中考数学易错题专题复习-锐角三角函数练习题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学易错题专题复习-锐角三角函数练习题含答案
一、锐角三角函数
1.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.
(1)求观察哨所A 与走私船所在的位置C 的距离;
(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)
(参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)
【答案】(1)观察哨所A 与走私船所在的位置C 的距离为15海里;(2)当缉私艇以每小时617D 处成功拦截. 【解析】 【分析】
(1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可;
(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可. 【详解】
(1)在ABC △中,180180375390ACB B BAC ︒︒︒︒︒∠=-∠-∠=--=. 在Rt ABC V 中,sin AC B AB =
,所以3sin 3725155
AC AB ︒
=⋅=⨯=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里.
(2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM V 中,4
sin 15125
CM AC CAM =⋅∠=⨯
=,3
cos 1595
AM AC CAM =⋅∠=⨯=.
在Rt ADM △中,tan MD
DAM AM
∠=,
所以tan 7636MD AM ︒=⋅=. 所以222293691724AD AM MD CD MD MC =
+=+==-=,.
设缉私艇的速度为v海里/小时,则有24917
16
=,解得617
v=.
经检验,617
v=是原方程的解.
答:当缉私艇以每小时617海里的速度行驶时,恰好在D处成功拦截.
【点睛】
此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
2.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.
(1)求的面积;
(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)
(参考数据:,,,,,,
)
【答案】(1)560000(2)565.6
【解析】
试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;
(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.
试题解析:(1)过点作交的延长线于点,
在中,,
所以米.
所以(平方米).
(2)连接,过点作,垂足为点,则.
因为是中点,
所以米,且为中点,
米,
所以米.
所以米,由勾股定理得,
米.
答:、间的距离为米.
考点:解直角三角形
3.已知:△ABC内接于⊙O,D是弧BC上一点,OD⊥BC,垂足为H.
(1)如图1,当圆心O在AB边上时,求证:AC=2OH;
(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:
∠ACD=∠APB;
(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB 于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣
∠ABD=2∠BDN,AC=,BN=,tan∠ABC=,求BF的长.
【答案】(1)证明见解析;(2)证明见解析;(3)24.
【解析】
试题分析:(1)易证OH为△ABC的中位线,可得AC=2OH;(2)∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,又∵∠PAC =∠BCD,可证∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,连接OB,易证∠GBN=∠ABC,所以BG=BQ.
在Rt△BNQ中,根据tan∠ABC=,可求得NQ、BQ的长.利用圆周角定理可求得IC和AI 的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长
度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.
试题解析:(1)在⊙O中,∵OD⊥BC,∴BH=HC,∵点O是AB的中点,∴AC=2OH;(2)在⊙O中,∵OD⊥BC,∴弧BD=弧CD,∴∠PAC=∠BCD,∵∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,∴∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB 与OD相交于点M,连接OB,
∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,
∵tan∠ABC=,∴,∴,
∴,∵∠BNQ=∠QHD=90°,
∴∠ABC=∠QDH,∵OE=OD,
∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,
∴BG=BQ=,GN=NQ=,
∵∠ACI=90°,tan∠AIC=tan∠ABC=,∴,∴IC=,∴由勾股定理可求得:
AI=25,
设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=,BH=BQ+QH=,
∵OB2=BH2+OH2,∴,解得:,当QH=
时,∴QD=,
∴ND=,∴MN=,MD=15,∵,∴QH=不符合题意,舍去,当QH=时,∴QD=
∴ND=NQ+QD=,ED=,∴GD=GN+ND=,∴EG=ED﹣GD=,
∵tan∠OED=,∴,
∴EG=RG,∴RG=,∴ BR=RG+BG=12,∴BF=2BR=24.
考点:1圆;2相似三角形;3三角函数;4直角三角形.
4.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)
已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4
cos 5
AOC ∠=
.设OP x =,CPF ∆的面积为y .
(1)求证:AP OQ =;
(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.
【答案】(1)证明见解析;(2)236030050
(10)13
x x y x x -+=<<;(3)8OP =
【解析】 【分析】
(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结
OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻
找已知对应边的夹角,即POA QDO ∠=∠即可;
(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4
cos 5
AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】
(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠,
∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,
{OP DQ
POA QDO OA DO
=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;
(2)作PH OA ⊥,交OA 于H , ∵4cos 5
AOC ∠=, ∴4455OH OP x =
=,35PH x =, ∴1
32
AOP S AO PH x ∆=
⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴
22
10(
)()AOP
y CP x S OP x
∆-==, ∴2360300
x x y x
-+=,当F 与点D 重合时,
∵4
2cos 210165
CD OC OCD =⋅∠=⨯⨯=, ∴
101016x x =-,解得50
13
x =, ∴2360300x x y x
-+=
50
(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4
cos 1085
OP OA AOC =⋅∠=⨯
=; ②当90POE ∠=o 时,
101025
4cos cos 25OC CQ QCO AOC =
===
∠∠,
∴252OP DQ CD CQ CD ==-=-2571622
=-=, ∵
50
1013
OP <<,
∴7
2
OP =
(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,
∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.
5.水库大坝截面的迎水坡坡比(DE 与AE 的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.
【答案】故大坝的截面的周长是(345)米,面积是1470平方米. 【解析】
试题分析:先根据两个坡比求出AE 和BF 的长,然后利用勾股定理求出AD 和BC ,再由大坝的截面的周长=DC+AD+AE+EF+BF+BC ,梯形的面积公式可得出答案. 试题解析:∵迎水坡坡比(DE 与AE 的长度之比)为1:0.6,DE=30m , ∴AE=18米,
在RT △ADE 中,22DE AE +34 ∵背水坡坡比为1:2, ∴BF=60米,
在RT △BCF 中,22CF BF +5
∴周长345(345)米, 面积=(10+18+10+60)×30÷2=1470(平方米).
故大坝的截面的周长是(345)米,面积是1470平方米.
6.如图,在矩形ABCD 中,AB =6cm ,AD =8cm ,连接BD ,将△ABD 绕B 点作顺时针方向旋转得到△A ′B ′D ′(B ′与B 重合),且点D ′刚好落在BC 的延长上,A ′D ′与CD 相交于点E . (1)求矩形ABCD 与△A ′B ′D ′重叠部分(如图1中阴影部分A ′B ′CE )的面积;
(2)将△A ′B ′D ′以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与△A ′B ′D ′重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;
(3)在(2)的平移过程中,是否存在这样的时间x ,使得△AA ′B ′成为等腰三角形?若存
在,请你直接写出对应的x 的值,若不存在,请你说明理由.
【答案】(1)45
2
;(2)详见解析;(3)使得△AA ′B ′成为等腰三角形的x 的值有:0秒、
32 669-. 【解析】 【分析】
(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′=
'''''
=A B CE A D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤
115时和当11
5
<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可. 【详解】
解:(1)∵AB =6cm ,AD =8cm , ∴BD =10cm ,
根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm , ∵tan ∠B ′D ′A ′='''''
=A B CE A D CD ∴
682
=CE ∴CE =
3
2
cm , ∴S ABCE =S ABD ′﹣S CED ′=86345
22222
⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =3
2
(x +1), ∴S △CD ′E =32x 2+3x +32
, ∴y =
12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452

