人教版七年级数学下册全册教案 第九章 不等式与不等式组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章不等式与不等式组教材内容
本章的主要内容包括:一元一次不等式(组)及其相关概念,不等式的性质,一元一次不等式(组)的解法及解集的几何表示,利用一元一次不等式分析、解决实际问题。
教材以实际问题为例引出不等式及其解集的概念,然后类比一元一次方程,引出一元一次不等式的概念。
为进一步讨论不等式的解法,接着讨论了不等式的性质,并运用它们解简单的不等式。
在此基础上,教材从一个选择购物商店问题入手,对列、解一元一次不等式作了进一步的讨论,并归纳一元一次不等式与一元一次方程的异同及应注意的问题。
最后,结合三角形三条边的大小关系,引进了一元一次不等式组及其解集,并讨论了一元一次不等式组的解法。
教学目标
〔知识与技能〕1、了解一元一次不等式(组)及其相关概念;2、理解不等式的性质;3、掌握一元一次不等式(组)的解法并会在数轴上表示解集;4、学会应用一元一次不等式(组)解决有关的实际问题。
〔过程与方法〕1、通过观察、对比和归纳,探索不等式的性质,在利用它解一元一次不等式(组)的过程中,体会其中蕴涵的化归思想;2、经历“把实际问题抽象为一元一次不等式”的过程,体会一元一次不等式(组)是刻画现实世界中不等关糸的一种有效的数学模型.
〔情感、态度与价值观〕1、通过类比一元一次方程的解法从而更
好地去掌握一元一次不等式的解法,树立辩证唯物主义的思想方法;2、在利用一元一次不等式(组)解决问题的过程中,感受数学的应用价值,提高分析问题、解决问题的能力。
重点难点
一元一次不等式(组)的解法及应用是重点;一元一次不等式(组)的解集和应用一元一次不等式(组)解决实际问题是难点。
课时分配
9.1不等式………………………………………………4课时
9.2实际问题与一元一次不等式…………………………3课时
9.3一元一次不等式组……………………………………2课时
本章小结…………………………………………………2课时
9.1.1不等式及其解集
[教学目标]1、知识与技能:感知生活中的不等式关系,了解不
等式的意义,初步体会不等式是研究量与量之间关系
的重要模型之一;理解不等式的解与解集的意义,了
解不等式解集的数轴表示。
2、过程与方法:经历由具体实例建立不等式模型的过
程,进一步发展学生的符号感与数学化能力。
通过闲
事情境学会“建模”,感受同类之间的大小比较方法,
在问题解决中发展学生归纳、猜想的能力。
3、情感、态度与价值观:进一步培养学生的数学思维和
参与数学活动的自信心、合作交流意识,培养学生对
问题实质的认识与理解以及感知事物变化规律的重
要模型和最优化思想。
[重点难点] 不等式、一元一次不等式、不等式的解、解集的概念
是重点;不等式解集的理解与表示是难点。
[教学方法] 本节课采用“生动探索——引导发现——讲评点拨”
的教学方法
[教学准备]投影仪,刻度尺
[教学过程]
一、情景导入[投影1]
一辆匀速行驶的汽车在11:20时距离A地50千米,要在12:00以前驶过A地,车速应该具备什么条件?
题目中有等量关系吗?
没有。
那是什么关系呢?
从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶
50千米所用的时间不到2/3小时,即汽车驶过A地的时间小于2/3小时。
从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即汽车2/3小时走的路程大于50千米。
这些是不等关系。
二、不等式的概念
若设车速为每小时x千米,你能用一个式子表示上面的关系吗?
50/x<2/3 ①或2/3x>5 ②
像①②这样用“>”或“<”号表示大小关系的式子,是不等式。
我们还见过像a+2≠a这样用“≠”号表示的式子,也是不等式。
“>”、“<”、“≠”叫做不等号,不等号也可以写成“≤”、“≥”的形式。
总之,用不等号连接起来的式子叫做不等式。
思考1:下列式子中哪些是不等式?[投影2]
(1)a+b=b+a (2)-3>-5 (3)x≠l
(4)x十3>6 (5) 2m< n (6)2x-3
我们看到有些不等式不含未知数,有些不等式含有未知数。
类似于一元一次方程,含有一个未知数,并且未知数的次数是1的不等式,叫做一元一次不等式。
注意:像①中分母含有未知数的不等式不是一元一次不等式,这一点与一元一次方程类似。
三、不等式的解和解集
思考2:[投影3]判断下列数中哪些能使不等式2/3x > 50成立: 76,73,79,80,74. 9,75.1,90,60
76, 79,80, 75.1,90能使不等式2/3x > 50成立。
我们把能使不等式成立的未知数的值,叫不等式的解.
