江苏省连云港市八年级上第一学期第二次月考数学试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省连云港市八年级上第一学期第二次月考数学试卷
一、选择题
1.若a =a 的值为( )
A .1
B .0
C .0或1
D .0或1或1-
2.的值应在( ) A .2和3之间
B .3和4之间
C .4和5之间
D .5和6之间
3.下列四组线段a ,b ,c ,能组成直角三角形的是( )
A .1a =,2b =,3c =
B .1a =,b =
c =
C .2a =,3b =,4c =
D .4a =,5b =,6c =
4.下列各点中在第四象限的是( ) A .()2,3--
B .()2,3-
C .()3,2-
D .()3,2
5.若分式24
2
x x -+的值为0,则x 的值为( )
A .-2
B .0
C .2
D .±2
6.下列各点中,在函数y=-8
x
图象上的是( ) A .(﹣2,4) B .(2,4)
C .(﹣2,﹣4)
D .(8,1)
7.给出下列实数:
227、2
π
、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个0),其中无理数有( )
A .2个
B .3个
C .4个
D .5个 8.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( ) A .1 B .5 C .7 D .49 9.下列一次函数中,y 随x 增大而增大的是( )
A .y=﹣3x
B .y=x ﹣2
C .y=﹣2x+3
D .y=3﹣x
10.,﹣3.14,22
7
,2π ) A .1个
B .2个
C .3个
D .4个
二、填空题
11.如图,在平面直角坐标系中,函数y mx n =+的图像与y kx b =+的图像交于点
(1,2)P -,则方程组,
y mx n y kx b
=+⎧⎨=+⎩的解为________.
12.已知一次函数3y kx =+与2y x b =+的图像交点坐标为(−1,2),则方程组
3
2y kx y x b =+⎧⎨
=+⎩
的解为____. 13.如图,函数3y x =-和4y ax =+的图像相交于点A (m ,3),则不等式34x ax ->+的解集为____.
14.如图,在平面直角坐标系中,点P 的坐标为(0,4),直线y =
3
4
x -3与x 轴、y 轴分别交于点A 、B ,点M 是直线AB 上的一个动点,则PM 的最小值为________.
15.如图,等腰直角三角形ABC 中, AB=4 cm.点 是BC 边上的动点,以AD 为直角边作
等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为
________cm.
16.等腰三角形的一个内角是100︒,则它的底角的度数为_________________. 17.比较大小:5-6-
18.点P (3,-4)到 x 轴的距离是_____________.
19.如图,在△ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB 交BC 于点E ,EC =1,则三角形ACE 的面积为__.
20.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°
三、解答题
21.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终到达C 港.设甲、乙两船行驶x (h )后,与B 港的距离分别为y 1 、y 2 (km ), y 1 、y 2 与x 的函数关系如图所示.
(1)填空:A 、C 两港口间的距离为_______km ,a = _______; (2)求图中点P 的坐标;
(3)若两船的距离不超过8km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.
22.(本题满分10分) 如图,直线23y x =+与x 轴相交于点A ,与y 轴相交于点B .
(1)求△AOB 的面积;
(2)过B 点作直线BP 与x 轴相交于P ,△ABP 的面积是
9
2
,求点P 的坐标. 23.如图,一辆货车和一辆轿车先后从甲地开往乙地,线段OA 表示货车离开甲地的距离y (km )与时间x (h )之间的函数关系;折线BCD 表示轿车离开甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象解答下列问题: (1)甲、乙两地相距 km ,轿车比货车晚出发 h ; (2)求线段CD 所在直线的函数表达式;
(3)货车出发多长时间两车相遇?此时两车距离甲地多远?
24.已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.(要求:写作法,用尺规作图,保留作图痕迹).
25.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.
(1)若BC=6,求△ADE的周长.
(2)若∠DAE=60°,求∠BAC的度数.
四、压轴题
26.如图,已知等腰△ABC 中,AB=AC,∠A<90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与BE 交于点P.当∠A 的大小变化时,△EPC 的形状也随之改变.
(1)当∠A=44°时,求∠BPD 的度数;
(2)设∠A=x°,∠EPC=y°,求变量y 与x 的关系式;
(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.
27.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.
(1)若∠AED=20°,则∠DEC=度;
(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;
(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:
EH2+CH2=2AE2.
28.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,
如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.
(材料理解)(1)在图1中证明小明的发现.
(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).
(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.
29.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交于点B,过点B 的直线交x轴于点C,且AB=BC.
(1)求直线BC的解析式;
(
2)点P 为线段AB 上一点,点Q 为线段BC 延长线上一点,且AP =CQ ,设点Q 横坐标为m ,求点P 的坐标(用含m 的式子表示,不要求写出自变量m 的取值范围); (3)在(2)的条件下,点M 在y 轴负半轴上,且MP =MQ ,若∠BQM =45°,求直线PQ 的解析式.
