1)d 2a2 2 2n2 c(n 1) d2a c(n 1)d 2an 22 . ( ※)2 c若 { b n} 是等差数列 , 则 b n An Bn 型.观察 ( ※) 式后一项 , 分子幂低于分母幂 ,第 13 页共 19 页c(n 1) d2a1)d 2a ( n 1)d 2a故有 :2(n≠0, n 2 0 , 即 c 0 , 而2c2 故 c 0. 经检验 ,当 c0 时 {b n } 是等差数列 . 31.( 2013 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对) ) 等差数列 a n 的前 n 项和为 S n , 已知 S 3 =a 2 2 , 且 S 1 , S 2 , S 4 成等比数列 , 求 a n 的通项式 .【答案】32.( 2013 年普通高等学校招生统一考试天津数学(理)试题(含答案))已知首项为 3的等比 2 数列{ a n } 不是递减数列 , 其前 3 3 5 5 4 4 成等差数 n 项和为 S n ( n N *) , 且 S + a , S + a , S + a列.( Ⅰ) 求数列 { a n } 的通项公式 ; ( Ⅱ ) 设 T n S n1 ( n N* ) , 求数列 { Tn } 的最大项的值与最小项的值 . S n 【答案】第 14 页共 19 页33 .(2013 年高考江西卷(理))正项数列 {a n} 的前项和{a n} 满足: sn2 (n2n 1)s n( n2n) 0(1) 求数列 {a n} 的通项公式 an;(2) 令b nn 12, 数列{b} 的前 n 项和为 T n . 证明 : 对于任意的 n* 5 2nN , 都有T n (n 2)a 64【答案】 (1) 解 :由 S n2(n2n 1)S n(n2n) 0 , 得 S n(n2n) (S n1) 0 .由于an 是正项数列 ,所以S 0, S n2n.n n于是 a1S12,n 2时 , anS n S n1 n2n (n 1)2(n 1) 2n .综上 , 数列a n 的通项a n2n .(2) 证明 : 由于an 2n, b nn 1.(n2) 2 a n2则 b nn 1 1 1 1.4n2 (n2)216 n2( n 2)2第 15 页共 19 页T n111 1 1 1 1⋯11 1 13222423252(n 1)2(n 1)2n2( n 2)2 16111 1 1 1 1 51622(n2(n 2)2 (1 2 )64.1) 16 234.( 2013 年普通高等学校招生统一考试广东省数学(理)卷(纯 WORD版))设数列a n的前n项和为 S n . 已知a12S na n1 2n2n* 1, 1 n , N .n 3 3( Ⅰ) 求 a2的值 ;( Ⅱ) 求数列a n的通项公式 ;( Ⅲ) 证明 : 对一切正整数n , 有1 1 17 .a1a2a n 4【答案】.(1)解:2S na n1 1 n2n2 , n N .n 3 3当n 1 时 , 2a12S1a21 1 2 a2 23 3又a11, a2 4(2)解 : 2S n a n 1 1 n2 n 2 , n N .n3 32S n na n 1 1 n3n22 n na n 1n n 1 n 2①33 3当 n 2时 , 2S n 1n 1 a nn 1 n n 1②3由①—②, 得2S n2S n 1na n 1n 1 a n n n 1 2a n2S n2S n 12a n na n 1n 1 a n n n 1a n1 a n1 数列a n是以首项为a11 , 公差为 1 的等差数列 .n 1 n n1 a n 1 1 n 1 n, a n n2 n 2n 当 n 1时 , 上式显然成立 . a n n2 , n N *(3) 证明 : 由(2) 知 , a n n2 , n N *第 16 页共 19 页①当 n 1时 , 1 1 7 , 原不等式成立 .a 1 4 ②当 n 2 时 , 111 1 7原不等式亦成立 .a 1 a 2 , 4 4 ③当 n 3 时,n 2n 1 n 1 , 1 n 1 1 1n 2 n1 1 1 1 1 11 1111a 1 a 2a n 12 22n 2 1 3 2 4 n 2 n n 1 n 11 1 1 1 1 1 1 1 111 1 1 111 1 32 2 4 23 5 2 n 2 n 2 n 1 n 12 1 1 1 1 1 1 111111 1 32 43 5n 2 n n 1 n 12 1 1 1 1 17 1117 11 2 n n 14 2 n n 14 2 当 n 3 时 ,, 原不等式亦成立 .综上 , 对一切正整数n , 有 11 1 7 . a 1 a2 a n 4 35.( 2013 年高考北京卷(理) )已知 { a } 是由非负整数组成的无穷数列 , 该数列前 n 项的最大n值记为 An, 第 n 项之后各项 a n 1, a n 2 , 的最小值记为 Bn,dn=An- Bn . (I) 若 { an} 为 2,1,4,3,2,1,4,3,, 4 的数列 ( 即对任意* a n ), 写出是一个周期为 n ∈N , a n 4d1, d2 , d3, d4 的值 ;(II) 设 d 为非负整数 , 证明 : dn=- d( n=1,2,3) 的充分必要条件为 { an} 为公差为 d的等差数列 ;(III) 证明 : 若 a =2, d =1( n=1,2,3,), 则 { a } 的项只能是 1 或者 2, 且有无穷多项为 1.1n n【答案】 (I) d1d21,d3 d4 3.(II)( 充分性 )因为a n 是公差为d 的等差数列 ,且 d 0, 所以 a1a2a n.因此 A n a n , B n a n1 ,d n a n a n1 d (n 1,2,3, ) .( 必要性 ) 因为d n d0 (n 1,2,3, ) , 所以 A n B n d n B n .第 17 页共 19 页又因为a n A n, a n 1B n ,所以 a n a n 1 .于是A n a n ,B n a n 1 .因此 a n 1a n B n A n d n d , 即 an是公差为 d 的等差数列 .(III) 因为a12,d11, 所以A1 a1 2,B1A1 d1 1. 故对任意n 1,a n B1 1.假设 a ( n 2) 中存在大于 2的项 .n设 m 为满足 a n 2 的最小正整数 ,则 m 2, 并且对任意 1 k m, a k 2 ,.又因为a1 2 ,所以 A m 12 , 且A m a m 2 .于是B m A m d m 2 1 1 , Bm1 min a m , B m2 .故 dm 1A m 1B m1 2 2 0 , 与 dm 11 矛盾 .所以对于任意n 1, 有 a 2 , 即非负整数列an的各项只能为 1 或 2.n因此对任意n 1, a 2 a , 所以A 2 .故B n A n d n 2 1 1.n 1 n因此对于任意正整数n , 存在 m 满足mn , 且 a m1, 即数列a n有无穷多项为 1.36.( 2013 年高考陕西卷(理))设 { a n } 是公比为 q 的等比数列 .( Ⅰ) 导 { a n } 的前 n 项和公式 ; ( Ⅱ ) 设q≠ 1,证明数列{ a n1} 不是等比数列 . 【答案】解:( Ⅰ) 分两种情况讨论 .①当q 1时,数列 { a n } 是首项为 a1的常数数列,所以 S n a1a1a1na1 .②当q 1时,S n a1a2a n 1 a n qS n qa1qa2qa n 1qa n .上面两式错位相减: (1- q)S n a1(a2qa1 ) (a3 qa2 ) (a n qa n 1 ) qa n a1qa n .nSna1 qan . a1 (1 q ) .1 - q 1- qna1 , (q 1)③综上,S na1 (1q n )(q 1) 1,q( Ⅱ ) 使用反证法 .第 18 页共 19 页设 { a n } 是公比 q≠1的等比数列 ,假设数列 { a n1} 是等比数列 . 则①当n N *,使得a n1 =0 成立 , 则{ a n1}不是等比数列 .②当n N *,使得a n1 0 成立 , 则an 1 1 a1q n 1恒为常数a n 1 a1 q n 1 1a1q n1 a1 qn11当 a1 0时, q1. 这与题目条件≠1矛盾 .q③综上两种情况 , 假设数列 { a n 1} 是等比数列均不成立 , 所以当q≠1时 ,数列{ an1} 不是等比数列 .第 19 页共 19 页。