我们看到不等式的解不是一个, 你还能找出这个不等式的其他解吗?它的解到底有多少个?
如77、81、101等等,所有大于75的数都是这个不等式的解,它的解有无数个。
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。
如所有大于75的数组成不等式2/3x > 50的解集, 写作x >7 5,这个解集可以用数轴来表示。
求不等式的解集的过程叫做解不等式.
四、例题
例[投影4]在数轴上表示下列不等式的解集:
(1)x>-1;(2)x ≥-1;(3)x<-1;(4)x ≤-1
解:
注意:1、实心点表示包括这个点,空心点表示不包括这个点;2、步
骤:画数轴,定界点,走方向。
(1) (2)
(4) (3) o 75
五、课堂练习
课本123面1、2、3题。
六、课堂小结
1、什么是不等式?什么是一元一次不等式?
2、什么是不等式的解?什么是不等式的解集?
3、怎样表示不等式的解集?
七、作业:
课本128面1、2、3、8。
9.1.2不等式的性质(1)
[教学目标]1、知识与技能:理解不等式的性质。
2、过程与方法:通过类比等式的性质,探索不等的性
质,体会不等式与等式的异同,初步掌握类比的
思想方法。
3、情感、态度与价值观:认识通过观察、实验、类比可以获得数学
结论,体验数学活动充满着探索性和创造性[重点难点]不等式的性质是重点;运用不等式的性质进行判断是
难点。
[教学方法]本节课采用“类比——实验——交流”的教学方法,让学生在充分讨论、交流中掌握不等式的性质
[教学准备]投影仪
[教学过程]
一、问题导入
对于比较简单的不等式,我们可以直接想出它们的解集,但是对于比较复杂的不等式,要直接想出解集来就困难了。
因些,有必要讨论怎样解不等式。
和学习一元一次方程先讨论等式的性质一样,我们先来探索不等式有什么性质。
二、不等式的性质
做一做:用“>”、“<”填空:[投影1]
(1)5>3 , 5+23+2, 5-23-2;
(2)-1<3, -1+23+2, -1-33-3;
(3)6>2, 6×52×5, 6×(-5)2×(-5);
(4)-2<3, (-2)×63×6, (-2)×(-6)3×(-6)。
观察(1)(2),类比等式的性质,你发现了什么规律?
性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
即如果a>b,那么a±c>b±c.
观察(3),类比等式的性质,你发现了什么规律?
性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变.
即如果a>b,c>0,那么ac>bc(或a/c>b/c).
观察(4),类比等式的性质,你发现了什么规律?
性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变。
即如果a>b,c<0,那么ac<bc(或a/c<b/c).
思考:①比较上面的性质2与性质3,看看它们有什么区别?
性质2的两边乘或除的是一个正数,不等号的方向没有变;而性质3的两边乘或除的是一个负数,不等号的方向改变了。
②比较等式的性质与不等式的性质,它们有什么异同?
等式的性质与不等式的性质1、2,除了一个说“等式仍然成立”,一个说“不等号方向不变”的说法不同外,其余都一样;而不等式的性质3说“不等号方向改变”,这与等式的性质说法不同。
三、例题
例1 [投影2]利用不等式的性质填“>”, “<” :
(1)若a>b,则2a2b;
(2)若-2y<10,则y -5;
(3)若a<b,c>0,则ac-1bc-1;
(4)若a>b,c<0,则ac+1bc+1。
分析:不等式的两边发生了怎样的变化?填“>”或“<”的依据是什么?
解:(1)>,(2)<,(3)>,(4)<。
四、课堂练习
1、判断正误:[投影3]
(1)∵a < b ∴ a-b < b-b
(2)∵a < b ∴a/3<b/3
(3)∵a < b ∴-2a < -2b
(4)∵-2a > 0 ∴ a < 0
2、根据下列已知条件,说出a与b的不等关系,并说明依据不等式哪一条性质。
[投影4]
(1)a-3 > b-3 (2)a/3<b/3
(3)-4a > -4b (4)1-1/2a<1-1/2b
3、填空[投影5]
(1)∵2a > 3a∴ a是数
(2)∵a/3<a/2 ∴ a是数
(3)∵ax < a且 x > 1 ∴ a是数
五、课堂小结不等式的三个基本性质是什么?如何用数学式子表
示?