30.在△ABC 中,∠BAC =45°,CD ⊥AB ,垂足为点D ,M 为线段DB 上一动点(不包括端点),点N 在直线AC 左上方且∠NCM =135°,CN =CM ,如图①. (1)求证:∠ACN =∠AMC ;
(2)记△ANC 得面积为5,记△ABC 得面积为5.求证:12S AC S AB
=; (3)延长线段AB 到点P ,使BP =BM ,如图②.探究线段AC 与线段DB 满足什么数量关系时对于满足条件的任意点M ,AN =CP 始终成立?(写出探究过程)
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】 【分析】
只有0和1的算术平方根与立方根相等. 【详解】 3
a a =
∴a 为0或1. 故选:C . 【点睛】
本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.也考查了算术平方根.
2.B
解析:B 【解析】
直接利用32=9,42=16的取值范围.
【详解】
∵32=9,42=16,
在3和4之间.
故选:B.
【点睛】
本题考查了估算无理数的大小,正确得出接近无理数的有理数是解题的关键.
3.B
解析:B
【解析】
【分析】
根据如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.
【详解】
A.12+22≠32,不能组成直角三角形,故此选项错误;
1 ,能组成直角三角形,故此选项正确;
B.222
C.32+22≠42,不能组成直角三角形,故此选项错误;
D.42+52≠62,不能组成直角三角形,故此选项错误.
故选:B.
【点睛】
本题考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.
4.C
解析:C
【解析】
【分析】
根据第四象限点的坐标特点,在选项中找到横坐标为正,纵坐标为负的点即可.
【详解】
解:A.(-2,-3)在第三象限;
B.(-2,3)在第二象限;
C.(3,-2)在第四象限;
D.(3,2)在第一象限;
故选:C.
【点睛】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,用到的知识点为:点在第四象限内,那么横坐标大于0,纵坐标小于0.
5.C
【解析】
由题意可知:240
20
x x =⎧-⎨
+≠⎩, 解得:x=2, 故选C. 6.A
解析:A 【解析】 【分析】
所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上 【详解】 解:-2×4=-8 故选:A 【点睛】
本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.
7.B
解析:B 【解析】 【分析】
根据无理数是无限不循环小数,可得答案. 【详解】
解:−5,
实数:
227、2
π
、0.16、0.1010010001-⋯(每相邻两个1之
间依次多一个02
π
、-0.1010010001…(每相邻两个1之间依次多一个0)共3个. 故选:B . 【点睛】
本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.
8.B
解析:B 【解析】 【分析】
根据等腰三角形的性质可知BC 上的中线AD 同时是BC 上的高线,根据勾股定理求出AB 的长即可.
∵等腰三角形ABC中,AB=AC,AD是BC上的中线,
∴BD=CD=1
2
BC=3,AD同时是BC上的高线,
∴2222
345
BD AD
+=+=.
故它的腰长为5.
故选:B.
【点睛】
本题考查了勾股定理及等腰三角形的性质.解题关键是得出中线AD同时是BC上的高线.9.B
解析:B
【解析】
【分析】
根据一次函数的性质对各选项进行逐一分析即可.
【详解】
解:A、∵一次函数y=﹣3x中,k=﹣3<0,∴此函数中y随x增大而减小,故本选项错误;
B、∵正比例函数y=x﹣2中,k=1>0,∴此函数中y随x增大而增大,故本选项正确;
C、∵正比例函数y=﹣2x+3中,k=﹣2<0,∴此函数中y随x增大而减小,故本选项错误;
D、正比例函数y=3﹣x中,k=﹣1<0,∴此函数中y随x增大而减小,故本选项错误.
故选B.
【点睛】
本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,y随x
的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.10.B
解析:B
【解析】
【分析】
根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.
【详解】
无理数有2π32个.
故选:B.
本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
二、填空题
11.【解析】 【分析】
利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断. 【详解】
∵函数的图像与的图像交于点, 则关于x ,y 的二元一次方程组 的解是, 故答案为:. 【点睛】 本题考查了
解析:1
2x y =-⎧⎨=⎩
【解析】 【分析】
利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断. 【详解】
∵函数y mx n =+的图像与y kx b =+的图像交于点(1,2)P -, 则关于x ,y 的二元一次方程组
,y mx n y kx b =+⎧⎨
=+⎩的解是12x y =-⎧⎨=⎩, 故答案为:1
2x y =-⎧⎨=⎩
. 【点睛】
本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
12.. 【解析】 【分析】
直接根据一次函数和二元一次方程组的关系求解. 【详解】
解:∵一次函数与的图象的交点的坐标为(−1,2),
∴方程组的解是.
【点睛】
本题考查了一次函数和二元一次方程(组)
解析:12x y =-⎧⎨=⎩
. 【解析】
【分析】
直接根据一次函数和二元一次方程组的关系求解.
【详解】
解:∵一次函数3y kx =+与2y x b =+的图象的交点的坐标为(−1,2),
∴方程组32y kx y x b =+⎧⎨
=+⎩的解是12x y =-⎧⎨=⎩
. 【点睛】
本题考查了一次函数和二元一次方程(组)的关系:要准确的将一次函数问题的条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义. 13.x <-1.
【解析】
【分析】
由图象可知,在点A 的左侧,函数的图像在的图像的上方,即,所以求出点A 的坐标后结合图象即可写出不等式的解集.
