新七年级数学下册第二学期 二元一次方程组测试题及答案(共五套) 百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新七年级数学下册第二学期 二元一次方程组测试题及答案(共五套) 百度文库
一、选择题
1.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +
1=6是二元一次方程,则m ,n 的值为( )
A .m =1,n =-1
B .m =-1,n =1
C .14m ,n 33==-
D .14
,33
m n =-=
2.下列各组值中,不是方程21x y -=的解的是( )
A .0,12x y =⎧⎪⎨=-⎪⎩
B .1,
1x y =⎧⎨=⎩
C .1,
0x y =⎧⎨=⎩
D .1,
1x y =-⎧⎨=-⎩
3.若方程6kx ﹣2y=8有一组解3
2x y =-⎧⎨=⎩
,则k 的值等于(( )
A .23-
B .23
C .16-
D .16
4.下列方程组中是二元一次方程组的是( ) A .12
xy x y =⎧⎨+=⎩
B .52313x y y x -=⎧⎪⎨+=⎪⎩
C .20
135x z x y +=⎧⎪⎨-=⎪⎩
D .5
723
z z y =⎧⎪
⎨+=⎪⎩
5.已知31x y =⎧⎨
=⎩是方程组102ax by x by -=⎧⎨+=⎩的解,则x a
y b
=⎧⎨=⎩是哪一个方程的解( ) A .34x y += B .34x y -=
C .439x y -=
D .439x y +=
6.已知2
x y a
=⎧⎨
=⎩是方程25x y +=的一个解,则a 的值为( ) A .1a =-
B .1a =
C .23
a =
D .32
a =
7.1231234234534514
5125
x x x a x x x a x x x a x x x a
x x x a ++=⎧⎪++=⎪⎪
++=⎨⎪++=⎪++=⎪⎩,其中1a ,2a ,3a ,4a ,5a 是常数,且12345a a a a a >>>>,则
1x ,2x ,3x ,4x ,5x 的大小顺序是( )
A .12345x x x x x >>>>
B .42135x x x x x >>>>
C .31425x x x x x >>>>
D .53142x x x x x >>>>
8.甲、乙两人共同解关于x ,y 的方程组,甲正确地解得
乙看错
了方程②中的系数c ,解得,则
的值为( ) A .16
B .25
C .36
D .49
9.满足方程组
352
23
x y m
x y m
+=+


+=

的x,y的值的和等于2,则m的值为().
A.2B.3C.4D.5
10.已知方程组
3
{
5
x y
mx y
+=
-=
的解是方程x﹣y=1的一个解,则m的值是()
A.1B.2C.3D.4
11.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱() A.128元B.130元C.150 元D.160元
12.以方程组
2
1
x y
y x
+=


=-

的解为坐标的点(x,y)在平面直角坐标系中的位置是()
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题
13.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.
14.某餐厅以A、B两种食材,利用不同的搭配方式推出了两款健康餐,其中,甲产品每份含200克A、200克B;乙产品每份含200克A、100克B.甲、乙两种产品每份的成本价分别为A、B两种食材的成本价之和,若甲产品每份成本价为16元.店家在核算成本的时候把A、B两种食材单价看反了,实际成本比核算时的成本多688元,如果每天甲销量的4倍和乙销量的3倍之和不超过120份,那么餐厅每天实际成本最多为______元.15.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需__________天.
16.为了适合不同人群的需求,某公司对每日坚果混合装进行改革.甲种每袋装有10克核桃仁,10克巴旦木仁,10克黑加仑;乙种每袋装有20克核桃仁,5克巴旦木仁,5克黑加仑.甲乙两种袋装干果每袋成本价分别为袋中核桃仁、巴旦木仁、黑加仑的成本价之和.已知核桃仁每克成本价0.04元,甲每袋坚果的售价为5.2元,利润率为30%,乙种坚果每袋利润率为20%,若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装坚果的数最之比是____.
17.已知
2
1
x
y
=


