初一有理数计算500题含答案

合集下载

计算题500题及答案

计算题500题及答案

初一年级有理数计算题集使用说明:本题集的制作初衷是为学生提供计算题目以便强化计算能力。

此题集共500道,1-445题为基本四则运算,建议每天做20道,如能保证答题准确率在80%以上,说明计算能力比较过关。

446-500题为能力计算题目,涉及等差数列,等比数列,裂项等技巧,建议学完计算技巧后再作题进行巩固。

要相信坚持总有回报,祝愿每位同学取得优异的成绩。

感谢学而思教研部老师的辛苦工作,由于时间有限,如有错漏之处,请批评指正。

1.6115 () 5324⨯--÷2.52555(2)4 757123÷--⨯-÷3.2239 0.8 4.8() 2.20.8117711⨯+⨯--÷+⨯4.1347()(154) 620512--+-⨯-⨯5.73()( 2.4) 187-⨯⨯-6.341 2()(5)777÷-⨯÷-7.11311 [15(13)](1) 24528⨯÷--+8.11(5)()555⨯-÷-⨯有理数计算19.11321 ()() 32114742 --+-÷-10.2215 130.34(13)0.34 3737-⨯-⨯+⨯--⨯11.11 (13)(134)()1367 -⨯-⨯⨯-12.7111 (4)(5)(4)38248 ---+--13.(16503)(2)--+÷-14.110.53 6.75542+(-)-(-)-15.219 17887.21435312.792121-++-16.(6)(4)(32)(8)3-⨯-+-÷--17.211()|1| 722+----18.(9)(4) (60)12-⨯-+-÷有理数计算23有理数计算 19. 9581 [()1]()1472142--+÷- 20. 1|3|10(15)3--÷--⨯ 21. 375112 532162-⨯-÷() 22. 11171(231)(1)(7)32186+÷-⨯-- 23. 31(820.04)43-⨯-- 24. []551(0.4)( 2.5)---⨯- 25. 251(1)(10.5)3---⨯ 26. 575(7)(243)(246)--+---+-+- 27. 213(2)(1)8()312--⨯--÷-⨯-+ 28. 912311(27)9()(24)1123412-÷-+--⨯-有理数计算4 29. 827943()(3)1110115---+--- 30. ()()1120.12533110.25483⎛⎫⎛⎫⎛⎫+++-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 31. 211(455)365455211545545365⨯-+⨯-⨯+⨯ 32. 102131111()[9(3)]314122---⨯--+÷ 33. 8221211(1)()()[2(3)]0.52368---÷-⨯----- 34. 25171()24(5)138612⎡⎤--+⨯÷-⎢⎥⎣⎦ 35. ()131170.125 1.213213⎛⎫⎛⎫-⨯-÷-⨯- ⎪ ⎪⎝⎭⎝⎭ 36. ()2342()()0.2534⨯-+-÷- 37. ()7511[30()36]59612-+-⨯-÷-()5有理数计算 38. 23155(1)()()()74148+÷-÷-⨯- 39. 31315(1)(1) ()()42424-÷--+÷- 40. 8)3(4)2(323+-⨯--⨯41. 2)2(2)1(3210÷-+⨯-42. 2)2(2)2(23322--+---- 43. ])3(2[61124--⨯-- 44. ]2)33()4[()10(222⨯+--+- 45. ])2(2[31)5.01()1(24--⨯⨯--- 46. 20022003)2()2(-+-47. 20052004(0.25)4-⨯48. 94)211(42415.0322⨯-----+-有理数计算6 49. )2()3(]2)4[(3)2(223-÷--+-⨯-- 50. 32(4)(75)÷-⨯-+-51. 2)2(2)1(3210÷-+⨯-52. ()()574283+-⨯-÷-53. 2225(3)[()](6)439⨯+÷----- 54. 31[2(10.54)]⨯-----55. 312123)2122(3)543(31512⨯-÷++÷+-⨯- 56. 295(3)(2)4⨯--÷+-57. 3(5)[2(6)]3005-⨯---÷ 58. 2211(1)1339⨯-÷- 59. [124(310)]4⨯-÷-7有理数计算 60. 2(3)4(3)15⨯-⨯--+ 61. 4211[2(3)]6―⨯--- 62. 213502()15÷⨯-+- 63. 421632()94÷⨯-- 64. ()1003212181215.20-⨯⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-÷- 65. 21002212(1)1221|132|----÷-+--⨯()66. 3483(1)(4)--⨯--- 67. 3145()2⨯-- 68. 2)3121(36-⨯ 69. 24)23(942-⨯÷-有理数计算8 70. 5434361832411÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-+- 71. )12()4332125(-⨯-+ 72. )4()81()2(163-⨯---÷ 73. 2111()()(2)(14)236--÷--⨯-+ 74. 33[5(10.2)(2)]5---+-⨯÷- 75. 111122399100++⋅⋅⋅+⨯⨯⨯ 76. 911321321÷⎪⎭⎫ ⎝⎛-⨯- 77. ()124310(49)-⨯-÷-⎡⎤⎣⎦78. 4435222-+--÷-()()79. 32416210+÷-÷-()()9有理数计算 80. 2153233+÷÷-+-()()() 81. 3342331---÷-()()82. 232[3323]43-⨯-⨯--() 83. 1293123223-÷+-⨯+() 84. )6(23517235)34()235(-⨯-⨯--⨯- 85. 15511512277227⎛⎫⎛⎫⨯--⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭ 86. 23(2)(1)31(2)-⨯--⨯---[] 87. 3223(4)(9)0---⨯-⨯88. 31452-⨯-() 89. 348311--⨯---()()有理数计算10 90. 32422()93-÷⨯- 91. 211[123]6--⨯--() 92. 759015-⨯--÷-()()()93. 23420.2534⨯-+-÷-()()() 94. ()11731348126424⎛⎫-+-⨯- ⎪⎝⎭ 95. ()113700.2524.5525%42⎛⎫⎛⎫-⨯-+⨯--⨯ ⎪ ⎪⎝⎭⎝⎭ 96. 333145⎛⎫⨯- ⎪⎝⎭97. ()()()525306⎛⎫-⨯-⨯+⨯- ⎪⎝⎭ 98. ()5411.5112153⎛⎫-⨯⨯-⨯ ⎪⎝⎭11有理数计算99. 13810.0434⎛⎫⎛⎫-+-⨯-⎪ ⎪⎝⎭⎝⎭100. ()()3338878158777⎛⎫⎛⎫-⨯-+-⨯--⨯ ⎪ ⎪⎝⎭⎝⎭101. 1799918⎛⎫⨯- ⎪⎝⎭102. ()17.984⎛⎫-⨯- ⎪⎝⎭103. ()()()450.258-⨯⨯-⨯-104. 130.570445⎛⎫⎛⎫-⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭105. 7213.2329213⎡⎤⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯--⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦106. ()74948⨯- 107. 157556⎛⎫⨯- ⎪⎝⎭108. ()24912525⎛⎫-⨯- ⎪⎝⎭109. ()200420062005-⨯110. ()231243412⎛⎫-++⨯- ⎪⎝⎭111. 2211613325⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭112. 173********⎛⎫⎛⎫-⨯-+- ⎪ ⎪⎝⎭⎝⎭113. 1173332127⎛⎫-⨯⨯⎪⎝⎭ 114. 15511521214142214⎛⎫⎛⎫-⨯--⨯+⨯ ⎪ ⎪⎝⎭⎝⎭ 115.4555542792793⎛⎫⨯+⨯+⨯- ⎪⎝⎭116. ()7 1.7516⎛⎫+÷- ⎪⎝⎭13有理数计算117. 31527⎛⎫⎛⎫⎛⎫-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭118. ()()148121549-÷⨯÷- 119. ()()()1084-÷-⨯-120. ()()1177-÷⨯- 121. 294.558-⨯÷ 122. 121311234⎛⎫⎛⎫⎛⎫-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭123. 141315432251518⎛⎫⎛⎫⎛⎫⎛⎫+÷-⨯-÷- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭124. ()1347415620512⎛⎫⨯-⨯--+- ⎪⎝⎭125. 111111111111357357357357⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯+-⨯-⨯-+-⨯-⨯+⨯-⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭126. 25(8)(1)--⨯-127. 11()128--+ 128. 4(6)(3)-⨯-129. 12()( 3.25)5--- 130. 313.5(0.7)(5)5-⨯-÷-131. 112167342⎛⎫⎛⎫-+÷-⎪ ⎪⎝⎭⎝⎭ 132.()1230.1434⎛⎫⎛⎫÷---÷- ⎪ ⎪⎝⎭⎝⎭133. 2212162()2-÷⨯-134. 344411117777⎛⎫⎛⎫-⨯÷--+ ⎪ ⎪⎝⎭⎝⎭135. 211110.5210.5100.5323⎛⎫⎛⎫⎛⎫-÷--÷-+÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭15有理数计算136. 1.8( 1.8)3--+137. 114254-+ 138. 1348(1)124-⨯-+ 139. 220.52(3)⨯--140.113()1234÷-+ 141. 322322(2)()(2)2()833-⨯---÷⨯- 142. 4327221()()1727173⎡⎤----+-⎢⎥⎣⎦ 143. 3777(1)()48128--÷- 144. 241(7)(30)3 3.25134-÷--⨯+ 145. 868635.28.642⨯-⨯-+146. 200720092008-⨯147. 199279-⨯148. 762()(1.5)3-⨯149. 201020111()33-⨯150. 201120102009(7)147(49)(7)-+⨯--⨯-151. 214.732(2.631)33⎡⎤---⎢⎥⎣⎦ 152. 421(3)(1)()7315-÷-⨯-153. 812763189--+-÷-()() 154. 13122(3)2523-⨯--+÷--- 155. ()28[710.63]3⎛⎫-⨯-+-⨯÷- ⎪⎝⎭17有理数计算156. 1()46-+-157. 2(0.8)15-+- 158. 15631218⎛⎫+- ⎪⎝⎭159. ()(){}1.5 1.80.80.9+-++-⎡⎤⎣⎦160. 112133[2357]32324⎛⎫⎛⎫-++-++- ⎪ ⎪⎝⎭⎝⎭161. 222115[1344]33155⎛⎫-+--+- ⎪⎝⎭162. ()43510.712150.7(15)9494⨯+⨯-+⨯+⨯- 163. 45812605615⎛⎫--⨯ ⎪⎝⎭164. ()151********⎛⎫-÷-÷- ⎪⎝⎭165. 14281614 9÷÷--⨯() 166. 1211 4.43.1830+++++-())( 167. 41889365036.25525323+-++--()168. 53145119(20)(302.5)(151)119197131717132⎛⎫⎛⎫+-+-+-+-+- ⎪ ⎪⎝⎭⎝⎭169. ()5113(3[(2) 5.1753 6.325]3714837⎛⎫-+-++++-+ ⎪⎝⎭) 170. 53124(3)(3)(1)6565--+---+ 171. 3511(114662+--+)172. 224411()(0.6)33535⎛⎫-+----- ⎪⎝⎭173. 