六、作业:
课本128面4、5、7。
9.1.2 不等式的性质(二)
[教学目标]1、知识与技能:会解简单的一元一次不等式,并能
在数轴上表示出解集。
2、过程与方法:在类比中得到一元一次不等式的解法,
充分应用数轴这个直观工具来理解一元一次不等
式的解集。
3、情感、态度与价值观:培养学生的数感,渗透数形
结合的思想.
[重点难点]一元一次不等式的解法是重点;不等式性质3在解不等
式中的运用是难点。
[教学方法]本节课采用“活动——探究——交流——建够”的教
学方法。
[教学准备]投影仪,刻度尺
[教学过程]
一、复习导入
[投影1]不等式的性质有哪些?不等式的性质与等式的性质有什么不同?
和利用等式的性质可以解方程一样,利用不等式的性质可以解不等式。
二、不等式的解法
例1 解下列不等式,并在数轴上表示解集:[投影2]
(1) x-7>26 (2)3x < 2x+1
(3)2/3x ≥ 50 (4)-4x≤3
分析:解不等式最终要变成什么形式呢?
就是要使不等式逐步化为x >a 或x <a 的形式。
解:(1) x -7>26
根据等式的性质1,得x -7+7>26+7
(2)3x < 2x +1
根据等式的性质1,得3x-2x < 2x +1-2x
(3)2/3x ≥ 50
根据等式的性质2,得x ≥ 50×3/2
∴
(4)-4x ≤3
≤-3/4。
注意:运用不等式的性质1,实际上是方程中的“移项”。
例2 解不等式:1/2x-1≤2/3(2x+1) [投影3]
分析:我们知道,解不等式的依据是不等式的性质,而不等式的性质与等式的性质类似,因此,解一元一次不等式的步骤与解一元一次方程的步骤基本相同。
解:去分母,得 3x-6≤4(2x+1)
去括号,得 3x-6≤8x+4
移项,得 3x-8x≤4+6
合并,得-5x≤10
系数化为1,得 x≥-2
归纳:解一元一次不等式的步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)糸数化为1。
四、课堂练习
课本127面练习1题;134面练习1题。
五、课堂小结提问:
1、本节课你的收获是什么?
2、怎样解不等式?
六、作业:
课本134面1题。
9.1.2 不等式的性质(三)
[教学目标]1、知识与技能:运用不等式解决有关的问题,初步
认识一元一次不等式的应用价值。
2、过程与方法:经历由具体实例建立不等式模型的
过程,进一步发展学生的符号感与数学能力。
3、情感、态度与价值观:开展研究性学习,使学生初步体会学习
不等式基本性质的价值,发展学生分析、解决问
题的能力。
[重点难点] 不等式的运用是重点;寻找不等关系是难点。
[教学方法] 本节课采用师生互动、生生互动的教学方法。
[教学准备]投影仪,刻度尺
[教学过程]
一、复习新课
上节课我们学习了不等式的解法,请问:解不等式的依据是什么?解不等式的步骤是什么?
有很多问题与不等式相联系,需要运用不等式来解决。
二、不等式的初步应用
例1[投影1]三角形任意两边之差与第三边有着怎样的大小关系? 分析:三角形任意两边之和与第三边有着怎样的大小关系?
解:设 a 、b 、c 为任意一个三角形的三条边的长,则
a+b >c, b+c >a, c+a >b.
移项,得
a >c-b,
b >a-c,
c >b-a.
上面的式子说明了什么?
a b
三角形中任意两边之差小于第三边。
归纳:三角形任意两边之和大于第三边,任意两边之差小于第三边。
例2 [投影2] 已知x=3-2a是不等式1/5(x-3)<x-3/5的解,求a 的取值范围。
分析:由不等式解的意义,你能知道什么?
解:依题意,得
1/5[(3-2a) -3]<(3-2a) -3/5
1/5·(-2a)<12/5-2a
-2a<12-10a
8a<12
∴a<3/2
例3[投影3] 某长方体形状的容器长5 cm,宽3 cm,高10 cm.容器内原有水的高度为3 cm,现准备继续向它注水.用V(单位: cm3)表示新注入水的体积,写出V的取值范围。
分析:新注入水的体积应满足什么条件?
