立体图形的表面展开图教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体图形的展开图
教学目标:
一:掌握知识技能
1、掌握简单立体图形(长方体、圆柱、棱柱、圆锥、棱锥)的平面展开图
2、根据立体图形判断展开图,根据展开图判断立体图形
3、了解正方体的11种平面展开图,掌握它的应用 二:数学思考
1、 在平面图形与立体图形的转化过程中,进一步了解立体图形与平面图形的关系,发挥空间想象思维能力
2、通过操作、观察、总结归纳发现问题,讨论不同情况下的图形展开 教学重点:简单立体图形的平面展开(正方体)
教学难点:判断所给的平面图形能否围成立体图形,判断位置。
教学过程:
引入:小壁虎的难题 1、如下图(1),小壁虎在一面长方形的墙壁的下方,蚊子在上方,饥饿的小壁虎想尽快的吃掉上方的蚊子,走哪条路最近呢?
图(1)
2、此时蚊子发现了小壁虎,马上飞到了一只圆桶的上方,而壁虎也恰好爬到了圆桶的下方,小壁虎要想尽快吃到蚊子,应该走哪条路最近呢?
这个就需要我们用到立体图形的平面展开。
壁虎 蚊子
1
2
3
● 蚊子 壁虎 ●
一:长方体、圆柱、棱柱、圆锥、棱锥的平面展开图 示例:长方体展开成平面图形
展开图:将一些立体图形的表面适当剪开,展成平面图形,这样的 平面图形 称
为相应立体图形的展开图。
活动1: 探究圆柱、棱柱、圆锥、棱锥的平面展开图
考虑1、同一个立体图形(多面体)按照不同方式展开得到的平面图形是否一样? 考虑2、将你小组的立体展开图的平面图形画在对应的位置? (1)圆柱平面展开图:
结论:圆柱的侧面展开图是一个 。
底面展开图是大小相同的圆
(2)三棱柱侧面展开图:
结论:三棱柱的侧面展开图是 。
圆锥的底面展开图是 。
(3)圆锥:
结论:圆锥的侧面展开图是 。
圆锥的底面展开图是 。
(4)三棱锥:
结论:三棱锥的表面展开图是四个三角形。
练习一
1、右图哪些是圆柱的展开图 。
2、右图哪些是圆锥的展开图 。
3
、右图哪些是三棱锥的展开图。
4、下面一些图形是一些多面体的表面展开图,请写出对应多面体的名字。
二、正方体图形展示
学生正方体展开图形展示, 讨论:(1
)、正方体的平面图形展示是否完全? (2)、正方体图形如何分类?
(3)、正方体相对两个面在其展开图中的位置有什么特点?
1
2
3
4 1
2 3
4
1
2 3
“一四一”类型,共六种
“一三二”类型,共三种
“二二二”型
“三三”型
第5题
练习二
1、有一个无盖的正方体纸盒,下底面标有字母“M ”,沿图中粗线将其剪开,展成平面图形。
想一想,这个平面图形是( )
2、如图所示,是正方体的一种表面展开图,各面都标有数字,则数
字为4-的面与其对面上的数字之积是( ) A、4 B、12 C、4- D、0
3、下面图形中,“1”对面的数是 ,“祝”对面的字是 。
4、在图中添加一个小正方形,使该图形经过折叠后能围成一个四棱柱,不同的添法共有( ) A 、7种 B 、4种 C 、3种 D 、2种
拓展提高题:
1、左边是给定的是纸盒的外表面,下面哪一项由它折叠而成?
2、下列四个选项中,哪个可以折出左边指定的图形?
3、3、左边是给定的是纸盒的外表面,下面哪一项由它折叠而成?
M A
B C D
1 5 6 4 3
2
祝 你 前 程
似 锦
练习1: 如下图:把相应的立体图形与它的平面展开图用线连起来。
练一练:(1)如图,上面的图形分别是下面哪个立体图形展开的形状?把它们用线连起来.
二:正方体的平面展开图
(1)平面展开图是由六个正方形组成的平面图形 (2)正方体有 种,每组展开图的特点是什么?
结论:
第一类,中间四连方,两侧各一个,共6种,“一四一”型 第二类,中间三连方,两侧各有一个和两个,共3种,“二三一”型 第三类,中间二连方,两侧各有二个,只有1种,“二二二”型 第三类,两排各三个,只有1种,“三三型”
练习2:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?
练习3
:下面图形,哪个经折叠后能围成正方体的图形?(动手试试)
1 2 3 4 5
3
5
4
1
6 7 8 9 10 总结:满足一下的肯定不是正方体的平面展开图 (1)多于或少于6个小正方形的平面图形。
(
2)6个小正方形组成的平面图形中,①一直线上接连四个面,另两个面在直线同旁。
②“7”字型或图形中包含“凹”字型、“田”字型。
练习
4. 一个正方体平面展开图如下,将它折成正方体后,“环”字对面的字是么?
◆典例分析
例:如图所示,是正方体的一种表面展开图,各面都标有数字,则数字为
4-的面与其对面上的数字之积是( ) A、4 B、12 C、4- D、0
三、巩固练习
1、在下面的图形中,不可能是圆锥体的展开图的是( )
2、如图,在这些图形中,是四棱柱的侧面展开图的是________(填序号)。
3、如图中,( )不是正方体的展开图
4、在图中添加一个小正方形,使该图形经过折叠后能围成一个四棱柱,不同的添法共有( )
A 、7种
B 、4种
C 、3种
D 、2种
绿 色
低
环 保
碳
5、把14个棱长为1的正方体,在地面上堆叠成如图所示的组合体,然后将露出的表面部分漆成红色,遮住的部分漆成黑色,那么红色部分的面积为比黑色部分多()
A、15
B、17
C、19
D、27
●拓展提高
1、如图,一个正方体的相对的表面上所标的两个数,都是互为相反数的两个数,右图是这个正方体的表面展开图,那么
y
x 的值为________。
2、下面图形A、B、C、D、E中哪个是左边立方体的表面展开图?()
A
A B C
D E
3、如图是一个正方体骰子,每个面分别标出1~6个黑点,根据图中A、B、C三种状态所显示的黑点数,推算“?”处所示的黑点数应是__________。
5、如图,小明用纸板折成了一个正方体的盒子,里面装了一瓶墨水,他把这个盒子与其他形状和大小完全一样,但图案有区别的三个空盒子混放在一起,共A、B、C、D四个盒子。
在这四个盒子中,请你分析判断,墨水瓶应该在哪个盒子中?为什么?
?
C
B
A。