②当
115≤x ≤4时,B ′C =8﹣2x ,CE =4
3
(8﹣2x ) ∴()2
14y 8223x =
⨯-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒;
②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245
, ∵AN 2+A ′N 2=36, ∴(6﹣
245)2+(2x +18
5
)2=36, 解得:x =
6695-,x =669
5
--(舍去); ③如图2,当AB ′=AA ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =24
5
, ∵AB 2+BB ′2=AN 2+A ′N 2 ∴36+4x 2=(6﹣245)2+(2x +18
5
)2 解得:x =
32
. 综上所述,使得△AA ′B ′成为等腰三角形的x 的值有:0秒、
32秒、6695
-.
【点睛】
本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.
7.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O
于另一点D ,垂足为E .设P 是»AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G . (1)求证:△PAC ∽△PDF ;
(2)若AB =5,¼¼AP BP
=,求PD 的长.
【答案】(1)证明见解析;(2310
【解析】 【分析】
(1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶AD
AC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;
(2)连接OP ,由¶¶AP
BP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =
BC
AC
,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP
GE ED =,然后根据勾股定理即可得到结果. 【详解】
(1)证明:连接AD ,
∵AB ⊥CD ,AB 是⊙O 的直径, ∴¶¶AD
AC =, ∴∠ACD =∠B =∠ADC , ∵∠FPC =∠B , ∴∠ACD =∠FPC , ∴∠APC =∠ACF , ∵∠FAC =∠CAF , ∴△PAC ∽△CAF ;
(2)连接OP ,则OA =OB =OP =
15
22
AB =, ∵¶¶AP
BP =, ∴OP ⊥AB ,∠OPG =∠PDC , ∵AB 是⊙O 的直径,
∴∠ACB=90°,
∵AC=2BC,
∴tan∠CAB=tan∠DCB=BC
AC