备战2013高考理科数学6年高考母题精解精析 专题4 数列01 Word版含答案.pdf

备战2013高考理科数学6年高考母题精解精析 专题4 数列01 Word版含答案.pdf

一、选择题 1.【2012高考真题重庆理1】在等差数列中,,则的前5项和=A.7 B.15 C.20 D.25 2.【2012高考真题浙江理7】设是公差为d(d≠0)的无穷等差数列an的前n项和,则下列命题错误的是 A.若d<0,则数列Sn有最大项 B.若数列Sn有最大项,则d<0 C.若数列Sn是递增数列,则对任意,均有 D. 若对任意,均有,则数列Sn是递增数列 【答案】C 【解析】选项C显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n}是递增数列,但是S n>0不成立.故选C。

3.【2012高考真题新课标理5】已知为等比数列,,,则( ) 4.【2012高考真题上海理18】设,,在中,正数的个数是( ) A.25 B.50 C.75 D.100 5.【2012高考真题辽宁理6】在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=(A)58 (B)88(C)143 (D)176 【答案】B 【解析】在等差数列中,,答案为B 6.【2012高考真题四川理12】设函数,是公差为的等差数列,,则( ) A、 B、 C、 D、 7.【2012高考真题湖北理7】定义在上的函数,如果对于任意给定的等比数列, 仍是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函数: ①; ②; ③; ④. 则其中是“保等比数列函数”的的序号为 ① ② B.③ ④ C.① ③ D.② ④ 【答案】C 8.【2012高考真题福建理2】等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为A.1B.2C.3D.4 【答案】B. 【解析】由等差中项的性质知,又.故选B. 9.【2012高考真题安徽理4】公比为等比数列的各项都是正数,且,则=( ) 【答案】B 【解析】. 10.【2012高考真题全国卷理5】已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列的前100项和为 (A) (B) (C) (D) 二、填空题 11.【2012高考真题浙江理13】设公比为q(q>0)的等比数列{an}的前n项和为Sn。

【2013备考】高考数学各地名校试题解析分类汇编(一)4 数列2 理

【2013备考】高考数学各地名校试题解析分类汇编(一)4 数列2 理

各地解析分类汇编:数列21.【云南师大附中2013届高三高考适应性月考卷(三)理科】(本小题满分12分) 已知数列{a n }的前n 项和为S n ,且有a 1=2,3S n =11543(2)n n n a a S n ---+≥ (I )求数列a n 的通项公式;(Ⅱ)若b n =n·a n ,求数列{b n }的前n 项和T n 。

【答案】解:(Ⅰ)113354(2)n n n n S S a a n ---=-≥,1122n n n n aa a a --∴==,,………………(3分)又12a =,{}22n a ∴是以为首项,为公比的等比数列,……………………………(4分) 1222n n n a -∴=⋅=. ……………………………………………………………………(5分) (Ⅱ)2n n b n =⋅,1231222322n n T n =⋅+⋅+⋅++⋅,23121222(1)22n n n T n n +=⋅+⋅++-⋅+⋅.……………………………………………(8分)两式相减得:1212222n n n T n +-=+++-⋅,12(12)212n n n T n +-∴-=-⋅-1(1)22n n +=-⋅-,………………………………………(11分)12(1)2n n T n +∴=+-⋅.…………………………………………………………………(12分) 2.【云南省玉溪一中2013届高三第四次月考理】(本题12分)在等差数列{}n a 中,31=a ,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11=b ,公比为q ,且1222=+S b ,22b S q =. (1)求n a 与n b ;(2)设数列{}n c 满足1n nc S =,求{}n c 的前n 项和n T . 【答案】解:(1)设{}n a 的公差为d .因为⎪⎩⎪⎨⎧==+,,122222b S q S b 所以⎪⎩⎪⎨⎧+==++.,q d q d q 6126 解得 3=q 或4-=q (舍),3=d .故()3313n a n n =+-= ,13-=n n b .(2)由(1)可知,()332n n n S +=,所以()122113331n n c S n n n n ⎛⎫===- ⎪++⎝⎭. 故()21111121211322313131n n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦… 3.【山东省实验中学2013届高三第三次诊断性测试理】(本小题满分12分)已知单调递增的等比数列}{n a 满足:28432=++a a a ,且23+a 是42,a a 的等差中项。

无锡新领航教育特供:【2013备考】高考数学各地名校试题解析分类汇编(一)4 数列2 文

无锡新领航教育特供:【2013备考】高考数学各地名校试题解析分类汇编(一)4 数列2 文

小升初 中高考 高二会考 艺考生文化课 一对一辅导 /wxxlhjy QQ:157171090- 1 - 无锡新领航教育特供:各地解析分类汇编:数列(2)1【天津市新华中学2012届高三上学期第二次月考文】等差数列{}n a 中,如果39741=++a a a ,27963=++a a a ,则数列{}n a 前9项的和为A. 297B. 144C. 99D. 66【答案】C【解析】由147=39a a a ++,得443=39=13a a ,。