=

,是二元一次方程组
8
1
mx ny
nx my
+=


-=

的解,则m+3n的平方根为______.
18.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以
装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.
19.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共______有种销售方案. 20.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.
21.蜂蜜具有消食、润肺、安神、美颜之功效,是天然的健康保健佳品.秋天即将来临时,雪宝山土特产公司抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,该公司得到的总利润率为_____. 22.a 与b 互为相反数,且4a b -=,那么
2
1
1
a a
b a ab -+++=_______. 23.王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了_______包. 24.若
是满足二元一次方程
的非负整数,则
的值为___________.
三、解答题
25.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.
(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?
(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.
①请帮柑橘园设计租车方案;
②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.
26.阅读材料:对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以
(123)6F =.
(1)计算:(134)F ;
(2)若s ,t 都是“相异数”,其中10025s x =+,360t y =+(19x ≤≤,
19y ≤≤,x ,y 都是正整数),当()()20F s F t +=时,求s
t
的值.
27.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程
26x y +=的解,过C 作x 轴的平行线,交y 轴与点B .
(1)求点A 、B 、C 的坐标;
(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.
28.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:
(1)分别求出每款瓷砖的单价.
(2)若李师傅买两种瓷砖共花了1000 元,且A 款瓷砖的数量比B 款多,则两种瓷砖各买了多少块?
(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A 款瓷砖的用量比B 款瓷砖的2倍少14块,且恰好铺满地面,则B 款瓷砖的长和宽分别为_ 米(直接写出答案). 29.某公园的门票价格如下表所示:
某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元. (1)列方程求出两个班各有多少学生;
(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案.
30.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.
(1)小红首先用m 根小木棍摆出了p 个小正方形,请你用等式表示,m p 之间的关系: ; (2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?
(3)小红重新用50根小木棍,摆出了s 排,共t 个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示,s t 之间的关系,并写出所有,s t 可能的取值.
31.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3
x y z
M x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}1234
1,2,333
M -++-=
=,{}min 1,2,31-=- 请用以上材料解决下列问题:
(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;
②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使
{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存
在,请求出a ,b ,c 的值;若不存在,请说明理由.
32.已知:平面直角坐标系中,A (a ,3)、B (b ,6)、C (c ,1),a 、b 、c 都为实数,并且满足3b -5c =-2a -18,4b -c =3a +10 (1) 请直接用含a 的代数式表示b 和c
(2) 当实数a 变化时,判断△ABC 的面积是否发生变化?若不变,求其值;若变化,求其变化范围
(3) 当实数a 变化时,若线段AB 与y 轴相交,线段OB 与线段AC 交于点P ,且S △PAB >S △PBC ,求实数a 的取值范围.
33.阅读下列材料,解答下面的问题:
我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其 正整数解.
例:由2312x y +=,得:1222433
x x
y -=
=-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩
,则有06x <<.又243x y =-为正整数,则23x
为正整数.由2与3互
质,可知:x 为3的倍数,从而x=3,代入2423
x
y =-
=∴2x+3y=12的正整数解为3
2x y =⎧⎨=⎩
问题:
(1)请你写出方程25x y +=的一组正整数解: . (2)若
6
2
x -为自然数,则满足条件的x 值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢
笔两种奖品,共花费35元,问有几种购买方案?
34.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.
(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?
(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?
35.在今年“六•一”期间,扬州市某中学计划组织初一学生到上海研学,如果租用甲种客车2辆,乙种客车3辆,则可载180人,如果租用甲种客车3辆,乙种客车1辆,则可载165人.
(1)请问甲、乙两种客车每辆分别能载客多少人?
(2)若该学校初一年级参加研学活动的师生共有303名,旅行社承诺每辆车安排一名导游,导游也需一个座位.旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游,为保证所租的每辆车均有一名导游,租车方案调整为:同时租65座、甲种客车和乙种客车的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案应如何安排?
36.“一带一路”是对古丝绸之路的传承和提升,让中国和世界的联系更紧密,电气设备是“一带一路”沿线国家受青睐的商品。