1
2 CE BE
AE CE
==,
∴AE=4BE,
∵AE+BE=AB=5,
∴AE=4,BE=1,CE=2,
∴OE=OB﹣BE=2.5﹣1=1.5,
∵∠OPG=∠PDC,∠OGP=∠DGE,
∴△OPG∽△EDG,∴OG OP GE ED
=,

2.5
2 OE GE OP
GE CE
-
==,
∴GE=2
3,OG=
5
6

∴PG=225
OP OG
6
+=,
GD=222 3
DE GE
+=,
∴PD=PG+GD=310
2

【点睛】
本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得
△OPG∽△EDG是解题的关键.
8.如图①,抛物线y=ax2+bx+c经过点A(﹣2,0)、B(4,0)、C(0,3)三点.
(1)试求抛物线的解析式;
(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;
(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式. 【答案】(1)233
384
y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为3
34
y x =
+或3
34
y x =--.
【解析】 【分析】
(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=4
5
PC ,所以5PA+4PC =5(PA+
4
5
PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=
18
5
,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可 【详解】
解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0) ∴y =a (x+2)(x ﹣4) 把点C (0,3)代入得:﹣8a =3 ∴a =﹣
38
∴抛物线解析式为y =﹣
38(x+2)(x ﹣4)=﹣38x 2+34
x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ∴∠CDP =∠COB =90°
∵∠DCP =∠OCB ∴△CDP ∽△COB ∴
PC PD
BC OB
= ∵B (4,0),C (0,3)
∴OB
=4,OC =3,BC ∴PD =
45
PC ∴5PA+4PC =5(PA+
4
5
PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小 ∵A (﹣2,0),OC ⊥AB ,AE ⊥BC ∴S △ABC =12AB•OC =1
2
BC•AE ∴AE =
6318
55
AB OC BC ⨯==n ∴5AE =18
∴5PA+4PC 的最小值为18.
(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,
∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q
∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90° ∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个 此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ∴∠FQT =90°
∵F 为A (﹣2,0)、B (4,0)的中点 ∴F (1,0),FQ =FA =3 ∵T (﹣4,0) ∴TF =5,cos ∠QFT =
3
5
FQ TF = ∵Rt △FGQ 中,cos ∠QFT =
3
5
FG FQ = ∴FG =
35FQ =95
∴x Q =1﹣9455=-,QG 125==
①若点Q 在x 轴上方,则Q (412
55
-,)
设直线l解析式为:y=kx+b

40 412 55 k b
k b
-+=



-+=
⎪⎩
解得:
3
4
3
k
b

=


⎪=

∴直线l:33
4
y x
=+
②若点Q在x轴下方,则Q(
412
55
--,)
∴直线l:33
4
y x
=--
综上所述,直线l的解析式为
3
3
4
y x
=+或
3
3
4
y x
=--
【点睛】
本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q点是关键,同时不要忘记需要分情况讨论
9.如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.
(1)求证:∠EPD=∠EDO;
(2)若PC=3,tan∠PDA=
3
4
,求OE的长.
【答案】(1)见解析;(25.【解析】
【分析】
(1)由切线的性质即可得证.(2)连接OC,利用tan∠PDA=3
4
,可求出CD=2,进而求得
OC=3
2
,再证明△OED∽△DEP,根据相似三角形的性质和勾股定理即可求出OE的长.
【详解】
(1)证明:∵PA,PC与⊙O分别相切于点A,C,∴∠APO=∠CPO, PA⊥AO,
∵DE⊥PO,
∴∠PAO=∠E=90°,
∵∠AOP=∠EOD,
∴∠APO=∠EDO,
∴∠EPD=∠EDO.
(2)连接OC,
∴PA=PC=3,
∵tan∠PDA=3
4