由369=27a a a ++,德663=27=9a a ,。

所以194699()9()9(139)===911=99222a a a a S ++⨯+=⨯,选C. 2.【天津市新华中学2012届高三上学期第二次月考文】已知正项等比数列{}n a 满足:5672a a a +=,若存在两项n m a a ,使得14a a a n m =,则n m 41+的最小值为 A. 23 B. 35 C. 625 D. 不存在 【答案】A 【解析】因为765=2a a a +,所以2555=2a qa q a +,即220q q --=,解得2q =。

若存在两项,n m a a ,有14a =,即2116m n a a a =,2221116m n a q a +-=,即2216m n +-=,所以24,6m n m n +-=+=,即16m n +=。

所以14141413()()(5)6662m n m n m n m n n m ++=+=++≥,当且仅当4=m n n m 即224,2n m n m ==取等号,此时63m n m +==,所以2,4m n ==时取最小值,所以最小值为32,选A. 3.【山东省兖州市2013届高三9月入学诊断检测 文】等差数列{}n a 的前n 项和为n S ,若371112a a a ++=,则13S 等于( )()A 52 ()B 54 ()C 56 ()D 58【答案】在等差数列中37117312a a a a ++==,74a =,。

2013年高考理科数学试题汇总解析--4数列

2013年高考理科数学试题汇总解析--4数列

2013年高考理科数学试题汇总解析4、数列1.新课标1、7、设等差数列{}n a 的前n 项和为n s ,若,3,0,211==-=+-m m m s s s 则m= (A) 3 (B)4 (C)5 (D)6解:,3,2111=-==-=++-m m m m m m s s a s s a 则公差1=d ,021=⨯+=m a a s mm m m a a a a -=⇒=+⇒110,)1(2)1(21111+⨯+-=+⨯+=+++m a a m a a s m m m m 3)1(21=+⨯=m ,5=∴m 选C 2.新课标1、12、设n n n C B A ∆的三边长分别为n n n c b a ,,,n n n C B A ∆的面积为n s , ,3,2,1=n .若111112,a c b c b =+>,2,11n n n n n a c b a a +==++,21nn n a b c +=+,则 (A){}n s 为递减数列 (B){}n s 为递增数列 (C) {}12-n s 为递增数列, {}n s 2为递减数列 (D) {}12-n s 为递减数列, {}n s 2为递增数列解:取特殊值,以111C B A Δ的边111,,c a b 顺序设边长分别是:2.5,2,1.5;则第二个三角形 三边是:1.75,2,2.25;则第三个三角形三边是:2.15,2,1.875;……周长为定值4,形状越来越接近正三角形,也就是面积越来越大.选B.另解:设a a =1,则a c b 211=+,a a n =.由已知可得n nn n n a b c c b ++=+++211 当1=n 时,a a b c c b 2211122=++=+,当2=n 时,a a bc c b 2222233=++=+当3=n 时,,,2233344 a a b c c b =++=+即 a c b n n 2=+则n n n C B A ∆顶点n A 在以)(1n B B 也就是和)(1n C C 也就是为焦点,a 2为长轴的椭圆M 上,有因为n n n n c b c b -=-++2111,即11121c b c b n n n -⎪⎭⎫ ⎝⎛=--,n b 和n c 两边的差值越来越小,顶点n A 越来越靠近椭圆M 的上(或下)顶点,n n n C B A ∆边n n C B 上高越来越大,底边n n C B 长 为定值a ,所以面积越来越大.选B. 3.新课标1、14、若数列{}n a 的前n 项和3132+=n n a s ,则{}n a 的通项公式是n a . 解:1113132a a s =+=,所以11=a ,13132222+=+=a a s ,所以22-=a1>n 时,113232---=-=n n n n n a a s s a , 12--=∴n n a a 1)2(--=∴n n a4.新课标2、(3)等比数列{a n }的前n 项和为S n ,已知12310a a s += ,a 5 = 9,则a 1=(A )31 (B )-31 (C ) 91 (D )91- 解:12321310a a a a a s +=++= 99213=⇒=⇒q a a 又919811141=⇒==a a q a ,选C. 5.新课标2、(16)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15 =25,则nS n 的最小值为________. 解:由S 10=0,S 15 =25,则09201101=+⇒=+d a a a ;5213251518=+⇒=d a a32,31=-=∴d a ,n n n n n d n n na s n 31031)1(313)1(2121-=-+-=-+= 2331031)(n n ns n f n -==,320,00320)(2==⇒=-='n n n n n f )(n f 在6≤n 时为递减,在7≥n 时为递增,所以 486310631)6(23-=-=f ,497310731)7(23-=-=f ,n ns 的最小值是-49. 6.安徽14、如图,互不-相同的点 n A A A A ,,,321和12,,,n B B B 分别在角O 的两条边上,所有n nA B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等。

2013年高考真题解析分类汇编(理科数学)含解析

2013年高考真题解析分类汇编(理科数学)含解析

2013高考试题解析分类汇编(理数)5:平面向量一、选择题1 .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为;以D为起点,其余顶点为终点的向量分别为.若分别为的最小值、最大值,其中,,则满足()A. B. C. D.D.【解答】作图知,只有,其余均有,故选D.2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知点()A. B. C. D.A,所以,所以同方向的单位向量是,选A.3 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))设是边上一定点,满足,且对于边上任一点,恒有.则()A. B. C. D.D以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,C(a,b),P(x,0)则BP0=1,A(﹣2,0),B(2,0),P0(1,0)所以=(1,0),=(2﹣x,0),=(a﹣x,b),=(a﹣1,b)因为恒有所以(2﹣x)(a﹣x)≥a﹣1恒成立整理可得x2﹣(a+2)x+a+1≥0恒成立所以△=(a+2)2﹣4(a+1)≤0即△=a2≤0所以a=0,即C在AB的垂直平分线上所以AC=BC故△ABC为等腰三角形故选D4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))在四边形ABCD中,,,则四边形的面积为()A. B. C.5 D.10C由题意,容易得到.设对角线交于O点,则四边形面积等于四个三角形面积之和即S= .容易算出,则算出S=5.故答案C5 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))在平面直角坐标系中,是坐标原点,两定点满足则点集所表示的区域的面积是()A. B. C. D.D.在本题中,.建立直角坐标系,设A(2,0),所以选D6 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在平面上,,,.若,则的取值范围是()A. B. C. D.D【命题立意】本题考查平面向量的应用以及平面向量的基本定理。