7131441232555555---++-+19有理数计算174. 11163253 5.2523477⎡⎤⎛⎫--+--- ⎪⎢⎥⎝⎭⎣⎦175. 275315(3(2)(3)5(1)558125812⎛⎫++--+--+-- ⎪⎝⎭)176. 211(1)35⨯-177. ()56.5()6-⨯-178. 314()(1)()429-⨯-⨯-179. 50.25(4)96-⨯⨯-⨯ 180. 51()(3)63-÷-181. 421(3)(1)(1)7314-÷-÷- 182. 12114()()(1)(1)(1)23435-⨯-⨯-⨯-⨯-183. 31123.8 2.4799.6()(339)8873-⨯⨯⨯-⨯-⨯⨯ 184. ()8[3.6(0.2)(0.4)1]-----⨯-⨯-185. 2231356(8)2(2)4⎡⎤⨯-+--⨯-⨯⎢⎥⎣⎦186. 5.7215.8-+()187. 0.47()50347--- 188. 11(3)(5)24--+189. 1111(()()()6432-+---+--)190. ()23632(2)3482(2)-⨯+-⨯-÷-+-191. 232111(32)4(0.5)(1)325⎡⎤--÷-⨯-⨯-⎣⎦ 192. 54()(3)(1)(2)65-÷-⨯-⨯-21有理数计算193.26(1)(0.5)81477⨯-÷-+- 194. 3311112(2)332--⨯-+- 195. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-196. 2(3)2--⨯197.12411()()()23523+-++-+- 198. 11( 1.5)42.75(5)42-+++- 199. 8(5)63-⨯--200. 3145()2-⨯-201. 25()()( 4.9)0.656-+----202. 22(10)5()5-÷⨯-有理数计算22203. 323(5)()5-⨯-204. 25(6)(4)(8)⨯---÷-205. 1612()(2)472⨯-÷- 206. 67()()51313-+-- 207. 211()1722---+- 208. 737()()848-÷-209. 21(50)()510-⨯+210. 2(16503)(2)5--+÷-211. 32(6)8(2)(4)5-⨯----⨯212. 21122()(2)2233-+⨯--23有理数计算213. 199711(10.5)3---⨯214. 2232[3()2]23-⨯-⨯-- 215. 232()(1)043-+-+⨯ 216. 4211(10.5)[2(3)]3---⨯⨯--217. 4(81)( 2.25)()169-÷+⨯-÷218. 215[4(10.2)(2)]5---+-⨯÷-219. 666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-220. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-221. 23122(3)(1)6293--⨯-÷- 222. 32323(2)()()32-⨯-⨯-有理数计算24223. 13812711()3(2)()23-⨯⨯-⨯-224. 222172(3)(6)()3+⨯-+÷---225.()43212(8)()(2)2-÷---⨯-226. 81)4(2833--÷- 227. 22100(2)(2)()3÷---÷-228. 22(3)(4)-÷-229. 22312()(0.8)2-⨯-÷-230. 2232113()(2)()32-⨯---÷-231. 232()(1)043-⨯-+⨯25有理数计算232. 262()5+⨯-233. 2108(2)43-+÷--⨯234. []551(0.4)( 2.5)---⨯-235. 251(1)(10.5)3---⨯236. (14)26(14)(16)8-++-+-+237. ( 5.5)( 3.2)( 2.5) 4.8-+----238. (8)(25)(0.02)-⨯-⨯-239. 1557()(72)29612-+-⨯- 240. 11(2)()32-÷-241.211(4)()22+-⨯-有理数计算26242.51552040.65(31)112280.52-÷⨯+÷--÷ 243. 2212113()12( 4.53)()233⎡⎤⎡⎤⨯⨯---⨯---+⎣⎦⎢⎥⎣⎦244. 23242341()()()(1)32232-⨯-÷-⨯--+-245. 111512255()()16(1)44543⎧⎫⎡⎤÷-+⨯÷--⨯-⎨⎬⎢⎥⎣⎦⎩⎭246. 20(15)(28)17-+----247. 6523157-+-+248.2113()(1)3838---+- 249. ( 5.54)( 3.2)( 2.5) 4.8-+----250. 295(3)(2)4+⨯---÷251. 32(1)(5)(3)2(5)⎡⎤-⨯-÷-+⨯-⎣⎦27有理数计算252. 32432(2)(1)(2)(2)-+-⨯---÷-253. []3(5)2(6)3005-⨯---÷254. 222221()32()4(1)3332-⨯-⨯-+-⨯- 255. 221313(5)()240(4)2354⎡⎤-⨯--⨯--÷-⨯-⎢⎥⎣⎦256. 1347()(154)620512--+-⨯-⨯ 257. 3412()(5)777÷-⨯÷- 258. ( 5.5) 3.2 4.5 6.8-⨯+⨯259. 2238()(4)()(8)595⨯---⨯-+-⨯260. 11(13)(134)()1367-⨯-⨯⨯- 261. ()()()224275543()7811⎡⎤----⨯÷⨯-⎣⎦有理数计算28262. ()()23210022()(2)3÷---÷-+-263. 222172(3)(6)()3-+⨯-+-÷-264. 2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦265. 201023)1()2(161)1()21()21(-÷-⨯⎥⎦⎤⎢⎣⎡--÷--266. )145()2(52825-⨯-÷+-267. 7111(4)(5)(4)38248---+-- 268. 11(0.5)(3) 6.75542---+- 269. (6)(4)(32)(8)3-⨯-+-÷--270. 1(5)(16)(2)3-÷-÷-271. 4321(2)(8)()(2)2-÷---⨯-29有理数计算272. 32)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--273. 111117(113)(2)92844⨯-+⨯-274. 235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭275. 1113|16|2(4)()448⎡⎤⎡⎤---⨯-÷--⎢⎥⎢⎥⎣⎦⎣⎦276. (9)(4)(60)12-⨯-+-÷277. 230(3)3(2)--÷⨯-278. 22312()(0.8)2-⨯-÷-279. 37511()2532162-⨯-÷ 280. 2232113()(2)()32-⨯---÷-281. 2333(2)(3)(1)(3)---⨯---有理数计算30282. 3233112()()(2)33-÷---⨯-283. 22131(2)2[()3]245--⨯--⨯÷284. 13611754136227231++- 285. 22)36()33(24)12581(÷-÷---⨯-286. 2132()5+⨯-287. 222172(3)(6)()3-+⨯-+-÷-288. 225(3)[()]39-⨯-+- 289. 28(3)(2)+-⨯-290. 22100(2)(2)()3÷÷----291. 421232()33÷⨯--31有理数计算292. (3)2(3)4--⨯--⨯293.12411()()()23523+-++-+- 294. 11( 1.5)42.75(5)42-+++- 295. 200612(1)(24)(2 2.75)83-+-⨯+-296. 103(1)2(2)4-⨯+-÷297. 422(10)[(4)(33)2]-+--+⨯298. 33422()93-÷⨯- 299. 2310110.25(0.5)()(1)82-÷-+-⨯-300. 4321(2)(8)()(2)2-÷---⨯-301. 222475(5)4(3)()(7)811⎡⎤----⨯÷⨯-⎣⎦有理数计算32302. 31{(3)[30.4(1)(2)]}2---+⨯-÷-303. 421110.52(3)3-+-⨯⨯⨯-()[]304. 3334[(17)6][(5)3](2)⨯-÷+--÷--305. 332313[8(2)1](3)(2)0.25--÷--+-⨯-÷306. 9.538(2|11.64 1.53 1.36|)----+-307. 73.17(812.03|219.83518|)--+308. 1112(398)-+--309. 95(945)----310. 5.6 4.7| 3.8 3.8-+---|311. 1213521(36)(16)(45)(10)27277+-+-+-++312. 5211()(2)(4)319152⨯-⨯-⨯-33有理数计算313. ()83()(13)()28666-⨯+-⨯---⨯314. 23181920222...222-----+315.111 (133519971999)+++⨯⨯⨯ 316. 3145()2-⨯-317. 25()()( 4.9)0.656-+----318. 22(10)5()5-÷⨯-319. 323(5)()5-⨯-320. 25(6)(4)(8)⨯---÷-321. 1612()(2)472⨯-÷- 322. 2(16503)(2)5--+÷-有理数计算34323. 32(6)8(2)(4)5-⨯----⨯324. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-325. 23122(3)(1)6293--⨯-÷- 326. 21122()(2)2233-+⨯-- 327. 19971(1)(10.5)3----⨯328. 2232[3()2]23-⨯-⨯-- 329. 232()(1)043-+-+⨯ 330. 4211(10.5)[2(3)]3---⨯⨯--331. 215[4(10.2)(2)]5---+-⨯÷-332. 666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-35有理数计算333. 4231[ 2(3)]6--⨯--- 334. 7574.037127.5371236)9618-+-⨯-+( 335. 2212[3()0.8](2)35-⨯--÷-336. --+⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪---+3825583521() 337. [(3)(4)5][82(6)]4-⨯--⨯--⨯-÷338. -÷--÷-824134()()339. ()[()()]-÷-⨯⨯-11551135340. 42991310.25(1)12 3.7524283⎛⎫⎛⎫-÷-⨯-++-⨯ ⎪ ⎪⎝⎭⎝⎭341. 1311143343411-÷⨯÷ 342. ---⎛⎝ ⎫⎭⎪----⎛⎝ ⎫⎭⎪1133411334有理数计算36343. ()()------22222233344. 1235342123341822--÷-⎛⎝ ⎫⎭⎪+⨯-⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⨯⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪345. -----÷-+--÷--22331349722232()|()()||||| 346. 13525(2)2514⎛⎫--÷-⨯- ⎪⎝⎭347. 234( 1.5)1243⎛⎫-÷-⨯- ⎪⎝⎭ 348. 34311(1)2⎡⎤⎛⎫-----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦349. 210.23435.35⎡⎤⎛⎫-⨯--⨯- ⎪⎢⎥⎝⎭⎣⎦350. 222243(3)(5)(0.3)0.95⎛⎫---+-⨯---÷- ⎪⎝⎭351. ()11232311412243⨯⨯-⎛⎝ ⎫⎭⎪--⎡⎣⎢⎢⎤⎦⎥⎥+÷-⎛⎝ ⎫⎭⎪37有理数计算352. 71957180251411313..-⎛⎝⎫⎭⎪÷-÷⨯⎛⎝⎫⎭⎪353. ()-÷⨯-⨯÷⨯-⎛⎝ ⎫⎭⎪11234021341435..354. ()()11160752116340534+--⎡⎣⎢⎤⎦⎥⨯-⎧⎨⎩⎫⎬⎭÷---⎛⎝ ⎫⎭⎪..355. ()-⨯-⎛⎝ ⎫⎭⎪-⨯--⨯-⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⨯⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥212341351499113192222356. 