新注入水的体积与原有水的体积的和不能超过容器的体积。
解:依题意,得
V+3×5×3≤3×5×10
∴V≤105。
思考:这是问题的答案吗?为什么?
不是,因为新注入水的体积不能是负数,所以V≥0。
∴ 0≤V≤105
注意:解答实际问题时,一定要考虑问题的实际意义。
三、课堂练习
1、课本127面练习2;
2、补充题:[投影4]小华准备用21元钱买笔和笔记本,已知每支笔3元,每本笔记本2.2元,她买了2本笔记本,请问她最多还能买几支笔?
四、作业:
课本134面2、3;128面9;129面10。
9.2 实际问题与一元一次不等式(一)
[教学目标]1、知识与技能:学会从实际问题中抽象出不等式模
型,会用一元一次不等式解决实际问题。
2、过程与方法:经历建立不等式模型的过程之后,同
样关注其求解过程,解的准确性、合理性。
3、情感、态度与价值观:鼓励学生自主探索与合作交流,关注学生多
角度的思考,发展思维策略,体会不等式在实际生
活中的应用价值。
[重点难点]用一元一次不等式解决实际问题是重点;找不等关系是难点。
[教学方法]本节课采用师生交流、共同探讨的教学方法。
[教学准备]投影仪
[教学过程]
一、导入新课
我们知道,在生产和生活中存在大量的等量关系,与此同时,我们也看到在生产和生活中存在着大量的不等关系,解决这些问题,用不等式比较方便。
二、例题
例1[投影1] 某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题?
分析:“超过90分”是什么意思?本题的不等关系是什么?
“超过90分”就是大于90分;不等关系是:答对的得分-答错或不答的扣分>90。
解:设小明答对x道题,则他答错或不答的题数为20-x。
根据他的得分要超过90,得
10x-5(20-x) >90
10x-100+5x >90
15x >90
∴x >38/3
思考:这是本题的答案吗?为什么?
这不是本题的答案。
因为x是正整数且不能大于20,所以小明至少要答对13题。
例2[投影2] 2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%,如果到2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?
分析:2002年北京空气质量良好的天数是多少?用x表示2008年增加的空气质量良好的天数,则2008年北京空气质量良好的天数是多少?本题的不等关系是什么?
2002年北京空气质量良好的天数是365×55%;2008年北京空气质量良好的天数是x+365×55%;不等关系是:2008年北京空气质量良好的天数÷366 >70%.
解:设2008年北京空气质量良好的天数比2002年增加x天,依题意,得
(x+365×55%)/366 >70%
去分母,得
x+200.5 >256.2
移项,合并同类项,得 x>55.45
思考:这是本题的答案吗?为什么?本题的答案是什么?
不是。
因为x为正整数。
∴x≥56
答:2008年北京空气质量良好的天数至少比2002年增加56天。
注意:用不等式解应用问题时,要考虑问题的实际意义。
例1与例2中的未知数都应是正整数。
三、课堂练习
课本134练习2、3。
四、课堂小结
用一元一次不等式解决实际问题与用一元一次方程解决实际问题一样,要将实际问题通过列一元一次不等式转化为数学问题,然后通过解决数学问题来解决实际问题。
五、作业:
课本134面3(1)、(3);129面12;135面5、7题。
9.2 实际问题与一元一次不等式(二)[教学目标] 1、知识与技能:会从实际问题中抽象出不等式模型,进
一步学会用一元一次不等式解决实际问题。
2、过程与方法:经历建立不等式模型的过程之后,同样关
注其求解过程,解的准确性、合理性。
3、情感、态度与价值观:关注学生在建立不等式模型过程中的表
现,体会利用建立不等式的实质、不等式模型的实际价值。
[重点难点]用一元一次不等式解决实际问题是重点;找不等关系是难点。
[教学方法]本节课采用师生交流、共同探讨的教学方法。
[教学准备]投影仪
[教学过程]
一、导入新课
上节课我们讨论了用不等式解决实际问题,这节课我们继续讨论这个问题。
二、例题
例[投影1]甲、乙两个商场以同样的价格出售同样的商品,同时又各自推出不同的优惠措施.甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90%收费;乙商场则是:累计购买50元商品后,再买的商品按原价的95%收费.顾客选择哪个商店购物能获得更多的优惠?
分析:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑.你认为应分哪几种情况考虑?