2013年各省高考理科数学试题分类4:数列-推荐下载

2013年各省高考理科数学试题分类4:数列-推荐下载

角形数 1,3,6,10,,第 n 个三角形数为 n n 1 1 n2 1 n .记第 n 个 k 边形数为 N n, k
2 22
k 3 ,以下列出了部分 k 边形数中第 n 个数的表达式:
三角形数 正方形数
五边形数 六边形数
N n,3 1 n2 1 n
22
的个数为( )
(A)18 【答案】A.
(B)28
(C)48
2. (2013 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知
数列an满足 3an1
(A) 61 310
【答案】C

an

0, a2

(B) 1 1 310 9

4 3
,则 an 的前
d 0 的等差数列 an 的四个命题:
p1 : 数列是an递增数列;
p3
:
数列是 a递n 增数列; n
其中的真命题为
(A) p1, p2
【答案】D
(B) p3, p4
(C) p2 , p3
9. (2013 年高考江西卷(理))等比数列 x,3x+3,6x+6,..的第四项等于
【答案】C
(B) 1 3
(C) 1 9
7. (2013 年高考新课标 1(理))设等差数列an的前 n 项和为 Sn , Sm1 2, Sm 0, Sm1 3 ,
则m ( )
A.3
【答案】C
B.4
C.5
D.6
8. (2013 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))下面是关于公差
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2013年高考真题解析分类汇编(理科数学)4:数列 含解析

2013年高考真题解析分类汇编(理科数学)4:数列 含解析

2013高考试题解析分类汇编(理数)4:数列一、选择题1 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}na 满足12430,3n n aa a ++==-,则{}n a 的前10项和等于(A)()10613--- (B)()101139-- (C )()10313-- (D)()1031+3-C所以3a n+1+a n =0 所以所以数列{a n }是以﹣为公比的等比数列 因为所以a 1=4由等比数列的求和公式可得,s 10==3(1﹣3﹣10)故选C2 .(2013年高考新课标1(理))设nnnA B C ∆的三边长分别为,,nnna b c ,nnnA B C∆的面积为nS ,1,2,3,n =,若11111,2b c b ca >+=,111,,22n n nnn n n n c a b a a a b c +++++===,则()A 。

{S n }为递减数列 B.{S n }为递增数列C 。

{S 2n -1}为递增数列,{S 2n }为递减数列 D.{S 2n —1}为递减数列,{S 2n }为递增数列B因为a n+1=a n ,,,所以a n =a 1,所以b n+1+c n+1=a n +=a 1+, 所以b n+1+c n+1﹣2a 1=,又b 1+c 1=2a 1,所以b n +c n =2a 1,于是,在△A n B n C n 中,边长B n C n =a 1为定值,另两边A n C n 、A n B n 的长度之和b n +c n =2a 1为定值, 因为b n+1﹣c n+1==,所以b n ﹣c n =,当n→+∞时,有b n ﹣c n →0,即b n →c n ,于是△A n B n C n 的边B n C n 的高h n 随着n 的增大而增大, 所以其面积=为递增数列,故选B .3 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,nx x x 使得1212()()()==,nnf x f x f x x x x 则n 的取值范围是(A ){}3,4 (B ){}2,3,4 (C) {}3,4,5 (D ){}2,3 B由题知,过原点的直线y = x 与曲线=()y f x 相交的个数即n 的取值。

2013年高考真题解析分类汇编(理科数学)4:数列

2013年高考真题解析分类汇编(理科数学)4:数列

2013高考试题解析分类汇编(理数)4:数列一、选择题1 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于 (A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3-C所以3a n+1+a n =0 所以所以数列{a n }是以﹣为公比的等比数列 因为所以a 1=4由等比数列的求和公式可得,s 10==3(1﹣3﹣10)故选C2 .(2013年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n = ,若11111,2b c b c a >+=,111,,22n n n nn n n n c a b a a a b c +++++===,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列B因为a n+1=a n ,,,所以a n =a 1,所以b n+1+c n+1=a n +=a 1+,所以b n+1+c n+1﹣2a 1=,又b 1+c 1=2a 1,所以b n +c n =2a 1, 于是,在△A n B n C n 中,边长B n C n =a 1为定值,另两边A n C n 、A n B n 的长度之和b n +c n =2a 1为定值, 因为b n+1﹣c n+1==,所以b n ﹣c n =,当n →+∞时,有b n ﹣c n →0,即b n →c n ,于是△A n B n C n 的边B n C n 的高h n 随着n 的增大而增大, 所以其面积=为递增数列,故选B .3 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,3 B由题知,过原点的直线y = x 与曲线=()y f x 相交的个数即n 的取值.用尺规作图,交点可取2,3,4. 所以选B4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知等比数列{}n a 的公比为q,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A.数列{}n b 为等差数列,公差为mq B.数列{}n b 为等比数列,公比为2mq C.数列{}n c 为等比数列,公比为2m q D.数列{}n c 为等比数列,公比为mm qC等比数列{}n a 的公比为q,同理可得2222222,m m m mm m m a a a a a a ++++=∙=∙...m c a a a =∙∙∙,212...,m m m m c a a a +++=∙∙∙321222...,m m m m c a a a +++=∙∙∙2213c c c ∴=∙∴数列{}n c 为等比数列,2221212211212............mm m m m m m m m ma a a a a a q c q q c a a a a a a +++∙∙∙∙∙∙∙====∙∙∙∙∙∙ 故选C 5 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a(A)31 (B)31- (C)91 (D)91-C设等比数列{a n }的公比为q ,因为S 3=a 2+10a 1,a 5=9,所以,解得.所以.故选C .6 .(2013年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( ) A.3 B.4 C.5 D.6Ca m =S m ﹣S m ﹣1=2,a m+1=S m+1﹣S m =3,所以公差d=a m+1﹣a m =1,a m =﹣2+(m ﹣1)•1=2,解得m=5,故选C .(理)试题(WORD 版))下面是关于公差0d >{}2:n p na 数列是递增数列; {}4:3n p a nd +数列是递增数列; (A)12,p p (B)34,p p (C)23,p p (D)14,p p D设1(1)n a a n d dn m =+-=+,所以1P 正确;如果312n a n =-则2312n na n n =-并非递增所以2P 错;如果若1n a n =+,则满足已知,但11n a n n=+,是递减数列,所以3P 错;34n a nd dn m +=+,所以是递增数列,4P 正确,选D.8 .(2013年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于A.-24B.0C.12D.24A本题考查等比数列的运算。