∴在Rt△PAD中,
AD=4,22
PA AD
+,∴CD=PD-PC=5-3=2,
∵tan∠PDA=3
4

∴在Rt△OCD中,
OC=3
2

22
OC CD
+
5
2

∵∠EPD=∠ODE,∠OCP=∠E=90°,∴△OED∽△DEP,
∴PD
DO =
PE
DE
=
DE
OE
=2,
∴DE=2OE,
在Rt△OED中,OE2+DE2=OD2,即5OE2=
2
5
2
⎛⎫

⎝⎭
=
25
4

∴OE=5
2

【点睛】
本题考查了切线的性质;锐角三角函数;勾股定理和相似三角形的判定与性质,充分利用
tan∠PDA=3
4
,得线段的长是解题关键.
10.如图,在▱ABCD中,AC与BD交于点O,AC⊥BC于点C,将△ABC沿AC翻折得到△AEC,连接DE.
(1)求证:四边形ACED是矩形;
(2)若AC=4,BC=3,求sin∠ABD的值.
【答案】(1)证明见解析(2)
613
【解析】
【分析】
(1)根据▱ABCD中,AC⊥BC,而△ABC≌△AEC,不难证明;
(2)依据已知条件,在△ABD或△AOC作垂线AF或OF,求出相应边的长度,即可求出∠ABD的正弦值.
【详解】
(1)证明:∵将△ABC沿AC翻折得到△AEC,
∴BC=CE,AC⊥CE,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴AD=CE,AD∥CE,
∴四边形ACED是平行四边形,
∵AC⊥CE,
∴四边形ACED是矩形.
(2)解:方法一、如图1所示,过点A作AF⊥BD于点F,∵BE=2BC=2×3=6,DE=AC=4,
∴在Rt△BDE中,
2222
BD BE DE64213
=+=+=∵S△BDE=
1 2
×DE•AD=
1
2
AF•BD,
∴AF=613
13
213
=,
∵Rt△ABC中,AB=22
34
+=5,
∴Rt△ABF中,
sin∠ABF=sin∠ABD=
613613
5
AF
AB
==
方法二、如图2所示,过点O作OF⊥AB于点F,
同理可得,OB=
1
13
2
BD=,
∵S△AOB=11
OF AB OA BC
22
⋅=⋅,
∴OF=236
55

=,
∵在Rt△BOF中,
sin∠FBO=
0613
513
F
OB
==,
∴sin∠ABD=613.
【点睛】
本题考查直角三角形翻折变化后所得图形的性质,矩形的判定和性质,平行四边形的性质和解直角三角形求线段的长度,关键是正确添加辅助线和三角形面积的计算公式求出sin ∠ABD .
11.如图,AB 为O e 的直径,C 、D 为O e 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .
(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒. (2)若2ABD BDC ∠=∠. ①求证:CF 是O e 的切线. ②当6BD =,3
tan 4
F =
时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203
CF =. 【解析】 【分析】
(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;
(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;
②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=4
3
BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =3
4
,即可求出CF . 【详解】
解:(1)AB 是O e 的直径,且D 为O e 上一点,
90ADB ∴∠=︒, CE DB ⊥Q , 90DEC ∴∠=︒, //CF AD ∴,
180DAC ACF ∴∠+∠=︒. (2)①如图,连接OC .
OA OC =Q ,12∴∠=∠. 312∠=∠+∠Q , 321∴∠=∠.
42BDC Q ∠=∠,1BDC ∠=∠, 421∴∠=∠, 43∴∠=∠, //OC DB ∴. CE DB ⊥Q , OC CF ∴⊥.
又OC Q 为O e 的半径, CF ∴为O e 的切线.
②由(1)知//CF AD ,
BAD F ∴∠=∠,
3tan tan 4
BAD F ∴∠==, 3
4
BD AD ∴
=. 6BD =Q
4
83
AD BD ∴=
=, 226810AB ∴=+=,5OB OC ==. OC CF Q ⊥, 90OCF ∴∠=︒,
3
tan 4OC F CF ∴==,
解得203
CF =. 【点睛】
本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.
12.如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足为D
(1)求证:PC是⊙O的切线;
(2)求证:PA AD PC CD