某企业计划生产甲、乙两种电气设备出口,甲种设备售价50千元/件,乙种设备售价30千元/件,生产这两种设备需要A、B两种原料,生产甲设备需要A种原料4吨/件,B种原料2吨/件,生产乙设备需要A种原料3吨/件,B 种原料1吨/件,已知A种原料有120吨,B种原料有50吨.
(1)如何安排生产,才能恰好使A、B两种原料全部用完?此时总产值是多少千元?(2)若使甲种设备售价上涨10%,而乙种设备售价下降10%,并且要求甲种设备比乙种设备多生产25件,问如何安排甲、乙两种设备的生产,使销售总产值能达到1375千元,此时A、B两种原料还剩下多少吨?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
根据二元一次方程的概念列出关于m、n的方程组,解之即可.
【详解】
∵关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,
∴22111m n m n --=⎧⎨++=⎩即230m n m n -=⎧⎨+=⎩,
解得:1
1m n =⎧⎨=-⎩
, 故选:A . 【点睛】
本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.
2.B
解析:B 【分析】
将x 、y 的值分别代入x-2y 中,看结果是否等于1,判断x 、y 的值是否为方程x-2y=1的解. 【详解】 A 项,当0x =,1
2y 时,1202()12x y -=-⨯-=,所以0,12
x y =⎧⎪⎨=-
⎪⎩
是方程21x y -=的解;
B 项,当1x =,1y =时,21211y =-⨯=-,所以1,1x y =⎧⎨=⎩不是方程21x y -=的解;
C 项,当1x =,0y =时,21201x y -=-⨯=,所以1,
0x y =⎧⎨=⎩是方程21x y -=的解;
D 项,当1x =-,1y =-时,212(1)1x y -=--⨯-=,所以1,
1
x y =-⎧⎨=-⎩是方程21
x y -=的解, 故选B. 【点睛】
本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.
3.A
解析:A 【分析】
根据方程的解满足方程,课的关于k 的方程,根据解方程,可得答案. 【详解】 解:由题意,得 6×(-3)k-2×2=8,
解得k=-2 3 ,
故选A.
【点睛】
本题考查了二元一次方程,利用方程的解满足方程得出关于的k方程是解题关键.
4.D
解析:D
【分析】
含有两个未知数,并且所含未知数的项的次数是1的整式方程组是二元一次方程组,根据定义解答.
【详解】
A、B、C都不是二元一次方程组,D符合二元一次方程组的定义,
故选:D.
【点睛】
此题考查二元一次方程组的定义,正确理解定义并运用解题是关键.
5.D
解析:D
【分析】