4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦ 357. 33423(1)(1)--⨯---358. 33510.2(2)5⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦359. 12(17)1(0.6)4⎡⎤---÷-+-⎢⎥⎣⎦360. 2311(10.6432)⎡⎤----÷⎣⎦有理数计算38361. 3213322.2512853⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--÷-+-⨯-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦362. []261(0.4)( 2.5)---⨯-363. 362211362⎛⎫⎛⎫-⨯÷ ⎪ ⎪⎝⎭⎝⎭364.1448551836615335175123192155⨯÷-+⨯⎛⎝ ⎫⎭⎪-⨯+⎛⎝ ⎫⎭⎪-⎡⎣⎢⎤⎦⎥..... 365. ()()()222410.4 3.1 2.610.30.15⎧⎫⎡⎤⎛⎫-⨯---+⨯---÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭366. 513113(50)217348⎛⎫⎛⎫⎛⎫⨯-÷-⨯-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭367. ()11572348126824⎛⎫-+-⨯-⎪⎝⎭ 368.4535522723723237⎛⎫⎛⎫⎛⎫⨯---⨯--⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 369. ()199719996661998⎛⎫-⨯- ⎪⎝⎭39有理数计算370. 23353(5)32(2)|46|20.6258⎛⎫-⨯-+÷---⨯+-+ ⎪⎝⎭371. 4946111(3)20.24911235⎡⎤⎛⎫⎛⎫-÷⨯-⨯-⨯-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦372. 2782411813318833⨯÷⎪⎭⎫ ⎝⎛-⨯373. )2()2(2123322-+--⎪⎭⎫ ⎝⎛-+- 374. ⎪⎭⎫⎝⎛----÷⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2135322132213122 375.()87216543313113)1(61)5.4(18719992000÷⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛---⨯⎪⎭⎫ ⎝⎛--⨯+-⨯⎪⎭⎫⎝⎛- 376.)57(5857-⨯ 377. ()4443145-÷- 378. 494953157.04953843.0⨯⎪⎭⎫⎝⎛⨯+⨯-有理数计算40379. ()3330037÷-380. ()()()199084481990199014181990-⨯--⨯--⨯-⨯381. ()()999999999999999999+-⨯-+-382. ()()()()()149297483149297483-÷-⨯-÷-⨯-÷-383. ()()()⎭⎬⎫⎩⎨⎧-⎪⎭⎫ ⎝⎛-÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫⎝⎛-+-÷⨯-2314.0411432417384. ()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯÷⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+÷-⨯⨯-⎪⎭⎫ ⎝⎛-÷-12122211341125.0221132322 385. ()41611143125.1012112310013+--⎪⎭⎫⎝⎛-÷+ 386. 199519953(0.125)[(2)]⨯-387. 25413()(0.612)()651010⨯+-÷-41有理数计算388. 322333(-)⨯(-0.6)-(-)⨯1.5-2÷(-)253389. 232006333...3++++390. 199720002000200019971997⨯-⨯391. 22222221949195019511952...199719981999-+-++-+392. 22221111(1)(1)...(1)(1)23910---- 393. 1111 (12123123100)++++++++++ 394. 987654321987654324987654323987654322⨯-⨯395.1121231299()()...(...)233444100100100++++++++++ 396. 32)65()43(21--+---397. 38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭398.111135()532114⨯-⨯÷ 399. 34153()2--⨯-()400. 42223721-+--⨯-()()401. 1031224-⨯+-÷()()402. 2395525-⨯-÷-()()() 403. 333(125)()62187()777-÷-+÷+÷- 404.2725.0)431(218)522(52⨯÷--⨯--÷ 405. 311252525424⨯--⨯-⨯() 406. 38(4)23--÷⨯407. 22733(3)⨯÷+-43有理数计算408. 5(2)2(2)-+--÷-409. (28)(64)(1)5-÷-++-⨯410. 2(2)07(8)(2)÷-+÷--⨯-411. 13131()24524864⎡⎤-+-⨯÷⎢⎥⎣⎦412. 2332312(3)(2)(9)3÷-÷---÷413. 222122(1)33-÷⨯- 414. 32432(2)(1)(2)(2)-+-⨯---÷-415. 32(1)(5)(3)2(5)⎡⎤-⨯-÷-+⨯-⎣⎦416. 75.61258)431(121-----417. 2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦418. 75)21(212)75(75211⨯-+⨯--⨯419. 4)2(51232⨯--÷- 420. 50)3(15)3(42--÷--⨯421. 3211(10.5)2(3)7⎡⎤---⨯⨯--⎣⎦ 422. 22)7()6(6112119750-÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫⎝⎛+-- 423. []3521325.06.05.2)1(⎪⎭⎫⎝⎛-⨯+--÷-424. 111117(113)(2)92844⨯-+⨯-425. 419932(4)(1416)41313⎡⎤--⨯-÷-⎢⎥⎣⎦426. 33221121(5533)22⎡⎤⎛⎫⎛⎫--÷+⨯+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦427. 2375(2)(10.8)114⎡⎤----+-⨯÷--⎢⎥⎣⎦45有理数计算428. 51623-÷-÷-()()() 429. 42(3)60.25-+⨯--÷430. 3(5)[1.85(21)7]4-÷--⨯431. []18{10.4 (10.4)0.4}÷-+-⨯432. 1111()636÷-⨯433. –3[4(4 3.51)][2(3)]---⨯⨯-+-434. ()3.57.75 4.25 1.1--÷435. 321612115()|(2)|(2)(|()|)2114332⎡⎤----+-⨯-÷---⎢⎥⎣⎦436. 1110.125(3)(3)()(0.25)488+++-+++-437. 5215[(9)]317.75632-----+438. 1211[3()1](8)8233⨯⨯---⨯--439. 7211()(4)9353-÷--⨯- 440. 78(0.125)8-⨯441. 4010(0.25)256⨯442. 12(3)(4)56(7)(8)(23)(24)++-+-+++-+-+⋯+-+-443.1111111142648620102008-+-+-+⋯+- 444. 1111(1)(1)(1)(1)2009200820071000-⨯-⨯-⨯⋯⨯- 445. 19(7)128(7)33(7)÷--÷-+÷-446.111111223344556++++⨯⨯⨯⨯⨯ 447. 111 (101111125960)+++⨯⨯⨯47有理数计算448.109985443++++⨯⨯⨯⨯ 449. 111111212312100++++++++++450.1111133********++++⨯⨯⨯⨯ 451. 1111251335572325⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭452.2512512512512514881212162000200420042008+++++⨯⨯⨯⨯⨯ 453.3245671255771111161622222929++++++⨯⨯⨯⨯⨯⨯ 454. 11111111()1288244880120168224288+++++++⨯ 455. 11111111612203042567290+++++++ 456. 11111113610152128++++++ 457.1111111112612203042567290--------458.11111 104088154238 ++++459.1111 135357579200120032005 ++++⨯⨯⨯⨯⨯⨯⨯⨯460.74.50.161111 1813153563 13 3.75 3.23⨯+⎛⎫⨯+++⎪⎝⎭-⨯461.11111 123420 261220420 +++++462.11111 20082009201020112012 1854108180270 ++++463.11224 26153577 ++++464.1111111 315356399143195 ++++++465.1511192997019899 2612203097029900 +++++++466.111 123234789 +++⨯⨯⨯⨯⨯⨯467.111 1232349899100 +++⨯⨯⨯⨯⨯⨯49有理数计算468.135246357202224++++⨯⨯⨯⨯⨯⨯⨯⨯469.4444 (135357939597959799)++++⨯⨯⨯⨯⨯⨯⨯⨯470.999897112323434599100101++++⨯⨯⨯⨯⨯⨯⨯⨯471.11111123423453456678978910+++⋅⋅⋅++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯472.333 (1234234517181920)+++⨯⨯⨯⨯⨯⨯⨯⨯⨯473.57191232348910+++⨯⨯⨯⨯⨯⨯474. 5717191155234345891091011⨯++++⨯⨯⨯⨯⨯⨯⨯⨯ ()475.3451212452356346710111314++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯476. 12349223234234523410+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯477.123456121231234123451234561234567+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯478.23993!4!100!+++ 479.234501(12)(12)(123)(123)(1234)(12349)(1250)++++⨯++⨯++++⨯+++++++⨯+++480.2341001(12)(12)(123)(123)(1234)(1299)(12100)++++⨯++⨯++++⨯++++++⨯+++481. 23101112(12)(123)(1239)(12310)----⨯++⨯++++++⨯++++ ()482.22222211111131517191111131+++++------ 483. 222222111111(1)(1)(1)(1)(1)(1)23454849-⨯-⨯-⨯-⨯⨯-⨯- 484.222222223571512233478++++⨯⨯⨯⨯ 485. 222222222231517119931199513151711993119951++++++++++-----。