2013年高考真题理科数学解析分类汇编4-数列

2013年高考真题理科数学解析分类汇编4-数列

2013年高考真题理科数学解析分类汇编4 数列一选择题1,[新课标I],7、设等差数列{a n }的前n 项和为S n ,1m S -=-2,m S =0,1m S +=3,则m = ( ) A 、3 B 、4C 、5D 、6【解析】有题意知m S =1()2m m a a +=0,∴1a =-m a =-(m S -1m S -)=-2, 1m a += 1m S +-m S =3,∴公差d =1m a +-m a =1,∴3=1m a +=-2m +,∴m =5,故选C.2.[新课标I]12、设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n=1,2,3,…若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n2,则()A 、{S n }为递减数列B 、{S n }为递增数列C 、{S 2n -1}为递增数列,{S 2n }为递减数列D 、{S 2n -1}为递减数列,{S 2n }为递增数列 答案B【解析】=c n +a n 2 + b n +a n2==2,⟹ =2=2 ⋯⋯,= − ⟹ =⋯⋯+2 =4⋯⋯,−2 =⋯⋯=− ,是正数递增数列所以===−1(因为边不是最大边,所以是锐角)是正数递减数列 ⟹是正数递增数列=是递增数列所以选B3.新课标II 3、等比数列{}n a 的前n 项和为n S ,已知,,则1a =( ) (A )31 (B ) 31- (C )91 (D )91- 【答案】C解析:⟹=+⟹9⟹ q=±3 又即=9⇒=914.陕西 14. 观察下列等式:211=22123-=- 2221263+-=2222124310-+-=- …照此规律, 第n 个等式可为 )1(2)1-n 1--32-1121-n 222+=+++n n n ()( .【答案】)1(2)1-n 1--32-1121-n 222+=+++n n n ()(【解析】分n 为奇数、偶数两种情况。

【2013备考】各地名校试题解析分类汇编(一)理科数学:4数列1

【2013备考】各地名校试题解析分类汇编(一)理科数学:4数列1

- 1 -各地解析分类汇编:数列11【云南省玉溪一中2013届高三第三次月考理】数列{a n }的通项公式是a n =11nn ,若前n 项和为10,则项数n 为() A .120 B .99 C.11 D.121【答案】A【解析】由11(1)(1)nn na n nnn n n ,所以12(21)(32)(1)10na a a n n ,即1110n ,即111n ,解得1121,120nn.选A.2.【云南省玉溪一中2013届高三第三次月考理】已知定义在R 上的函数()()f x g x 、满足()()xf x ag x ,且'()()()'()f xg x f x g x ,25)1()1()1()1(g f g f ,若有穷数列()()f ng n (nN *)的前n 项和等于3231,则n 等于( )A .4 B.5 C.6 D. 7【答案】B 【解析】2()'()()()'()[]'()()f x f xg x f x g x g x g x ,因为'()()(f x g x fx g x ,所以2()'()()()'()[]'0()()f x f xg x f x g x g x g x ,即函数()()xf x ag x 单调递减,所以01a .又25)1()1()1()1(g f g f ,即152a a,即152aa ,解得2a (舍去)或12a.所以()1()()2xf xg x ,即数列()1()()2nf ng n 为首项为112a ,公比12q的等比数列,所以111()(1)1121()112212nnnna q S q,由1311()232n得11()232n,解得5n ,选B.3.【云南省玉溪一中2013届高三第四次月考理】设等差数列}{n a 的前n 项和为,n S 且满足,0,01615S S 则15152211,,,a S a S a S 中最大的项为.A 66a S .B 77a S .C 99a S。

2013全国各地高考理科数学试题及详解汇编(一)

2013全国各地高考理科数学试题及详解汇编(一)

2013全国各地高考数学试题及详解汇编(理科●一)目录1.新课标卷1 (2)2.新课标Ⅱ卷 (10)3. 大纲卷 (21)4.北京卷 (27)5.山东卷 (37)6.陕西卷 (41)7.湖北卷 (49)8.天津卷 (61)9.重庆卷 (71)2013年高考理科数学试题解析(课标Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、 选择题共12小题。

每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( ) A 、A∩B=∅ B 、A ∪B=R C 、B ⊆A D 、A ⊆B【命题意图】本题主要考查一元二次不等式解法、集合运算及集合间关系,是容易题. 【解析】A=(-∞,0)∪(2,+∞), ∴A ∪B=R,故选B. 2、若复数z 满足 (3-4i)z =|4+3i |,则z 的虚部为 ( )A 、-4 (B )-45 (C )4 (D )45【命题意图】本题主要考查复数的概念、运算及复数模的计算,是容易题.【解析】由题知z =|43|34i i +-=4)(34)(34)i i i +-+=3455i +,故z 的虚部为45,故选D.3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( ) A 、简单随机抽样 B 、按性别分层抽样 C 、按学段分层抽样 D 、系统抽样 【命题意图】本题主要考查分层抽样方法,是容易题.【解析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C.4、已知双曲线C :22221x y a b-=(0,0a b >>C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =± D .y x =±【命题意图】本题主要考查双曲线的几何性质,是简单题.【解析】由题知,c a =,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C .5、运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]【命题意图】本题主要考查程序框图及分段函数值域求法,是简单题.【解析】有题意知,当[1,1)t ∈-时,3s t =[3,3)∈-,当[1,3]t ∈时,24s t t =-[3,4]∈, ∴输出s 属于[-3,4],故选A .6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 3【命题意图】本题主要考查球的截面圆性质、球的体积公式,是容易题. 【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则222(2)4R R =-+,解得R=5,∴球的体积为3453π⨯=500π33cm ,故选A. 7、设等差数列{a n }的前n 项和为S n ,1m S -=-2,m S =0,1m S +=3,则m = ( ) A 、3 B 、4 C 、5 D 、6【命题意图】本题主要考查等差数列的前n 项和公式及通项公式,考查方程思想,是容易题.【解析】有题意知m S =1()2m m a a +=0,∴1a =-m a =-(m S -1m S -)=-2, 1m a += 1m S +-m S =3,∴公差d =1m a +-m a =1,∴3=1m a +=-2m +,∴m =5,故选C.8、某几何体的三视图如图所示,则该几何体的体积为 A .168π+ B .88π+ C .1616π+ D .816π+【命题意图】本题主要考查简单组合体的三视图及简单组合体体积公式,是中档题.【解析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为21244222π⨯⨯+⨯⨯ =168π+,故选A . 9、设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若13a =7b ,则m = ( )A 、5B 、6C 、7D 、8【命题意图】本题主要考查二项式系数最大值及组合数公式,考查方程思想,是容易题. 【解析】由题知a =2mm C ,b =121m m C ++,∴132mm C =7121m m C ++,即13(2)!!!m m m ⨯ =7(21)!(1)!!m m m ⨯++, 解得m =6,故选B.10、已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点。