3
1
x
y
=


=

代入
10
2
ax by
x by
-=


+=

后求出,a b的值,最后把
x a
y b
=


=

分别代入四个选项即可.
【详解】

3
1
x
y
=


=

代入
10
2
ax by
x by
-=


+=

得:
310
32
a b
b
-=


+=


解得
3
1
a
b
=


=-

,即
3
1
x
y
=


=-



3
1
x
y
=


=-

时,30
x y
+=,A选项错误;
36
x y
-=,B选项错误;
4315
x y
-=,C选项错误;
439
x y
+=,D选项正确;
故选D
【点睛】
本题考查对方程的解的理解,方程的解:使方程成立的未知数的值. 6.B
解析:B
【分析】
直接把2x y a =⎧⎨=⎩
代入方程,即可求出a 的值.
【详解】
解:根据题意,
∵2x y a =⎧⎨=⎩
是方程25x y +=的一个解,
∴225a ⨯+=, ∴1a =; 故选:B . 【点睛】
本题考查了二元一次方程的解,以及解一元一次方程,解题的关键是掌握运算法则进行解题.
7.C
解析:C 【分析】
本方程组涉及5个未知数1x ,2x ,3x ,4x ,5x ,如果直接比较大小关系很难,那么考虑方程①②,②③,③④,④⑤,⑤①均含有两个相同的未知数,通过
12345a a a a a >>>>可得1x ,2x ,3x ,4x ,5x 的大小关系.
【详解】
方程组中的方程按顺序两两分别相减得
1412x x a a -=-,2523x x a a -=-,3134x x a a -=-,4245x x a a -=-.
∵12345a a a a a >>>>
∴14x x >,25x x >,31x x >,42x x >, 于是有31425x x x x x >>>>. 故选C . 【点睛】
本题要注意并不是任何两个方程都能相减,需要消去两个未知数,保留两个未知数的差,这才是解题的关键.
8.B
解析:B 【解析】 【分析】
将x =2,y =﹣1代入方程组中,得到关于a 与b 的二元一次方程与c 的值,将x =3,y =1代入方程组中的第一个方程中得到关于a 与b 的二元一次方程,联立组成关于a 与b 的方程组,求出方程组的解得到a 与b 的值,即可确定出a ,b 及c 的值. 【详解】
把代入得:
,解得:c =4,把代入得:3a +b =5,联立得:,解得:,则(a +b +c )2=(2﹣1+4)2=25.
故选B .
【点睛】
本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
9.C
解析:C
【解析】
根据题意35223x y m x y m +=+⎧⎨+=⎩①②
,由加减消元法把①-②,得22x y +=③;然后由x 与y 的和等于2,得到2x y +=④,再根据③-④,得0x =,最后把0x =代入④得2y =,因此可解得234m x y =+=.
故选:C.
10.C
解析:C
【解析】
根据方程组的解与x-y=1的解相同,可知x+y=3与x-y=1组成的方程组的解即为它们的公共解,因此可求得x=2,y=1,代入mx-y=5,可得m=3.
故选:C.
11.C
解析:C
【解析】
设甲每件x 元,乙每件y 元,丙每件z 元,根据题意可列方程组:
①+②得:
4x +4y +4z =600
等号两边同除以4,得:
x +y +z =150
所以购甲、乙、丙三种商品各一件共需150元钱.
故选C.
12.A
解析:A
【分析】
先根据代入消元法解方程组,然后判断即可;
【详解】
21x y y x +=⎧⎨=-⎩
, 把1y x =-代入2x y +=中,得:12x x -+=, 解得:32x =
, ∴31122y =
-=, ∴点31,22⎛⎫ ⎪⎝⎭
在第一象限. 故选A .
【点睛】
本题主要考查了解二元一次方程组及象限与点的坐标,准确计算判断是解题的关键.
二、填空题
13.【分析】
设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于
解析:【分析】
设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于a ,b ,c 方程组,根据a ,b ,c 均为正整数,求解即可.
【详解】
设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,
2c .由题意得(
)()2502107025105012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩, 即25217251942a b c b c ++=⎧⎨+=⎩
, 其整数解为42372521231225a n b n c n =-⎧⎪=-⎨⎪=-⎩
(其中n 为整数),
又∵a ,b ,c 均是正整数,易得n =1.
所以546a b c =⎧⎪=⎨⎪=⎩
.
∴150a +60b +40c =150×5+60×4+40×6=1230.
故答案为:1230.
另解:由上9b +c =42,得知b =1,2,3,4.列举符合题意的解即可.
【点睛】
本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a ,b ,c ,均为正整数.
14.824
【分析】
先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为元,生产甲产品x 份,乙产品y 份,根据题意列方程求出
【详解】
解:∵甲产品每
解析:824
【分析】
先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意列方程求出
【详解】
解:∵甲产品每份含200克A 、200克B ,甲产品每份成本价为16元
∴100克A 原料和100克B 原料的成本为8元
设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意可得出:
[]4312016(28)162(8)688x y x m m y x m m y +≤⎧⎨++-=+-++⎩
整理得出:4344my y =+
∴餐厅每天实际成本16(8)1612344W x m y x y =++=++
∵43120x y +≤
∴1612480x y +≤
∴餐厅每天实际成本的最大值为:480344824+=(元).
故答案为:824.
【点睛】
本题考查的知识点是二元一次方程组的应用,读懂题意,理清题目中的各关系量是解此题的关键.
15.24
【分析】
设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可
以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃
解析:24
【分析】
设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃y 天,列出方程,把关于a 、b 的代数式代入即可得解.
【详解】
解:设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据题意得:
969620606030a b x a b x +⎧⎨+⎩
== 解得:b=103
x ,a=1600x , 当有70头牛吃时,设可以吃y 天,则 a+yb=70xy ,把b=
103x ,a=1600x 代入得:y=24(天). 故答案为:24.
【点睛】
本题考查了二元一次方程组的应用,解题的关键是读懂题意,把握牛吃青草的同时草也在生长是解答此题的关键.
16.13∶30
【分析】
根据题意,先求出1克巴旦木和1克黑加仑的成本之和,然后求出乙种干果的成本,再设甲种干果x 袋,乙种干果y 袋,通过利润的关系,列出方程解方程即可求出甲、乙两种干果数量之比.
【详解
解析:13∶30
【分析】
根据题意,先求出1克巴旦木和1克黑加仑的成本之和,然后求出乙种干果的成本,再设甲种干果x 袋,乙种干果y 袋,通过利润的关系,列出方程解方程即可求出甲、乙两种干果数量之比.
【详解】
解:设1克巴旦木成本价m 元,和1克黑加仑成本价n 元,根据题意得
10(0.04 +m+n) ×(1+30%)=5.2
解得:m+n=0.36
甲种干果的成本价:10×(0.04+0.36)=4
乙种干果的成本价:20×0.04+5×0.36=2.6
乙种干果的售价为:2.6×(1+20 %)=3.12
设甲种干果有x袋,乙种干果有y袋,则(4x+2.6y)(1+24 %)=5.2x+3.12y
解得:
13
30 x
y
=
故答案为:该公司销售甲、乙两种袋装坚果的数最之比是13∶30.
【点睛】
本题考查了二元一次方程的应用,利用利润、成本价与利润率之间的关系列出方程,理解题意得出等量关系是解题的关键.
17.±3
【分析】
把x与y的值代入方程组求出m与n的值,即可求出所求.
【详解】
解:把代入方程组得:,
①×2-②得:5m=15,
解得:m=3,
把m=3代入①得:n=2,
则m+3n=3+6=9
解析:±3
【分析】
把x与y的值代入方程组求出m与n的值,即可求出所求.
【详解】
解:把
2
1
x
y
=