(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=3
5
,CF=5,求BE
的长.
【答案】(1)见解析;(2)BE=12.
【解析】
【分析】
(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=弧AG,于是得到
∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到
CF=AF,在R t△AFD中,AF=5,sin∠FAD=3
5
,求得FD=3,AD=4,CD=8,在R t△OCD中,
设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为
⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=3
5,得到
BE
AB

3
5
,于是求得
结论.
【详解】
(1)证明:连接OC,
∵PC切⊙O于点C,∴OC⊥PC,
∴∠PCO=90°,
∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠ABC+∠OAC=90°,∵OC=OA,
∴∠OCA=∠OAC,
∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,
∵AB⊥CG,
∴弧AC=弧AG,
∴∠ACF=∠ABC,
∵∠PCA=∠ABC,
∴∠ACF=∠CAF,
∴CF=AF,
∵CF=5,
∴AF=5,
∵AE∥PC,
∴∠FAD=∠P,
∵sin∠P=3
5

∴sin∠FAD=3
5

在R t△AFD中,AF=5,sin∠FAD=3
5

∴FD=3,AD=4,∴CD=8,
在R t△OCD中,设OC=r,
∴r2=(r﹣4)2+82,
∴r=10,
∴AB=2r=20,
∵AB为⊙O的直径,
∴∠AEB=90°,在R t△ABE中,
∵sin∠EAD=3
5,∴
3
5
BE
AB

∵AB=20,
∴BE=12.
【点睛】
本题考查切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,解题关键是连接OC构造直角三角形.
13.如图,直线与轴交于点,与轴交于点,抛物线经过点,.点为轴上一动点,过点且垂直于轴的直线分别交直线及抛物线于点,.
(1)填空:点的坐标为,抛物线的解析式为;
(2)当点在线段上运动时(不与点,重合),
①当为何值时,线段最大值,并求出的最大值;
②求出使为直角三角形时的值;
(3)若抛物线上有且只有三个点到直线的距离是,请直接写出此时由点,,,构成的四边形的面积.
【答案】(1),;
(2)①当时,有最大值是3;②使为直角三角形时的值为3或;(3)点,,,构成的四边形的面积为:6或或.
【解析】
【分析】
(1)把点A坐标代入直线表达式y=,求出a=−3,把点A、B的坐标代入二次函数表达式,即可求解;
(2)①设:点P(m,),N(m,)求出PN值的表达式,即可求
解;②分∠BNP=90°、∠NBP=90°、∠BPN=90°三种情况,求解即可;
(3)若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB上方的交点有两个,分别求解即可.
【详解】
解:(1)把点坐标代入直线表达式,
解得:,则:直线表达式为:,令,则:,
则点坐标为,
将点的坐标代入二次函数表达式得:,
把点的坐标代入二次函数表达式得:,
解得:,
故:抛物线的解析式为:,
故:答案为:,;
(2)①∵在线段上,且轴,
∴点,,
∴,
∵,
∴抛物线开口向下,
∴当时,有最大值是3,
②当时,点的纵坐标为-3,
把代入抛物线的表达式得:,解得:或0(舍去),∴;
当时,∵,两直线垂直,其值相乘为-1,
设:直线的表达式为:,
把点的坐标代入上式,解得:,则:直线的表达式为:,
将上式与抛物线的表达式联立并解得:或0(舍去),
当时,不合题意舍去,
故:使为直角三角形时的值为3或;
(3)∵,,
在中,,则:,,
∵轴,
∴,
若抛物线上有且只有三个点到直线的距离是,
则只能出现:在直线下方抛物线与过点的直线与抛物线有一个交点,在直线上方的交点有两个.
当过点的直线与抛物线有一个交点,
点的坐标为,设:点坐标为:,
则:,过点作的平行线,
则点所在的直线表达式为:,将点坐标代入,
解得:过点直线表达式为:,
将拋物线的表达式与上式联立并整理得:,