2013年高考真题理科数学分类汇编(解析版)1:集合及答案

2013年高考真题理科数学分类汇编(解析版)1:集合及答案

2013年高考真题理科数学分类汇编(解析版)集 合1、(2013年高考(广东卷))设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )A . {}0B .{}0,2C .{}2,0-D .{}2,0,2-【解析】D ;易得{}2,0M =-,{}0,2N =,所以M N ={}2,0,2-,故选D .2、(2013年高考(湖北卷))已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R AC B =( )A.{}|0x x ≤B. {|24x x ≤≤}C. {}|024x x x ≤<>或D.{}|024x x x <≤≥或 【答案】C【解析】[)0,A =+∞,[]2,4B =,[)()0,24,R AC B ∴=+∞。

故选C【相关知识点】不等式的求解,集合的运算 3、(2013年高考(北京卷))1.已知集合A={-1,0,1},B={x |-1≤x <1},则A∩B= ( ) A.{0} B.{-1,0} C.{0,1} D.{-1,0,1} 【答案】B【解析】因为集合A 的元素为整数,集合B 中整数有-1,0,所以选B 。

4、(2013年高考(福建卷))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10 【答案】B【解析】方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对 ②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).(,)a b 共有4*4=16中实数对,故答案应为16-3=13.5、(2013年高考(全国(广西)卷))设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )66、(2013年高考(安徽卷))已知一元二次不等式()<0f x 的解集为{}1|<-1>2x x x 或,则(10)>0x f 的解集为(A ){}|<-1>lg2x x x 或 (B ){}|-1<<lg2x x(C ) {}|>-lg2x x (D ){}|<-lg2x x【答案】D【解析】 由题知,一元二次不等式2ln 211-),21(-1,的解集为0)(-<⇒<<>x e x x 即 所以选D 。

2013年高考真题理科数学解析分类汇编4-数列

2013年高考真题理科数学解析分类汇编4-数列
2 n -1 2
( - 1) n +1 综上,第 n 个等式: 1 - 2 + 3 - ⋯ + ( - 1) n = n (n + 1) 2
2 2
5.江西 1 等比数列 x,3x+3,6x+6, …..的第四项等于 A.-24 B.0 C.12 D.24
6. 福 建 9. 已 知 等 比 数 列 {a n } 的 公 比 为 q , 记 bn = a m ( n−1) +1 + am ( n−1) +2 + ⋅ ⋅ ⋅ + a m ( n−1) + m ,
照此规律 , 第 n 个等式可为
n +1 n -1 2 ( - 1) 12 - 2 2 + 3 2 - ⋯ + ( - 1) n = n (n + 1) 2
.
( - 1) n +1 【答案】 1 - 2 + 3 - ⋯ + ( - 1) n = n (n + 1) 2
2 2 2 n -1 2
【解析】分 n 为奇数、偶数两种情况。第 n 个等式为 1
C、{S2n-1}为递增数列,{S2n}为递减数列 D、{S2n-1}为递减数列,{S2n}为递增数列 答案 B 【解析】 = cn+an bn+an + = 2 2
=2
,
=2
=2
,
=−
=
+2
=4
,
−2
=
=

,是正数递增数列
所以
=
=
=
−1(因为
边不是最大边,所以
是锐
角)是正数递减数列
是正数递增数列

2013备考各地试题解析分类汇编 一 理科数学:4数列1 含答案

2013备考各地试题解析分类汇编 一 理科数学:4数列1 含答案

各地解析分类汇编:数列11【云南省玉溪一中2013届高三第三次月考 理】数列{a n }的通项公式是a n,若前n 项和为10,则项数n 为( )A .120B .99C .11D .121 【答案】A【解析】由n a ===,所以12(21)(32)(1)10n a a a n n +++=-+-+++-=,即110=,11=,解得1121,120n n +==。

选A.2.【云南省玉溪一中2013届高三第三次月考 理】已知定义在R 上的函数()()f x g x 、满足()()xf x ag x =,且'()()()'()f x g x f x g x <,25)1()1()1()1(=--+g f g f ,若有穷数列()()f n g n ⎧⎫⎨⎬⎩⎭(n N *∈)的前n 项和等于3231,则n 等于( ) A .4 B .5 C .6 D . 7 【答案】B 【解析】2()'()()()'()[]'()()f x f xg x f x g x g x g x -=,因为'()()()'()f xg x f x g x <,所以2()'()()()'()[]'0()()f x f xg x f x g x g x g x -=<,即函数()()xf x ag x =单调递减,所以01a <<.又25)1()1()1()1(=--+g f g f ,即152a a -+=,即152a a +=,解得2a =(舍去)或12a =。

所以()1()()2x f x g x =,即数列()1()()2nf ng n =为首项为112a =,公比12q =的等比数列,所以111()(1)1121()112212n nnn a q S q --==⨯=---,由1311()232n -=得11()232n =,解得5n =,选B.3。

2013备考各地试题解析分类汇编(二)理科数学:4数列1 含答案

2013备考各地试题解析分类汇编(二)理科数学:4数列1 含答案

各地解析分类汇编(二)系列:数 列 11。

【云南省玉溪一中2013届高三第五次月考理】已知数列{na }满足11a=,12()1()n n n a n a a n +⎧=⎨+⎩为正奇数为正偶数,则其前6项之和是( )A.16 B 。

20 C.33 D.120 【答案】C 【解析】2122aa ==,32431326aa a a =+===,,546517214aa a a =+===,,所以6123671433S =+++++=,选C 。

2。

【云南省昆明一中2013届高三第二次高中新课程双基检测理】已知公差不为零的等差数列81049{},,nnS a n S aS a =的前项和为若则等于A .4B .5C .8D .10【答案】A 【解析】由104a S =得1114394462a d a d a d ⨯+=+=+,即10a d =≠。

