第3章一元一次方程检测题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程整章综合练习题
一、选择题(每小题3分,共30分)
1.下列四个式子中,是方程的是( ).(A )3+2 = 5 (B )1x = (C )23x - (D )222a
ab b ++ 2.代数式13
x x --的值等于1时,x 的值是( )(A )3 (B )1 (C )-3 (D )-1 3.已知代数式87x -与62x -的值互为相反数,那么x 的值等于( ).(A )-1310 (B )-16 (C )1310
(D )16 4.根据下列条件,能列出方程的是( ).(A )一个数的2倍比小3 (B )a 与1的差的14
(C )甲数的3倍与乙数的12
的和(D )a 与b 的和的35 5.若a b ,互为相反数(0a
≠),则0ax b +=的根是( ).(A )1 (B )-1 (C )1或-1 (D )任意数 6.当3x =时,代数式23510x ax -+的值为7,则a 等于( )(A )2 (B )-2 (C )1 (D )-1
7.一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试卷,得了70分,他一共做对了( ).
(A )17道 (B )18道 (C )19道 (D )20道
8.某商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件赢利25%,另一件亏本25%,在这次买卖中,该商贩( ).(A )不赔不赚 (B )赚9元 (C )赔18元 (D )赚18元
9. (2005,深圳)一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是
(A )106元 (B )105元 (C )118元 (D )108元
10.(2005,常德)右边给出的是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程
思想来研究,发现这三个数的和不可能是( )(A )69 (B )54 (C )27 (D )40
二、填空题(每小题3分,共30分) 11.已知54
123m x -+=是关于x 的一元一次方程,那么m =________. 12.方程312123x x +-=的标准形式为_______________. 13.已知|36|(3)0x y -++=,则32x y +的值是__________.
14.当x
=______时,28x +的值等于-14的倒数. 15.方程423
x m x +=-与方程662x -=-的解一样,则m =________. 16. 某商品的进价是500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打____折出售此商品.
17.某班学生为希望工程共捐款131元,比每人平均2元还多35元,.设这个班的学生有x 人,根据题意,列方程为_____________.
18.若1x =是方程20x a +=的根,则a =___________.19. (2005,湖州)有一个密码系统,
→
10时,则输入的x=________。
20. (2005,绵阳)我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费. 如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为________立方米 .
三、解答题(每小题12分,共60分)
21.解方程:
(1)21101
1
412
x x
x
++
-=-;(2)2(21)2(1)3(3)
x x x
-=+++.
22. 某牛奶加工厂现有鲜奶9吨.若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨.受人员限制,两种加工方式不可同时进行.受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:
方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.
你认为选择哪种方案获利最多,为什么?
23. 某七年级学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/小时,运货汽车的速度为35千米/小时,?”(涂黑部分表示补墨水覆盖的若干文字),请将这道作业题补充完整,并列方程解答.
24. 有一个只许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天,王老师到达道口时,发现由于拥挤,每分钟只能3人通过道口,此时,自己前面还有36个人等待通过(假定先到的先过,王老师过道口的时间忽略不计),通过道口后,还需7分钟到达学校.(1)此时,若绕道而行,要15分钟到达学校,从节省时考虑,王老师应选择绕道去学校,还是选择通过拥挤的道口去学校?
(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维持秩序期间,每分钟仍有3人通过道口),结果王老师比拥挤的情况下提前了6分钟通过道口,问维持秩序的时间是多少?
参考答案:
一、1~10 BBDAA ACCDD
二、11.1;12.550x +=;13.0;14.-6;15.-21;16.七;17.235131x +=;18.-2;19.4;20.12.
三、21.(1)2x =;
(2)13x =-. 22. 选择方案一:总利润4×2000+(9-4) ×500=10500元.
方案二:设4天内加工酸奶x 吨,加工奶片(9)x -吨.
9431
x x -+=.解得7.5x =.9-x = 2.5. ∴总利润=1200×7.5+2000×1.5=12000元.∴选择第二种方案获利多.
23..补充部分:若两车分别从两地同时开出,相向而行,经几小时两车相遇?
解:设经x 小时两车相遇,依题可得45x +35x =40,∴x =
21. 答:经半小时两车相遇.
说明:本题要求对问题的结论进行补充设计,只要符合给定的数据特征和实际意义,同学们可自由发挥,故问题具有开放探索性,但因是考试题,应以简单、明了为原则.
24. 解:(1)
∵ 3
36+7=19>15, ∴ 王老师应选择绕道而行去学校.
(2)设维持秩序时间为t
则336-(t +9336t -)=6
解之得t =3(分).
答:维持好秩序的时间是3分钟.
25. 略.