七年级数学有理数计算500题含答案

七年级数学有理数计算500题含答案
七年级数学有理数计算500题含答案
!. 一 6 ×(一一l -一l )÷一 5 5 32 4
2 一 5 ÷(-2 一2)-一 5 × 一 5 -一 5÷4
7
5 7 12 3
3. 0.8x一+ 4.8x(-一)-2.2÷一3 + 0.8x一 9
11
7
7

4
l (-一
一3 +
一 4 一 7 )×(-15x4)
七年级数学有理数计算500题含答案 第 28 页,共 64 页
七年级数学有理数计算500题含答案 第 29 页,共 64 页
七年级数学有理数计算500题含答案 第 30 页,共 64 页
七年级数学有理数计算500题含答案 第 31 页,共 64 页
七年级数学有理数计算500题含答案 第 32 页,共 64 页
七年级数学有理数计算500题含答案 第 23 页,共 64 页
七年级数学有理数计算500题含答案 第 24 页,共 64 页
七年级数学有理数计算500题含答案 第 25 页,共 64 页
七年级数学有理数计算500题含答案 第 26 页,共 64 页
七年级数学有理数计算500题含答案 第 27 页,共 64 页
七年级数学有理数计算500题含答案 第 13 页,共 64 页
七年级数学有理数计算500题含答案 第 14 页,共 64 页
七年级数学有理数计算500题含答案 第 15 页,共 64 页
七年级数学有理数计算500题含答案 第 16 页,共 64 页
七年级数学有理数计算500题含答案 第 17 页,共 64 页
七年级数学有理数计算500题含答案 第 18 页,共 64 页
七年级数学有理数计算500题含答案 第 19 页,共 64 页

七年级计算题500道

七年级计算题500道

七年级计算题500道一、有理数运算类。

1. 计算:(-3)+5- 解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

|5| = 5,| - 3|=3,5>3,所以(-3)+5 = 2。

2. 计算:4 - (-2)- 解析:减去一个数等于加上这个数的相反数,所以4-(-2)=4 + 2=6。

3. 计算:(-2)×(-3)- 解析:两数相乘,同号得正,异号得负,并把绝对值相乘。

所以(-2)×(-3)=6。

4. 计算:-4÷2- 解析:两数相除,异号得负,并把绝对值相除。

所以-4÷2=-2。

5. 计算:(-2)^3- 解析:(-2)^3=(-2)×(-2)×(-2)= - 8。

二、整式加减类。

6. 化简:3a + 2b - 5a - b- 解析:- 合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。

- 对于a的同类项3a和-5a,3a-5a=-2a。

- 对于b的同类项2b和-b,2b - b=b。

- 所以,3a + 2b - 5a - b=-2a + b。

7. 化简:(2x^2 - 3x + 1)-(x^2+2x - 3)- 解析:- 去括号法则:括号前是正号,把括号和它前面的正号去掉后,原括号里各项的符号都不改变;括号前是负号,把括号和它前面的负号去掉后,原括号里各项的符号都要改变。

- 所以(2x^2 - 3x + 1)-(x^2+2x - 3)=2x^2-3x + 1 - x^2 - 2x+3。

- 然后合并同类项,2x^2-x^2=x^2,-3x-2x=-5x,1 + 3=4。

- 最终结果为x^2-5x + 4。

三、一元一次方程类。

8. 解方程:2x+3 = 7- 解析:- 首先进行移项,把常数项移到等号右边,2x=7 - 3。

- 然后计算7-3 = 4,得到2x=4。

- 最后系数化为1,两边同时除以2,x = 2。

初一年级《有理数》计算题集500道(含答案)(1)(2)(2)(1)(2)(3)(2)