所以811878828362S a d a d d ⨯=+=+=,所以8913636489S d da a d d===+,选A 。

3。

【天津市新华中学2013届高三第三次月考理】设nS 是等差数列{a n }的前n 项和,5283()Sa a =+,则53a a 的值为( )A 。

16B 。

13C. 35 D 。

56【答案】D 【解析】由5283()Sa a =+得,1555()322a a a +=⨯,即3556a a =,所以5356a a =,选D.4。

【山东省枣庄三中2013届高三上学期1月阶段测试理】在圆x y x 522=+内,过点(25,23)有n 条弦的长度成等差数列,最小弦长为数列的首项1a ,最大弦长为na ,若公差为d∈[61,31],那么n的取值集合为A 。

{4,5,6,7} B. {4,5,6} C 。

{3,4,5,6} D. { 3。

4。

5,6,7} 【答案】A【解析】圆的标准方程为22525()24x y -+=,所以圆心为5(,0)2,半径52r =,则最大的弦为直径,即5n a =,当圆心到弦的距离为32时,即点(25,23)为垂足时,弦长最小为4,即14a =,所以由1(1)n a a n d=+-得,1541111n a a d n n n --===---,因为1163d ≤≤,所以111613n ≤≤-,即316n ≤-≤,所以47n ≤≤,即4,5,6,7n =,选A 。

2013年全国高考理科数学试题分类汇编4:数列Word版含答案-(5465)

2013年全国高考理科数学试题分类汇编4:数列Word版含答案-(5465)

,7; j
的不同数值的个数为 (A)18
【答案】 A.
(B)28
(C)48
(D)63
WORD 版含答案(已校对) ) 已知数列
2 . ( 2013 年普通高等学校招生统一考试大纲版数学(理)
an 满足 3 a n
(A)
1
an
0, a2
(B)
4 3 1 9
,则
an 的前 10 项和等于
10
6 1 3
10
an
中,
已知
a3
a8
20
10 , 则 3a5
a7
_____.
【答案】
19 . ( 2013 年高考陕西卷(理) ) 观察下列等式 :
1 1 1 1
2
2 2 2
1 2 2 2
2 2 2
3 3 3
2 2
6 4
2
102 2照此规律 ,第 n 个等式可为 ___ 1 - 2
3 n 1
2
( -1 ) n
n -1
1 3
(C)
31 3
10
(D)
3 1+3
10
【答案】 C 3 . ( 2013 年高考新课标 1(理)) 设
An BnCn 的三边长分别为 an , bn , cn , 2 a1 , an
1
An Bn Cn 的面积为
bn an 2
,则( )
Sn , n 1,2,3,
A.{ Sn} 为递减数列
【答案】 B
3n
2
所以数列的前
n 项和 sn
4n 或 sn
n
2
Ⅱ 卷数学(理) ( 纯 WORD 版含答案) ) 等差数列
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各地解析分类汇编:数列11【云南省玉溪一中2013届高三第三次月考理】数列{a n}的通项公式是a n,若前n项和为10,则项数n为( )A.120 B.99 C.11 D.121【答案】A【解析】由na===,所以121)10na a a+++=+++=110=11=,解得1121,120n n+==.选A.2.【云南省玉溪一中2013届高三第三次月考理】已知定义在R上的函数()()f xg x、满足()()xf xag x=,且'()()()'()f xg x f x g x<,25)1()1()1()1(=--+gfgf,若有穷数列()()f ng n⎧⎫⎨⎬⎩⎭(n N*∈)的前n项和等于3231,则n等于( )A.4 B.5 C.6 D. 7【答案】B【解析】2()'()()()'()[]'()()f x f xg x f x g xg x g x-=,因为'()()(f xg x f x g x<,所以2()'()()()'()[]'0()()f x f xg x f x g xg x g x-=<,即函数()()xf xag x=单调递减,所以01a<<.又25)1()1()1()1(=--+gfgf,即152a a-+=,即152aa+=,解得2a=(舍去)或12a=.所以()1()()2xf xg x=,即数列()1()()2nf ng n=为首项为112a=,公比12q=的等比数列,所以111()(1)1121()112212nnnna qSq--==⨯=---,由1311()232n-=得11()232n=,解得5n=,选B.3.【云南省玉溪一中2013届高三第四次月考理】设等差数列}{na的前n项和为,nS且满足,0,01615<>SS则15152211,,,aSaSaS中最大的项为.A66aS.B77aS.C99aS.D 88a S【答案】D 【解析】由11515815()=1502a a S a +=>,得80a >.由116981615()15()=022a a a a S ++=<,得980a a +<,所以90a <,且0d <.所以数列{}n a 为递减的数列.所以18,a a 为正,9,n a a 为负,且115,0S S > ,16,0n S S > ,则990S a <,10100S a < ,880S a >,又8118,S S a a >>,所以81810S Sa a >>,所以最大的项为88S a ,选D. 4.【云南省昆明一中2013届高三新课程第一次摸底测试理】设n S 为等差数列{}n a n 的前项和,若3963,27a S S =-=,则该数列的首项1a 等于A .65- B .35- C .65 D .35【答案】D 【解析】由11123936(615)27a d a d a d +=⎧⎨+-+=⎩得112379a d a d +=⎧⎨+=⎩,解得135a =,选D.5.【天津市新华中学2012届高三上学期第二次月考理】等差数列{a n }中,如果147=39a a a ++,369=27a a a ++,数列{a n }前9项的和为A. 297B. 144C. 99D. 66 【答案】C【解析】由147=39a a a ++,得443=39=13a a ,。

由369=27a a a ++,德663=27=9a a ,。

所以194699()9()9(139)===911=99222a a a a S ++⨯+=⨯,选C. 6.【天津市新华中学2012届高三上学期第二次月考理】 已知正项等比数列{a n }满足:765=2a a a +,若存在两项,n m a a14a =,则nm 41+的最小值为 A. 23 B. 35C. 625D. 不存在【答案】A【解析】因为765=2a a a +,所以2555=2a q a q a +,即220q q --=,解得2q =。

若存在两项,n m a a ,14a =,即2116m n a a a =,2221116m n a q a +-=,即2216m n +-=,所以24,6m n m n +-=+=,即16m n +=。