分三种情况考虑:①累计购物不超过50元;②累计购物超过50元但不超过100元;③累计购物超过100元。
(1)如果累计购物不超过50元,则在两店购物花费有区别吗?为什么?
没有区别。
因为两家商店都没有优惠。
(2)如果累计购物超过50元但不超过100元,则在哪家商店购物花费小?为什么?
在乙商店购物花费小。
因为乙商店有优惠,而甲商店没有优惠。
(3)如果累计购物超过100元,那么在哪家商店购物花费小?
因为两家商店都有优惠,所以要分三种情况考虑:
设累计购物x元(x>100),则在甲商店购物花费多少元?在乙商店购物花费多少元?
在甲商店购物花费:100+0.9(x-100)元;
在乙商店购物花费:50+0.95(x-50)。
①若在甲商场购物花费小,则
50+0.95(x-50)>100+0.9(x-100)
解之,得 x>150
②若在乙商场购物花费小,则
50+0.95(x-50)<100+0.9(x-100)
解之,得 x<150
③若在两家商场购物花费相同。
50+0.95(x-50)=100+0.9(x-100)
解之,得 x=150
答:如果累计购物不超过50元,则在两店购物花费一样多。
如果累计购物超过50元但不超过100元,则在乙商店购物花费小。
若累计
购物多于150元,在甲商场购物花费小;若累计购物等于150元,在两商场购物花费一样多;若累计购物多于100元少于150元,在乙商场购物花费小。
注意:问题比较复杂时,要考虑分类解答。
分类要做到不重不漏。
三、课堂练习
[投影2]某校两名教师拟带若干名学生去旅游,联系了两家标价相同的旅游公司.经洽谈,甲公司的优惠条件是一名教师全额收费,其余师生按7. 5折收费;乙公司的优惠条件是全体师生都按8折收费.若设标价为a元,那么哪个公司更优惠?
四、课堂小结
1、列不等式解应用题与列方程解应用题的步骤相同,所不同的是前者是不等关系,列出的是不等式,后者相等关系,列出的是方程。
2、列不等式解应用题的关键是找出不等关系.找不等关系要抓住像“大于”、“不小于”、“超过”、“不足”、“至少”等等表示不等关系的词语。
作业:
课本134面3(2)(4);135面6、8、9题。
9.3 一元一次不等式组(一)
[教学目标]1、知识与技能:了解一元一次不等式组的概念,理解一元一次不等式组解集的意义;掌握一元一次不等式
组的解法。
2、过程与方法:经历通过具体问题抽象出不等式组的
过程,感知利用一元一次不等式解集的数轴表示求不等
式组的解和解集的方法。
3、情感、态度与价值观:能参与数学活动,提高合作交流的意识,
建立思考,认识知识发展的价值。
[重点难点]一元一次不等式组的解法是重点;一元一次不等式组的解集的表示是难点。
[教学方法]学生活动与探究为主,教师点拨
[教学准备]投影仪、刻度尺
[教学过程]
一、情景导入
看下面的问题:[投影1]
现有两根木条a和b,a长10 cm,b长3 cm.如果再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?
根据“三角形两边之和大于第三边,两边之差小于第三边”可知:
c>10-3且c<10+3
这就是说,第三边c要满足两个不等关系。
那么c的长度究竟在什么范围呢?今天我们就来解决这个问题。
二、一元一次不等式组的概念和解集
把几个一元一次不等式合起来,组成一个一元一次不等式组。
记作
⎩⎨
⎧+<->.
310,
310x x 类比方程组的解,我们把几个不等式组的解集的公共部分,叫做不等式组的解集。
解不等式就是求它的解集。
(1)⎩⎨
⎧>>24
x x (2)⎩⎨
⎧><24
x x (3)⎩⎨
⎧<>4
x x
(4)⎩⎨
⎧<<2
x x
上面的表示可以用口诀来概括:大大取大,小小取小,大小小大中间找,大大小小不用找。
前面不等式组的解集是7<x <13。
注意:如果不等号中带有等号,空心圆就要变成实心圆。
三、解不等式组
例 解下列不等式组:[投影2]
(1)⎩⎨⎧-<++>-)2(148)
1(112x x x x (2)⎪⎩⎪⎨⎧-<-++≥+)2(213
5
2)
1(1132x x x x 分析:你认为解不等式组应该分哪些步骤?①求出各个不等式的
解集;②找出各个不等式的解集的公共部分(利用数轴)即解集.