初一年级《有理数》计算题集500道(含答案)(1)(2)(2)(1)(2)(3)(2)

有理数计算 1使用说明:本题集的制作初衷是为学生提供计算题目以便强化计算能力。

此题集共500道,1-445题为基本四则运算,建议每天做10道,如能保证答题准确率在80%以上,说明计算能力比较过关。

446-500题为能力计算题目,涉及等差数列,等比数列,裂项等技巧,建议学完计算技巧后再作题进行巩固。

要相信坚持总有回报,祝愿每位同学取得优异的成绩。

由于时间有限,后面所附答案如有错漏之处,请批评指正。

1. ⨯--÷5324()61152. ÷--⨯-÷7571234(2)525553. ⨯+⨯--÷+⨯1177110.8 4.8() 2.20.822394. --+-⨯-⨯620512)(154)(13475. -⨯⨯-187()( 2.4)736. ÷-⨯÷-7772()(5)3417. -+⨯÷-24528[15(13)](1)113118. ⨯-÷-⨯55(5)()511初一年级《有理数》计算题集500道(含答案)第1页,共64页有理数计算2 9. --+-÷-32114742)()(1132110. -⨯-⨯+⨯--⨯3737130.34(13)0.34221511. -⨯-⨯⨯-1367(13)(134)()1112. ---+--8248(4)(5)(4)3711113. --+÷-(16503)(2)14. (-)-(-)-+420.53 6.7551115. -++-212117887.21435312.7921916. -⨯-+-÷--(6)(4)(32)(8)317. ----+722()|1|21118. -⨯-+-÷(9)(4) (60)12第2页,共64页3有理数计算 19. 9581[()1]()1472142--+÷-20. 1|3|10(15)3--÷--⨯21. 375112532162-⨯-÷()22. 11171(231)(1)(7)32186+÷-⨯--23. 31(820.04)43-⨯--24. []551(0.4)( 2.5)---⨯-25. 251(1)(10.5)3---⨯26.575(7)(243)(246)--+---+-+-27. 213(2)(1)8()312--⨯--÷-⨯-+28. 912311(27)9()(24)1123412-÷-+--⨯-第3页,共64页有理数计算430.()()1120.12533110.25483⎛⎫⎛⎫⎛⎫+++-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31. 211(455)365455211545545365⨯-+⨯-⨯+⨯32. 102131111()[9(3)]314122---⨯--+÷33. 8221211(1)()()[2(3)]0.52368---÷-⨯-----34. 25171()24(5)138612⎡⎤--+⨯÷-⎢⎥⎣⎦35. ()131170.125 1.213213⎛⎫⎛⎫-⨯-÷-⨯- ⎪ ⎪⎝⎭⎝⎭36. ()2342()()0.2534⨯-+-÷-37. ()7511[30()36]59612-+-⨯-÷-()第4页,共64页5有理数计算 38. 23155(1)()()()74148+÷-÷-⨯-39. 31315(1)(1) ()()42424-÷--+÷-40. 8)3(4)2(323+-⨯--⨯41. 2)2(2)1(3210÷-+⨯-42. 2)2(2)2(23322--+----43. ])3(2[61124--⨯--44. ]2)33()4[()10(222⨯+--+-45. ])2(2[31)5.01()1(24--⨯⨯---46. 20022003)2()2(-+-47. 20052004(0.25)4-⨯48. 94)211(42415.0322⨯-----+-第5页,共64页有理数计算6 49. )2()3(]2)4[(3)2(223-÷--+-⨯--50. 32(4)(75)÷-⨯-+-51. 2)2(2)1(3210÷-+⨯-52. ()()574283+-⨯-÷-53. 2225(3)[()](6)439⨯+÷-----54. 31[2(10.54)]⨯-----55. 312123)2122(3)543(31512⨯-÷++÷+-⨯-56. 295(3)(2)4⨯--÷+-57. 3(5)[2(6)]3005-⨯---÷ 58. 2211(1)1339⨯-÷-59. [124(310)]4⨯-÷-第6页,共64页7有理数计算 60. 32(3)4(3)15⨯-⨯--+61. 4211[2(3)]6―⨯---62. 213502()15÷⨯-+-63. 421632()94÷⨯--64. ()1003212181215.20-⨯⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-÷-65. 21002212(1)1221|132|----÷-+--⨯()66. 3483(1)(4)--⨯---67. 3145()2⨯--68. 2)3121(36-⨯69. 24)23(942-⨯÷-第7页,共64页有理数计算8 70. 5434361832411÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-+- 71. )12()4332125(-⨯-+72. )4()81()2(163-⨯---÷73. 2111()()(2)(14)236--÷--⨯-+ 74. 33[5(10.2)(2)]5---+-⨯÷-75. 111122399100++⋅⋅⋅+⨯⨯⨯76. 911321321÷⎪⎭⎫⎝⎛-⨯-77. ()124310(49)-⨯-÷-⎡⎤⎣⎦78. 4435222-+--÷-()() 79. 32416210+÷-÷-()() 第8页,共64页9有理数计算 80. 2153233+÷÷-+-()()()81. 3342331---÷-()() 82. 232[3323]43-⨯-⨯--()83. 1293123223-÷+-⨯+()84. )6(23517235)34()235(-⨯-⨯--⨯-85. 15511512277227⎛⎫⎛⎫⨯--⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭86. 23(2)(1)31(2)-⨯--⨯---[] 87. 3223(4)(9)0---⨯-⨯ 88. 31452-⨯-()89. 348311--⨯---()()第9页,共64页有理数计算10 90. 32422()93-÷⨯-91. 211[123]6--⨯--()92. 759015-⨯--÷-()()() 93. 23420.2534⨯-+-÷-()()()94. ()11731348126424⎛⎫-+-⨯- ⎪⎝⎭95. ()113700.2524.5525%42⎛⎫⎛⎫-⨯-+⨯--⨯ ⎪ ⎪⎝⎭⎝⎭96. 333145⎛⎫⨯- ⎪⎝⎭97. ()()()525306⎛⎫-⨯-⨯+⨯- ⎪⎝⎭98. ()5411.5112153⎛⎫-⨯⨯-⨯ ⎪⎝⎭第10页,共64页99. 13810.0434⎛⎫⎛⎫-+-⨯- ⎪ ⎪⎝⎭⎝⎭100. ()()3338878158777⎛⎫⎛⎫-⨯-+-⨯--⨯ ⎪ ⎪⎝⎭⎝⎭101. 1799918⎛⎫⨯- ⎪⎝⎭102. ()17.984⎛⎫-⨯- ⎪⎝⎭103. ()()()450.258-⨯⨯-⨯-104. 130.570445⎛⎫⎛⎫-⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭105. 7213.2329213⎡⎤⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯--⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦106. ()74948⨯-107. 157556⎛⎫⨯- ⎪⎝⎭有理数计算12 108. ()24912525⎛⎫-⨯- ⎪⎝⎭109. ()200420062005-⨯110. ()231243412⎛⎫-++⨯- ⎪⎝⎭111. 2211613325⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭112. 17371178412⎛⎫⎛⎫-⨯-+- ⎪ ⎪⎝⎭⎝⎭113. 1173332127⎛⎫-⨯⨯ ⎪⎝⎭114. 15511521214142214⎛⎫⎛⎫-⨯--⨯+⨯ ⎪ ⎪⎝⎭⎝⎭115. 4555542792793⎛⎫⨯+⨯+⨯- ⎪⎝⎭116. ()7 1.7516⎛⎫+÷- ⎪⎝⎭117. 31231527⎛⎫⎛⎫⎛⎫-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭118. ()()148121549-÷⨯÷-119. ()()()1084-÷-⨯-120. ()()1177-÷⨯-121. 294.558-⨯÷122. 121311234⎛⎫⎛⎫⎛⎫-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭123. 141315432251518⎛⎫⎛⎫⎛⎫⎛⎫+÷-⨯-÷- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭124. ()1347415620512⎛⎫⨯-⨯--+- ⎪⎝⎭125. 111111111111357357357357⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯+-⨯-⨯-+-⨯-⨯+⨯-⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭126. 25(8)(1)--⨯-有理数计算14 127. 11()128--+128. 4(6)(3)-⨯-129. 12()( 3.25)5---130. 313.5(0.7)(5)5-⨯-÷-131. 112167342⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭132. ()1230.1434⎛⎫⎛⎫÷---÷- ⎪ ⎪⎝⎭⎝⎭133. 2212162()2-÷⨯-134. 344411117777⎛⎫⎛⎫-⨯÷--+ ⎪ ⎪⎝⎭⎝⎭135. 211110.5210.5100.5323⎛⎫⎛⎫⎛⎫-÷--÷-+÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭136. 21.8( 1.8)3--+137. 114254-+138. 1348(1)124-⨯-+139. 220.52(3)⨯--140. 113()1234÷-+141. 322322(2)()(2)2()833-⨯---÷⨯-142. 4327221()()1727173⎡⎤----+-⎢⎥⎣⎦143. 3777(1)()48128--÷-144. 241(7)(30)3 3.25134-÷--⨯+145. 868635.28.642⨯-⨯-+有理数计算16 146. 200720092008-⨯147. 199279-⨯148. 762()(1.5)3-⨯149. 201020111()33-⨯150. 201120102009(7)147(49)(7)-+⨯--⨯-151. 214.732(2.631)33⎡⎤---⎢⎥⎣⎦152. 421(3)(1)()7315-÷-⨯-153. 812763189--+-÷-()() 154. 13122(3)2523-⨯--+÷---155. ()28[710.63]3⎛⎫-⨯-+-⨯÷- ⎪⎝⎭156. 151()46-+-157. 2(0.8)15-+-158. 15631218⎛⎫+- ⎪⎝⎭159. ()(){}1.5 1.80.80.9+-++-⎡⎤⎣⎦160. 112133[2357]32324⎛⎫⎛⎫-++-++- ⎪ ⎪⎝⎭⎝⎭161. 222115[1344]33155⎛⎫-+--+- ⎪⎝⎭162. ()43510.712150.7(15)9494⨯+⨯-+⨯+⨯-163. 45812605615⎛⎫--⨯ ⎪⎝⎭164. ()15154232918⎛⎫-÷-÷- ⎪⎝⎭有理数计算18 165. 142 81614 9÷÷--⨯()166. 1211 4.43.1830+++++-())(167. 41889365036.25525323+-++--()168. 53145119(20)(302.5)(151)119197131717132⎛⎫⎛⎫+-+-+-+-+- ⎪ ⎪⎝⎭⎝⎭169. ()5113(3[(2) 5.1753 6.325]3714837⎛⎫-+-++++-+ ⎪⎝⎭) 170. 