=

代入方程组得:
28
21
m n
n m
+=


-=




①×2-②得:5m=15,
解得:m=3,
把m=3代入①得:n=2,
则m+3n=3+6=9,9的平方根是±3,
故答案为:±3
【点睛】
此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.18.【分析】
先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.
【详解】
解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且
解析:【分析】
先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】
解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,
∵每种规格都要有且每个盒子均恰好装满,
∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,
则10x+9y+6z=108,
∴x=10896
10
--
y z

3(3632)
10
--
y z

∵0<x<10,且为整数,
∴36﹣3y﹣2z是10的倍数,
即:36﹣3y﹣2z=10或20或30,
当36﹣3y﹣2z=10时,y=262
3
-z

∵0<y≤11,0<z≤15,且y,z都为整数,
∴26﹣2z=3或6或9或12或15或18或21或24,
∴z=23
2
(舍)或z=10或z=
17
2
(舍)或z=7或z=
11
2
(舍)或z=4或z=
5
2
(舍)
或z=1,
当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3
当z=1时,y=8,x=3,
当36﹣3y﹣2z=20时,y=162
3
-z

∵0<y≤11,0<z≤15,且y,z都为整数,
∴16﹣2z=3或6或9或12或15或18或21或24,
∴z=13
2
(舍)或z=5或z=
7
2
(舍)或z=2或z=
1
2
(舍)
当z=5时,y=2,x=6,当z=2时,y=4,x=6,
当36﹣3y﹣2z=30时,y=62
3
-z

∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,
∴z=3
2
(舍)
即:满足条件的不同的装法有6种,故答案为6.
【点睛】
此题主要考查了三元一次方程,整除问题,分类讨论时解本题的关键.
19.五
【分析】
设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.
【详解】
设甲种型号
解析:五
【分析】
设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.
【详解】
设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z 台,根据题意得:
1280×(1+25%)x+(2199-199)×0.85y+(2399-499)z=20600
整理得:16x+17y+19z=206
∴16(x+y+z)+y+3z=16×12+14
∵x、y、z为非负整数,且x、y、z最多一个为0,
∴0≤x≤12,0≤y≤12,0≤z≤10,
∴14≤y+3z≤42.
设x+y+z=12-k,y+3z=14+16k,其中k为非负整数.
∴14≤14+16k≤42,
∴0≤k<2.
∵k为整数,
∴k=0或1.
(1)当k=0时,x+y+z=12,y+3z=14,
∴0≤z≤4.
①当z=0时,y=14>12,舍去;
②当z=1时,y=14-3z=11,x=12-y-z=12-11-1=0,符合题意;
③当z=2时,y=14-3z=8,x=12-y-z=12-8-2=2,符合题意;
④当z=3时,y=14-3z=5,x=12-y-z=12-5-3=4,符合题意;
⑤当z=4时,y=14-3z=2,x=12-y-z=12-2-4=6,符合题意.
(2)当k=1时,x+y+z=11,y+3z=30
∵y=30-3z,
∴0≤30-3z≤12,
解得:6≤z≤10,
当z=6时,y=30-3z=12,x=11-y-z=11-12-6=-7<0,舍去;当z=7时,y=30-3z=9,x=11-y-z=11-9-7=-5<0,舍去;
当z=8时,y=30-3z=6,x=11-y-z=11-6-8=-3<0,舍去;
当z=9时,y=30-3z=3,x=11-y-z=11-3-9=-1<0,舍去;
当z=10时,y=30-3z=0,x=11-y-z=11-10-0=1,符合题意.
综上所述:共有
11
1
x
y
z
=


=

⎪=


2
8
2
x
y
z
=


=

⎪=


4
5
3
x
y
z
=


=

⎪=


6
2
4
x
y
z
=


=

⎪=


1
10
x
y
z
=


=

⎪=

五种方案.
故答案为:五.
【点睛】
本题考查了三元一次方程的应用.分类讨论是解答本题的关键.
20.62
【分析】
设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)
解析:62
【分析】
设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)的值,取其最大值即可得出答案.
【详解】
设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,
依题意,得:5x+7×2y+10y=346,
∴x=34624
5
y
-

∵x,y均为非负整数,
∴346﹣24y为5的整数倍,∴y的尾数为4或9,

50
4
x
y
=


=


26
9
x
y
=


=


2
14
x
y
=


=


∴x+y+2y=62或53或44.
∵62>53>44,
∴最多可以购买62件纪念品.
故答案为:62.
【点睛】
本题主要考查二元一次方程的实际应用,根据题意,求出x,y的非负整数解,是解题的关键.
21.19%
【分析】
设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,首先根据题中所给的两种情况分别列式求出4z=3y+6x ①和z=3x ②,然后可得y=2x ,最后列式求售出的甲、乙、丙蜂蜜瓶数之
解析:19%
【分析】
设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,首先根据题中所给的两种情况分别列式求出4z=3y+6x ①和z=3x ②,然后可得y=2x ,最后列式求售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时获得的总利润即可.
【详解】
解:设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,
当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,设甲种蜂蜜卖出a 瓶, 则:10%320%30%22%3ax ay az ax ay az
,整理得:4z=3y+6x ①, 当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,设丙种蜂蜜卖出b 瓶, 则:310%220%30%
20%32bx by bz bx by bz ,整理得:z=3x ②,
由①②可得:y=2x ,
∴当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,设丙种蜂蜜卖出c 瓶, 则该公司得到的总利润率为:
510%620%30%0.5 1.20.30.5 2.40.9100%19%56565123cx cy cz x y z x x x cx cy cz
x y z x x x ,
故答案为:19%.
【点睛】
本题考查了三元一次方程组的应用,利用利润、成本与利润率之间的关系列式计算是解题
的关键. 22.7或3
【解析】
【分析】
解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.
【详解】
由题意得,
解得:或,
当a=2,b=-2时,=7;
当a=-2,b=2时,=3,。

相关文档
最新文档