解:(1)由(1)得x >2
x <4
无 解
2<x <4 x >4
由(2)得x>3
∴x>3
(2)由(1)得x>8
由(2)得2x+5-3<6-3x
x<4/5
∴原不等式无解。
四、课堂练习
课本140面练习1。
五、课堂小结
1、一元一次不等式组的概念和解集。
2、不等式解集的表示。
3、解不等式组。
六、作业:
课本141面1、2。
9.3 一元一次不等式组(二)
〔教学目标〕1、知识与技能:进一步熟练一元一次不等式组的
解法,会用一元一次不等式组解决有关的实际问题。
2、过程与方法:使学生经历利用不等式组解实际问
题的建模过程,掌握分析问题和解决问题的方法。
3、情感、态度与价值观:能积极主动地参与讨论,在建模中感
受数学知识在现实世界中的应用价值。
〔重点难点〕用一元一次不等式组解决有关的实际问题是重点;正确分析实际问题中的不等关系是难点。
[教学方法] 本节课采用师生互动、合作交流的教学方法。
[教学准备]投影仪 〔教学过程〕 一、导入新课
前面我们用一元一次不等式解决了一些满足一个不等关系的实际问题,事实上,有很多问题满足两个不等关系,这就要用到一元一次不等式组。
下面我们就利用一元一次不等式组解决有关的实际问题。
二、例题
例1[投影1] 3 个小组计划在10天内生产500件产品(每天产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务。
每个小组原先每天生产多少件产品?
分析:“不能完成任务”的数量含义是什么?“提前完成任务”的数量含义是什么?
解:设每个小组原先每天生产件x 产品。
依题意,得
310500,(1)
310(1)500.(2)
x x ⨯⎧⎨
⨯+⎩ 由(1)得x <23
16.
由(2)得x >23
15. 不等式的解集为22331516.
x 思考:到此你能知道每个小组原先每天生产多少件产品吗?为什么?
每个小组原先每天生产16件产品,因为产品的数量是整数,所以
x =16.
答:每个小组原先每天生产16件产品.
例2[投影2] 将若干只鸡放入若干个笼,若每4个放一笼,则有1只鸡无笼可放;若每5个放一笼,则有1笼无鸡可放,那么至少有多少只鸡,多少个笼?
分析:鸡的数量怎么求? 4×笼的数量+1.
你怎样理解“有一笼无鸡可放”?
除去无鸡可放的一笼,剩下的最后一笼可能不足5只鸡,也可能恰好有5只鸡.
由此可以得到不等关系:
5×(笼的数量-2)<4×笼的数量+1≤5×(笼的数量-1). 解:设有y 个笼,根据题意,得
5(y-2)<4y+1≤5(y-1) 即 5(2)41,
415(1).
y y y y -+⎧⎨
+≤-⎩
解之,得 6≤y<11.
思考:笼的个数y应满足什么条件?
y是整数,且取范围内的最小值。
∴y=6
4y+1=4×6+=25.
答:至少有25只鸡,6个笼。
三、课堂练习
课本140面2题。
四、课堂小结
1、列一元一次不等式组解应用题与列一元一次不等式解应用题的思想和步骤是一样的,不同的是前者列出的是两个不等式,而后者列出的是一个不等式。
2、列不等式(组)解应用题的关键是找出不等关系.有时题目中含有“大于”、“不小于”、“超过”、“不足”、“至少”等等表示不等关系的词语,有时却没有这样的词语。
这时,我们就要抓住具有不等意义的句子加以分析,上面的两例就是这样,要细心地体会。
作业:
课本142面8;141面4、5.
第九章小结
一、知识结构
二、回顾与思考
1、什么是不等式?什么是一元一次不等式?什么是一元一次不等式组?
2、一元一次不等式的解法与一元一次方程的解法有什么异同?什么是一元一次不等式的解集?
3、什么是一元一次不等式组的解集?怎样解一元一次不等式组?
4、运用不等式解决实际问题与运用一元一次方程解决实际问题有什么异同?
三、例题导引
例1 若不等式组2113
x a
x <⎧⎪-⎨>⎪⎩无解,求a 的取值范围.
例2 已知方程组2,
456 3.x y m x y m +=+⎧⎨+=+⎩
的解是正数,求m 的取值范围。
例3 某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆,经了解甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李。
(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;
(2)如果甲、乙两种汽车每辆的租车费用分别为2000元,1800元,请你选择最省钱的一种方案。