53124(3)(3)(1)6565--+---+171. 3511(114662+--+)172. 224411()(0.6)33535⎛⎫-+----- ⎪⎝⎭173. 7131441232555555---++-+174.1116 3253 5.252 3477⎡⎤⎛⎫--+---⎪⎢⎥⎝⎭⎣⎦175.275315 (3(2)(3)5(1)5 58125812⎛⎫++--+--+--⎪⎝⎭)176.21 1(1) 35⨯-177.()56.5()6 -⨯-178.314 ()(1)() 429 -⨯-⨯-179.50.25(4)9 6-⨯⨯-⨯180.51 ()(3) 63 -÷-181.421 (3)(1)(1)7314 -÷-÷-182.12114 ()()(1)(1)(1) 23435 -⨯-⨯-⨯-⨯-有理数计算20 183. 31123.8 2.4799.6()(339)8873-⨯⨯⨯-⨯-⨯⨯184. ()8[3.6(0.2)(0.4)1]-----⨯-⨯-185. 2231356(8)2(2)4⎡⎤⨯-+--⨯-⨯⎢⎥⎣⎦186. 5.7215.8-+()187. 0.47()50347---188. 11(3)(5)24--+189. 1111(()()()6432-+---+--)190. ()23632(2)3482(2)-⨯+-⨯-÷-+-191. 232111(32)4(0.5)(1)325⎡⎤--÷-⨯-⨯-⎣⎦192. 54()(3)(1)(2)65-÷-⨯-⨯-193. 283256(1)(0.5)81477⨯-÷-+-194. 3311112(2)332--⨯-+-195. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-196. 2(3)2--⨯197. 12411()()()23523+-++-+-198. 11( 1.5)4 2.75(5)42-+++-199. 8(5)63-⨯--200. 3145()2-⨯-201. 25()()( 4.9)0.656-+----202. 22(10)5()5-÷⨯-有理数计算22 203. 323(5)()5-⨯-204. 25(6)(4)(8)⨯---÷-205. 1612()(2)472⨯-÷-206. 67()()51313-+--207. 211()1722---+-208. 737()()848-÷-209. 21(50)()510-⨯+210. 2(16503)(2)5--+÷-211. 32(6)8(2)(4)5-⨯----⨯ 212. 21122()(2)2233-+⨯--213. 199711(10.5)3---⨯214. 2232[3()2]23-⨯-⨯--215. 232()(1)043-+-+⨯216. 4211(10.5)[2(3)]3---⨯⨯--217. 4(81)( 2.25)()169-÷+⨯-÷218. 215[4(10.2)(2)]5---+-⨯÷-219. 666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-220. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-221. 23122(3)(1)6293--⨯-÷-222. 32323(2)()()32-⨯-⨯-有理数计算24 223. 13812711()3(2)()23-⨯⨯-⨯-224. 222172(3)(6)()3+⨯-+÷---225.()43212(8)()(2)2-÷---⨯-226. 81)4(2833--÷-227. 22100(2)(2)()3÷---÷-228. 22(3)(4)-÷-229. 22312()(0.8)2-⨯-÷-230. 2232113()(2)()32-⨯---÷-231. 232()(1)043-⨯-+⨯232. 2162()5+⨯-233. 2108(2)43-+÷--⨯234. []551(0.4)( 2.5)---⨯-235. 251(1)(10.5)3---⨯236. (14)26(14)(16)8-++-+-+ 237. ( 5.5)( 3.2)( 2.5) 4.8-+---- 238. (8)(25)(0.02)-⨯-⨯- 239. 1557()(72)29612-+-⨯-240. 11(2)()32-÷-241. 211(4)()22+-⨯-有理数计算26 242. 51552040.65(31)112280.52-÷⨯+÷--÷243. 2212113()12( 4.53)()233⎡⎤⎡⎤⨯⨯---⨯---+⎣⎦⎢⎥⎣⎦244. 23242341()()()(1)32232-⨯-÷-⨯--+-245. 111512255()()16(1)44543⎧⎫⎡⎤÷-+⨯÷--⨯-⎨⎬⎢⎥⎣⎦⎩⎭246. 20(15)(28)17-+---- 247. 6523157-+-+248. 2113()(1)3838---+-249. ( 5.54)( 3.2)( 2.5) 4.8-+---- 250. 295(3)(2)4+⨯---÷ 251. 32(1)(5)(3)2(5)⎡⎤-⨯-÷-+⨯-⎣⎦252. 32432(2)(1)(2)(2)-+-⨯---÷-253. []3(5)2(6)3005-⨯---÷ 254. 222221()32()4(1)3332-⨯-⨯-+-⨯-255. 221313(5)()240(4)2354⎡⎤-⨯--⨯--÷-⨯-⎢⎥⎣⎦256. 1347()(154)620512--+-⨯-⨯257. 3412()(5)777÷-⨯÷-258. ( 5.5) 3.2 4.5 6.8-⨯+⨯ 259. 2238()(4)()(8)595⨯---⨯-+-⨯260. 11(13)(134)()1367-⨯-⨯⨯-261. ()()()224275543()7811⎡⎤----⨯÷⨯-⎣⎦有理数计算28 262. ()()23210022()(2)3÷---÷-+-263. 222172(3)(6)()3-+⨯-+-÷-264. 2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦265. 201023)1()2(161)1()21()21(-÷-⨯⎥⎦⎤⎢⎣⎡--÷--266. )145()2(52825-⨯-÷+-267. 7111(4)(5)(4)38248---+--268. 11(0.5)(3) 6.75542---+-269. (6)(4)(32)(8)3-⨯-+-÷-- 270. 1(5)(16)(2)3-÷-÷-271. 4321(2)(8)()(2)2-÷---⨯-272. 322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--273. 111117(113)(2)92844⨯-+⨯-274. 235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭275. 1113|16|2(4)()448⎡⎤⎡⎤---⨯-÷--⎢⎥⎢⎥⎣⎦⎣⎦276. (9)(4)(60)12-⨯-+-÷ 277. 230(3)3(2)--÷⨯-278. 22312()(0.8)2-⨯-÷-279. 37511()2532162-⨯-÷280. 2232113()(2)()32-⨯---÷-281. 2333(2)(3)(1)(3)---⨯---有理数计算30 282. 3233112()()(2)33-÷---⨯-283. 22131(2)2[()3]245--⨯--⨯÷284. 13611754136227231++-285. 22)36()33(24)12581(÷-÷---⨯-286. 2132()5+⨯-287. 222172(3)(6)()3-+⨯-+-÷-288. 225(3)[()]39-⨯-+-289. 28(3)(2)+-⨯- 290. 22100(2)(2)()3÷÷----291. 421232()33÷⨯--292. 24(3)2(3)4--⨯--⨯293. 12411()()()23523+-++-+-294. 11( 1.5)4 2.75(5)42-+++-295. 200612(1)(24)(2 2.75)83-+-⨯+-296. 103(1)2(2)4-⨯+-÷297. 422(10)[(4)(33)2]-+--+⨯298. 33422()93-÷⨯-299. 2310110.25(0.5)()(1)82-÷-+-⨯-300. 4321(2)(8)()(2)2-÷---⨯-301. 222475(5)4(3)()(7)811⎡⎤----⨯÷⨯-⎣⎦有理数计算32 302. 31{(3)[30.4(1)(2)]}2---+⨯-÷-303. 421110.52(3)3-+-⨯⨯⨯-()[]304. 3334[(17)6][(5)3](2)⨯-÷+--÷--305. 332313[8(2)1](3)(2)0.25--÷--+-⨯-÷306. 9.538(2|11.64 1.53 1.36|)----+-307. 73.17(812.03|219.83518|)--+308. 1112(398)-+--309. 95(945)----310. 5.6 4.7| 3.8 3.8-+---|311. 1213521(36)(16)(45)(10)27277+-+-+-++312. 5211()(2)(4)319152⨯-⨯-⨯-313. 555()83()(13)()28666-⨯+-⨯---⨯314. 23181920222...222-----+315. 111 (133519971999)+++⨯⨯⨯316. 3145()2-⨯-317. 25()()( 4.9)0.656-+----318. 22(10)5()5-÷⨯-319. 323(5)()5-⨯-320. 25(6)(4)(8)⨯---÷-321. 1612()(2)472⨯-÷-322. 2(16503)(2)5--+÷-有理数计算34 323. 32(6)8(2)(4)5-⨯----⨯324. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-325. 23122(3)(1)6293--⨯-÷-326. 21122()(2)2233-+⨯--327. 19971(1)(10.5)3----⨯328. 2232[3()2]23-⨯-⨯--329. 232()(1)043-+-+⨯330. 4211(10.5)[2(3)]3---⨯⨯--331. 215[4(10.2)(2)]5---+-⨯÷-332. 666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-333. 42311[ 2(3)]6--⨯--- 334. 7574.037127.5371236)9618-+-⨯-+(335. 2212[3()0.8](2)35-⨯--÷-336. --+⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪---+3825583521()337. [(3)(4)5][82(6)]4-⨯--⨯--⨯-÷338. -÷--÷-824134()()339. ()[()()]-÷-⨯⨯-11551135340. 42991310.25(1)12 3.7524283⎛⎫⎛⎫-÷-⨯-++-⨯ ⎪ ⎪⎝⎭⎝⎭341. 131********11-÷⨯÷342. ---⎛⎝ ⎫⎭⎪----⎛⎝ ⎫⎭⎪1133411334有理数计算36 343. ()()------22222233344. 1235342123341822--÷-⎛⎝ ⎫⎭⎪+⨯-⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⨯⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪345. -----÷-+--÷--22331349722232()|()()|||||346. 13525(2)2514⎛⎫--÷-⨯- ⎪⎝⎭347. 234( 1.5)1243⎛⎫-÷-⨯- ⎪⎝⎭348. 34311(1)2⎡⎤⎛⎫-----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦349. 210.2343 5.35⎡⎤⎛⎫-⨯--⨯- ⎪⎢⎥⎝⎭⎣⎦350. 222243(3)(5)(0.3)0.95⎛⎫---+-⨯---÷- ⎪⎝⎭351. ()11232311412243⨯⨯-⎛⎝ ⎫⎭⎪--⎡⎣⎢⎢⎤⎦⎥⎥+÷-⎛⎝ ⎫⎭⎪352. 71957180251411313..