将代入上式并整理得:,
解得:,则点的坐标为,
则:点坐标为,则:,
∵,,∴四边形为平行四边形,则点到直线的距离等于点到直线的距离,
即:过点与平行的直线与抛物线的交点为另外两个点,即:、,
直线的表达式为:,将该表达式与二次函数表达式联立并整理得:
,解得:,
则点、的横坐标分别为,,
作交直线于点,
则,
作轴,交轴于点,则:,,

则:,
同理:,
故:点,,,构成的四边形的面积为:6或或.
【点睛】
本题考查的是二次函数知识的综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3)中确定点N的位置是本题的难点,核心是通过△=0,确定图中N点的坐标.
14.如图,正方形ABCD的边长为2+1,对角线AC、BD相交于点O,AE平分∠BAC分别交BC、BD于E、F,
(1)求证:△ABF∽△ACE;
(2)求tan∠BAE的值;
(3)在线段AC上找一点P,使得PE+PF最小,求出最小值.
【答案】(1)证明见解析;(2)tan∠EAB2﹣1;(3)PE+PF的最小值为
22
【解析】
【分析】
(1)根据两角对应相等的两个三角形相似判断即可;
(2)如图1中,作EH⊥AC于H.首先证明BE=EH=HC,设BE=EH=HC=x,构建方程求出x 即可解决问题;
(3)如图2中,作点F关于直线AC的对称点H,连接EH交AC于点P,连接PF,此时PF+PE的值最小,最小值为线段EH的长;
【详解】
(1)证明:∵四边形ABCD是正方形,
∴∠ACE=∠ABF=∠CAB=45°,
∵AE平分∠CAB,
∴∠EAC=∠BAF=22.5°,
∴△ABF∽△ACE.
(2)解:如图1中,作EH⊥AC于H.
∵EA 平分∠CAB ,EH ⊥AC ,EB ⊥AB , ∴BE =EB ,
∵∠HCE =45°,∠CHE =90°, ∴∠HCE =∠HEC =45°, ∴HC =EH ,
∴BE =EH =HC ,设BE =HE =HC =x ,则EC =2x , ∵BC =2+1, ∴x+x =2+1, ∴x =1,
在Rt △ABE 中,∵∠ABE =90°, ∴tan ∠EAB =
221
BE AB ==+﹣1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.
作EM ⊥BD 于M .BM =EM =
2
2
, ∵AC 22AB BC +2, ∴OA =OC =OB =
12AC =222
+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB =222+ •2﹣1)=2
2
, ∴HM =OH+OM 22
+,
在Rt △EHM 中,EH =22
22222EM HM 22⎛⎫⎛⎫
+++
⎪ ⎪ ⎪ ⎪
⎝⎭⎝⎭
= =22+.. ∴PE+PF 的最小值为22+.. 【点睛】
本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.
15.已知:在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,BE :AB=3:5,若CE= 2 ,cos ∠ACD=
4
5
,求tan ∠AEC 的值及CD 的长.
【答案】tan ∠AEC=3, CD=12
125
【解析】
解:在RT △ACD 与RT △ABC 中
∵∠ABC+∠CAD=90°, ∠ACD+∠CAD=90°∴∠ABC=∠ACD, ∴cos ∠ABC=cos ∠ACD=
45
在RT △ABC 中,
4
5
BC AB = 令BC=4k,AB=5k 则AC=3k 由
3
5
BE AB = ,BE=3k 则CE=k,且2 则2,2 ∴RT △ACE 中,tan ∠AEC=AC
EC
=3 ∵RT △ACD 中cos ∠ACD=
45CD AC = ,,12
125。

相关文档
最新文档