所以14141413()()(5)6662m n m n m n m n n m ++=+=++≥,当且仅当4=m nn m 即224,2n m n m ==取等号,此时63m n m +==,所以2,4m n ==时取最小值,所以最小值为32,选A.7.【山东省潍坊市四县一区2013届高三11月联考(理)】设等比数列{}n a 中,前n 项和为n S ,已知7863==S S ,,则=++987a a aA.81 B.81- C.857 D.855 【答案】A【解析】因为78996a a a S S ++=-,在等比数列中36396,,S S S S S --也成等比,即968,1,S S -成等比,所以有968()1S S -=,即9618S S -=,选A.8.【山东省潍坊市四县一区2013届高三11月联考(理)】已知nn a )31(=,把数列{}n a 的各项排列成如下的三角形状,记),n m A (表示第m 行的第n 个数,则)(12,10A =A.9331)( B.9231)( C. 9431)( D.11231)( 【答案】A【解析】前9行共有(117)913517812+⨯++++== 项,所以)(12,10A 为数列中的第811293+=项,所以93931()3a =,选A.9.【山东省烟台市莱州一中20l3届高三第二次质量检测 (理)】已知函数{}n a 满足11,2n n a a a a +==+.定义数列{}n b ,使得1,n nb n N a *=∈.若4<a <6,则数列{}n b 的最大项为 A.2bB.3bC.4bD.5b【答案】B 【解析】由11,2n n a a a a +==+得,12n n a a +-=-,所以数列{}n a 是公差为2-的等差数列,所以2(1)22n a a n a n =--=+-,则22n a a n =+-,因为46a <<,所以4226n a n <+-<,即6282n n a n -<<-,则146a <<,224a <<,302a <<,所以3210a a a <<<,所以3211110a a a >>>,即3210b b b >>>,当4n ≥时,62820n n a n -<<-<,此时10n nb a =<,所以3b 最大,选B.10【山东省烟台市莱州一中20l3届高三第二次质量检测 (理)】已知各项均不为零的数列{}n a ,定义向量()()1,,,1,n n n n c a a b n n n N *+==+∈.下列命题中真命题是A.若n N *∀∈总有n n c b ⊥成立,则数列{}n a 是等比数列B.若n N *∀∈总有//n n c b 成立,则数列{}n a 是等比数列C.若n N *∀∈总有n n c b ⊥成立,则数列{}n a 是等差数列D. 若n N *∀∈总有//n n c b 成立,则数列{}n a 是等差数列【答案】D【解析】由//nn c b 得,1(1)n n na n a +=+,即11n n a a n n +=+,所以11n n a n a n ++=,所以1n a na =,故数列{}n a 是等差数列,选D 。

11.【山东省实验中学2013届高三第一次诊断性测试理】在各项均为正数的等比数列{}n a 中,31,1,s a a =则2326372a a a a a ++= A .4 B .6 C .8D.8-【答案】C【解析】在等比数列中,23752635,a a a a a a a ==,所以22232637335522a a a a a a a a a ++=++22235()11)8a a =+===,选C.12.【山东省实验中学2013届高三第三次诊断性测试理】在等差数列{}n a 中,20131-=a ,其前n 项和为n S ,若210121012=-S S ,则2013S 的值等于( ) A.-2012 B.-2013 C.2012 D.2013【答案】B【解析】1211211122S a d ⨯=+,101109102S a d ⨯=+,所以112112111211212122a dSa d ⨯+==+,1019102S a d =+,所以101221210S S d -==,所以201312013201220132013(20132012)20132S a d ⨯=+=-+=-,选B.13.【山东省泰安市2013届高三上学期期中考试数学理】在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和S 11等于 A.24B.48C.66D.132【答案】D【解析】由912162a a =+得912212a a =+,即6121212a a a +=+,所以612a =.又11111611()112a a S a +==,所以11611132S a ==,选D.14.【山东省师大附中2013届高三12月第三次模拟检测理】已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )A.7B.5C.-5D.-7【答案】D【解析】在等比数列中,56478a a a a ==-,所以公比0q <,又472a a +=,解得4724a a =-⎧⎨=⎩或4742a a =⎧⎨=-⎩。

由4724a a =-⎧⎨=⎩,解得1312a q =⎧⎨=-⎩,此时93110111(2)7a a a a q +=+=+-=-。

由4742a a =⎧⎨=-⎩,解得13812a q =-⎧⎪⎨=-⎪⎩,此时991101111(1)8(1)78a a a a q a q +=+=+=--=-,综上1107a a +=-,选D.15.【山东省师大附中2013届高三12月第三次模拟检测理】等差数列{}n a 的前n 项的和为n S ,且101320132013a S ==,则1a =( )A. 2012B. -2012C. 2011D. -2011 【答案】D【解析】在等差数列中,1201320132013()20132a a S +==,所以120132a a+=,所以120132220132011a a=-=-=-,选D. 16.【山东省济南外国语学校2013届高三上学期期中考试 理科】数列{a n }的前n 项和为S n ,若a 1=1,)1(31≥=+n s a n n ,则6a =( )A.44 B.3 ×44+1 C . 3×44 D.44+1 【答案】C【解析】由)1(31≥=+n s a n n 得213n n a s ++=,两式相减得2113n n n a a a +++-=,即2113n n n a a a +++-=,所以214n n a a ++=,,即214n n a a ++=,2133a S ==,所以4462434a a ==⨯,选C. 17.【山东省聊城市东阿一中2013届高三上学期期初考试 】等差数列{}n a 中,若58215a a a -=+,则5a 等于 ( )A .3B .4C .5D .6 【答案】C【解析】因为等差数列285552155a a a a a +==-∴=,因此选C 18.【山东省临沂市2013届高三上学期期中考试理】在等差数列101212012{},2012,,2,1210n n S S a a n S S =--=中其前项和为若则的值等于 A .—2011 B .—2012C .—2010D .—2013【答案】B【解析】设公差为d ,则12111122S a d =+,1019102S a d =+,所以101221210S S d -==,所以2012120122011201220122S a d ⨯=+=-,选B. 19.【山东省青岛市2013届高三上学期期中考试理】已知等比数列{}n a 的前n 项和为13n n S a +=+,N *n ∈,则实数a 的值是A .3-B .3C .1-D .1 【答案】A【解析】当2n ≥时,113323n n n n n n a S S +-=-=-=⋅,当1n =时,119a S a ==+,因为{}n a 是等比数列,所以有926a +=⨯,解得3a =-,选A.20.【山东省青岛市2013届高三上学期期中考试理】已知等差数列{}n a 的前n 项和为n S ,且3100(12)S x dx =+⎰,则56a a +=A .125B .12C .6D .65【答案】A 【解析】323100(12)()12S x dx x x =+=+=⎰,等差数列中110105610()5()122a a S a a +==+=,所以56125a a +=,选A. 21.【山东省实验中学2013届高三第三次诊断性测试理】已知等差数列{}n a 的公差d 不为0,等比数列{}n b 的公比q 是小于1的正有理数。

相关文档
最新文档