一种雷达辐射源智能个体识别的方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一种雷达辐射源智能个体识别的方法
陆剑雄;陈旗;满欣
【期刊名称】《电光与控制》
【年(卷),期】2024(31)4
【摘要】针对使用传统的卷积神经网络及低信噪比环境下雷达辐射源智能个体识别研究中识别性能不够的问题,提出了一种基于短时傅里叶变换(STFT)和EfficientNet的雷达辐射源个体识别方法。

首先对雷达信号进行短时傅里叶变换,提取时频特征,然后利用EfficientNet中多个MBconv模块对不同时频特征图像的叠加,挖掘出信号图像隐含的更加复杂和抽象的深层次时频特征,包括信号强度的分布、时频模式、周期性变化等,从而完成个体分类识别。

EfficientNet可以同时改变网络深度、宽度、图像分辨率3个参数,解决了梯度消失、梯度爆炸等问题。

实验结果表明,基于STFT和EfficientNet的雷达辐射源智能个体识别的方法,相比于传统卷积神经网络在低信噪比环境下具有更好的识别性能。

【总页数】6页(P115-120)
【作者】陆剑雄;陈旗;满欣
【作者单位】海军工程大学电子工程学院
【正文语种】中文
【中图分类】TN974
【相关文献】
1.一种深度强化学习的雷达辐射源个体识别方法
2.一种基于随机森林的雷达辐射源个体识别方法
3.基于KNN和雷达辐射源脉间参数的舰船目标个体识别方法
4.基于多源信息融合的激光雷达辐射源个体识别方法
5.融合双谱特征的雷达辐射源个体识别方法
因版权原因,仅展示原文概要,查看原文内容请购买。

相关文档
最新文档