-⎛⎝ ⎫⎭⎪÷-÷⨯⎛⎝ ⎫⎭⎪353. ()-÷⨯-⨯÷⨯-⎛⎝ ⎫⎭⎪11234021341435..354. ()()11160752116340534+--⎡⎣⎢⎤⎦⎥⨯-⎧⎨⎩⎫⎬⎭÷---⎛⎝ ⎫⎭⎪..355. ()-⨯-⎛⎝ ⎫⎭⎪-⨯--⨯-⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⨯⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥212341351499113192222356. 4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦357. 33423(1)(1)--⨯---358. 33510.2(2)5⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦359. 12(17)1(0.6)4⎡⎤---÷-+-⎢⎥⎣⎦360. 2311(10.6432)⎡⎤----÷⎣⎦有理数计算38 361. 3213322.2512853⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--÷-+-⨯-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦362. []261(0.4)( 2.5)---⨯-363. 362211362⎛⎫⎛⎫-⨯÷ ⎪ ⎪⎝⎭⎝⎭364. 1448551836615335175123192155⨯÷-+⨯⎛⎝ ⎫⎭⎪-⨯+⎛⎝ ⎫⎭⎪-⎡⎣⎢⎤⎦⎥.....365. ()()()222410.4 3.1 2.610.30.15⎧⎫⎡⎤⎛⎫-⨯---+⨯---÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭366. 513113(50)217348⎛⎫⎛⎫⎛⎫⨯-÷-⨯-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭367. ()11572348126824⎛⎫-+-⨯- ⎪⎝⎭368. 4535522723723237⎛⎫⎛⎫⎛⎫⨯---⨯--⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭369. ()199719996661998⎛⎫-⨯- ⎪⎝⎭370. 33371. 4946111(3)20.24911235⎡⎤⎛⎫⎛⎫-÷⨯-⨯-⨯-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦372. 2782411813318833⨯÷⎪⎭⎫ ⎝⎛-⨯373. )2()2(2123322-+--⎪⎭⎫ ⎝⎛-+-374. ⎪⎭⎫⎝⎛----÷⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2135322132213122375. ()87216543313113)1(61)5.4(187********÷⎪⎭⎫⎝⎛-÷⎪⎭⎫⎝⎛---⨯⎪⎭⎫⎝⎛--⨯+-⨯⎪⎭⎫ ⎝⎛-376. )57(5857-⨯377. ()4443145-÷-378.(有理数计算40 379. ()3330037÷-380. ()()()199084481990199014181990-⨯--⨯--⨯-⨯381. ()()999999999999999999+-⨯-+-382. ()()()()()149297483149297483-÷-⨯-÷-⨯-÷-383. ()()()⎭⎬⎫⎩⎨⎧-⎪⎭⎫ ⎝⎛-÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-÷⨯-2314.0411432417384. ()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯÷⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+÷-⨯⨯-⎪⎭⎫ ⎝⎛-÷-12122211341125.0221132322385. ()41611143125.1012112310013+--⎪⎭⎫ ⎝⎛-÷+386. 199519953(0.125)[(2)]⨯-387. 25413()(0.612)()651010⨯+-÷-388. 322333342(-)⨯(-0.6)-(-)⨯1.5-2÷(-)253389. 232006333...3++++390. 199720002000200019971997⨯-⨯391. 22222221949195019511952...199719981999-+-++-+392. 22221111(1)(1)...(1)(1)23910---- 393. 1111 (12123123100)++++++++++394. 987654321987654324987654323987654322⨯-⨯395.1121231299()()...(...)233444100100100++++++++++396. 32)65()43(21--+---397. 38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭有理数计算42398.111135()532114⨯-⨯÷399. 34153()2--⨯-()400. 42223721-+--⨯-()()401. 1031224-⨯+-÷()()402. 2395525-⨯-÷-()()() 403. 333(125)()62187()777-÷-+÷+÷- 404.2725.0)431(218)522(52⨯÷--⨯--÷405. 311252525424⨯--⨯-⨯()406. 38(4)23--÷⨯407. 22733(3)⨯÷+-408. 4435(2)2(2)-+--÷-409. (28)(64)(1)5-÷-++-⨯410. 2(2)07(8)(2)÷-+÷--⨯-411. 13131()24524864⎡⎤-+-⨯÷⎢⎥⎣⎦412. 2332312(3)(2)(9)3÷-÷---÷413. 222122(1)33-÷⨯-414. 32432(2)(1)(2)(2)-+-⨯---÷-415. 32(1)(5)(3)2(5)⎡⎤-⨯-÷-+⨯-⎣⎦416. 75.61258)431(121-----417. 2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦418. 75)21(212)75(75211⨯-+⨯--⨯有理数计算44419. 4)2(51232⨯--÷-420. 50)3(15)3(42--÷--⨯421. 3211(10.5)2(3)7⎡⎤---⨯⨯--⎣⎦422. 22)7()6(6112119750-÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫⎝⎛+--423. []3521325.06.05.2)1(⎪⎭⎫⎝⎛-⨯+--÷-424. 111117(113)(2)92844⨯-+⨯-425. 419932(4)(1416)41313⎡⎤--⨯-÷-⎢⎥⎣⎦426. 33221121(5533)22⎡⎤⎛⎫⎛⎫--÷+⨯+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦427. 2375(2)(10.8)114⎡⎤----+-⨯÷--⎢⎥⎣⎦428. 151623-÷-÷-()()() 429. 42(3)60.25-+⨯--÷430. 3(5)[1.85(21)7]4-÷--⨯431. []18{10.4 (10.4)0.4}÷-+-⨯432. 1111()636÷-⨯433. –3[4(4 3.51)][2(3)]---⨯⨯-+-434. ()3.57.75 4.25 1.1--÷435. 321612115()|(2)|(2)(|()|)2114332⎡⎤----+-⨯-÷---⎢⎥⎣⎦436. 1110.125(3)(3)()(0.25)488+++-+++-437. 5215[(9)]317.75632-----+有理数计算46438. 1211[3()1](8)8233⨯⨯---⨯--439. 7211()(4)9353-÷--⨯-440. 78(0.125)8-⨯441. 4010(0.25)256⨯442. 12(3)(4)56(7)(8)(23)(24)++-+-+++-+-+⋯+-+-443.1111111142648620102008-+-+-+⋯+-444. 1111(1)(1)(1)(1)2009200820071000-⨯-⨯-⨯⋯⨯- 445. 19(7)128(7)33(7)÷--÷-+÷-446.111111223344556++++⨯⨯⨯⨯⨯447.111 (101111125960)+++⨯⨯⨯448.2222 109985443 ++++⨯⨯⨯⨯449.1111 11212312100 ++++++++++450.1111 133******** ++++⨯⨯⨯⨯451.1111251335572325⎛⎫⨯++++⎪⨯⨯⨯⨯⎝⎭452.251251251251251 4881212162000200420042008 +++++⨯⨯⨯⨯⨯453.3245671 255771111161622222929 ++++++⨯⨯⨯⨯⨯⨯454.11111111()128 8244880120168224288+++++++⨯455.11111111 612203042567290 +++++++456.111111 13610152128 ++++++457.111111111 2612203042567290 --------458.11111 104088154238 ++++459.1111 135357579200120032005 ++++⨯⨯⨯⨯⨯⨯⨯⨯460.74.50.161111 1813153563 13 3.75 3.23⨯+⎛⎫⨯+++⎪⎝⎭-⨯461.11111 123420 261220420 +++++462.11111 20082009201020112012 1854108180270 ++++463.11224 26153577 ++++464.1111111 315356399143195 ++++++465.1511192997019899 2612203097029900 +++++++466.111 123234789 +++⨯⨯⨯⨯⨯⨯467.111 1232349899100 +++⨯⨯⨯⨯⨯⨯有理数计算48468.1111 135246357202224 ++++⨯⨯⨯⨯⨯⨯⨯⨯469.4444...... 135357939597959799 ++++⨯⨯⨯⨯⨯⨯⨯⨯470.9998971 12323434599100101 ++++⨯⨯⨯⨯⨯⨯⨯⨯471.11111 123423453456678978910 +++⋅⋅⋅++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯472.333...... 1234234517181920 +++⨯⨯⨯⨯⨯⨯⨯⨯⨯473.5719 1232348910 +++⨯⨯⨯⨯⨯⨯474.571719 1155234345891091011⨯++++⨯⨯⨯⨯⨯⨯⨯⨯()475.34512 12452356346710111314 ++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯476.12349 223234234523410 +++++⨯⨯⨯⨯⨯⨯⨯⨯⨯477.123456 121231234123451234561234567 +++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯有理数计算50478.23993!4!100!+++ 479.234501(12)(12)(123)(123)(1234)(12349)(1250)++++⨯++⨯++++⨯+++++++⨯+++ 480.2341001(12)(12)(123)(123)(1234)(1299)(12100)++++⨯++⨯++++⨯++++++⨯+++ 481. 23101112(12)(123)(1239)(12310)----⨯++⨯++++++⨯++++ ()482.22222211111131517191111131+++++------483. 222222111111(1)(1)(1)(1)(1)(1)23454849-⨯-⨯-⨯-⨯⨯-⨯- 484.222222223571512233478++++⨯⨯⨯⨯ 485. 222222222231517119931199513151711993119951++++++++++-----。

初中有理数计算题500道及答案(已整理)

初中有理数计算题500道及答案(已整理)

初中有理数计算题500道及答案910-⑴亠"圧+殳(”二心4373 V 7 73 O,8xI + 4«x(.£)-2J-\o.8xl4— ^―+ — — ^―) x (― 15 x 4) 6 20 5 1216 (-€)x(-4)+ (^32)-(-8)-3“(七)心34)洛2吉)(-—)x-x(-2,4) 18 7耳)15口―21+43寻 E 罟 72 肿13 (-16-50 + 3)-(-2)6—x21 G X<「扫"(-7)13 («9) x (^4) + (-60)^1219|-5-7| +|-5 一(-7)| +1(-243)+(-246)|3 —(—2) x (―I) —8 -r ( -- )* x |—3 + 1|24-1s-[(-0.4)x (-2.5)]'2738211x(-453) + M5x 433 -211x545 + 345 x36542-2:-(-2)'-23 + |(-2)3-243 ■ 1" _ _冥[2 _ (—3)"]44(-10)' + |(-4)- - (3 + 3J ) x 2]45(-1)4 -(l-05)xlx[2-(-2)3]«X (-£)+(-i)-r(-0.2J )令心⑹H(J )46(一2)皿'+ (-2)辿-31 11(-0.25)393 1 3 1 5(七“宫(-.-).(<-):9 SO31323534353637403x(-2)J -4x(-3)J +8(-l)iU x 2J + (-2)J -r22^17-U7xf —-0,125 k(-1.2)x6747 (-0.25)^ x 4^57 (-5)' x[2-(-6)]-300^548 -0.5: +丄一1-2】-4 - (-1-)3xl4 I 2949 (-2)^ - 3x [(-4)J + 2]- (-3)J ^(-2)50一21 (-4) x (-7 + 5) 51 卜1)山冥2' +(-2)42 5: 8 — 2^-r(— 4)x(— 7 + 5) 53 (-3)‘ x [-彳 + (-》] (—6),-5-4'■J54 *1-[-2-(1H).5X 43)]55 - 2 — x — (+3_) -r 3 + (+22 —)-r3 — 2 — x —5 3 5 2 2 356 9+5 x (-3)一 (一2)让 458一上“丄“丄33959 I12-4x(3-10)]^4 602x(-3)J -4x(-3)+15 61-I 4--x(2—(-3)?]636566683+50-S-22iV2.1+|:匚 3:2j-S-3X (-1)J -(-4)436x(±-±)2r x (-ir79 24 + 16-r(-2?-r(-10) 80^5 + 3-r — )-?f — 2)+( —3),3814-(-2?-33 + (-1/82 —x [ 33 x( — — 23|83—9宁 3 +( f — 一 )x12 + 32235 5 S84( ----- ) x (-34) --------- xl7 - — X (-6)23 23 23-3 ■" [―5 + (1 — 0.2 x —J -r (—2)]36(-2)* x(-l)J -3x[-l-(-2)]872<3J -(-4)x(-9)xO 8$4-5x(-£)'89 -8-3x(-l/-(-l )4697071727374757677781x22x3+…+ ------99x100——)-r (■ —) + (—2)* X (—14) 2 3 6|_12-4其(3-】0 屮(4-9}3 \ 3J 9102[一扌jx(_7.98)(-7)X (-5)-9O + (-15)103 (-4)x5x(-0.25)x(-8)99091929394959697989910042X (.|)+(-|)+(_O .25) + 0.25x24,5-i}-5-1x25%(3、—8 +1 - ■ 0*t M I x (—8)x —8— + |—7)x'87_15X 870>/Z£ (i } (tf(L } (i〕-Kx-f-x*-1 I TI I Il JIlJIl JJL i f -x- I If n f OZ 9 I L I---b -------- -- X ( C f I /KI爭一卜信一卜俘T 彳补9 i—:—x £"p_ 6 Zon(討)4“G jP nt(^-)x(8-) +(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档