【详解】
解:∵和的图像相交于点A (m ,3),
∴
∴
∴
解析:x <-1.
【解析】
【分析】
由图象可知,在点A 的左侧,函数3y x =-的图像在4y ax =+的图像的上方,即34x ax ->+,所以求出点A 的坐标后结合图象即可写出不等式34x ax ->+的解集.
【详解】
解:∵3y x =-和4y ax =+的图像相交于点A (m ,3),
∴33m =-
∴1m =-
∴交点坐标为A (-1,3),
由图象可知,在点A 的左侧,函数3y x =-的图像在4y ax =+的图像的上方,
即34x ax ->+
∴不等式34x ax ->+的解集为x <-1.
故答案是:x <-1.
【点睛】
此题主要考查了一次函数与一元一次不等式的关系,用图象法解不等式的关键是找到y 相等时的分界点,观察分界点左右图象的变化趋势,即可求出不等式的解集,重点要掌握利用数形结合的思想.
14.【解析】
【分析】
认真审题,根据垂线段最短得出PM⊥AB 时线段PM 最短,分别求出PB 、OB 、OA 、AB 的长度,利用△PBM∽△ABO,即可求出本题的答案
【详解】
解:如图,过点P 作PM⊥AB,
解析:285
【解析】
【分析】
认真审题,根据垂线段最短得出PM ⊥AB 时线段PM 最短,分别求出PB 、OB 、OA 、AB 的长度,利用△PBM ∽△ABO ,即可求出本题的答案
【详解】
解:如图,过点P 作PM ⊥AB ,则:∠PMB=90°,
当PM ⊥AB 时,PM 最短,
因为直线y=34
x ﹣3与x 轴、y 轴分别交于点A ,B , 可得点A 的坐标为(4,0),点B 的坐标为(0,﹣3),
在Rt △AOB 中,AO=4,BO=3,22345+=,
∵∠BMP=∠AOB=90°,∠B=∠B ,PB=OP+OB=7,
∴△PBM ∽△ABO ,
∴PB PM AB AO
=, 即:
754PM =, 所以可得:PM=285
. 15.【解析】
试题解析:连接CE ,如图:
∵△ABC 和△ADE 为等腰直角三角形,
∴AC=AB,AE=AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,
∠2+∠3=45°,
∴∠1=
解析:42 【解析】
试题解析:连接CE ,如图:
∵△ABC 和△ADE 为等腰直角三角形,
∴2AB ,2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3,
∵
2AC AE AB AD
== ∴△ACE ∽△ABD , ∴∠ACE=∠ABC=90°, ∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,
即点E 运动的轨迹为过点C 与AC 垂直的线段,22,
当点D 运动到点C 时,2,
∴点E 移动的路线长为2cm .
16.【解析】
【分析】
由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.
【详解】
①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;
②当这个角是
解析:40︒
【解析】
【分析】
由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.
【详解】
①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;
②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.
故答案为:40°.
【点睛】
本题考查了等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.
17.>
【解析】
【分析】
先把两个数分别平方,再根据两个负数的比较方法比较即可.
【详解】
解:∵,
∵5<6
∴.
【点睛】
本题考查实数的大小比较,解答本题的关键是熟练掌握两个负数的比较方法:两个
解析:>
【解析】
【分析】
先把两个数分别平方,再根据两个负数的比较方法比较即可.
【详解】
解:∵2(5=,2(6=
∵5<6 ∴>
【点睛】
本题考查实数的大小比较,解答本题的关键是熟练掌握两个负数的比较方法:两个负数,
绝对值大的反而小.
18.4
【解析】
试题解析:根据点与坐标系的关系知,点到x轴的距离为点的纵坐标的绝对值,故点P(3,﹣4)到x轴的距离是4.
解析:4
【解析】
试题解析:根据点与坐标系的关系知,点到x轴的距离为点的纵坐标的绝对值,
故点P(3,﹣4)到x轴的距离是4.
19..
【解析】
【分析】
由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.
【详解】
解
解析:1
2
.
【解析】
【分析】
由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.
【详解】
解:∵DE垂直平分AB交BC于点E,
∴EA=EB,
∴∠EAB=∠B=22.5°,
∴∠AEC=∠EAB+∠B=45°,
∵∠C=90°,
∴△ACE为等腰直角三角形,
∴CA=CE=1,
∴三角形ACE的面积=1
2
×1×1=
1
2
.
故答案为:1
2
.
【点睛】
本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键.
20.75
【解析】
【分析】
根据等腰三角形两个底角相等可得解.
【详解】
依题意知,等腰三角形两个底角相等.
当顶角=30°时,两底角的和=180°-30°=150°.
所以每个底角=75°.
故答案
解析:75
【解析】
【分析】
根据等腰三角形两个底角相等可得解.
【详解】
依题意知,等腰三角形两个底角相等.
当顶角=30°时,两底角的和=180°-30°=150°.
所以每个底角=75°.
故答案为75.
考点:三角形内角和与等腰三角形性质.
点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.
三、解答题
21.(1)120,2;(2)(1,30);(3)11
15
≤x≤
19
15
或
41
15
≤x≤3
【解析】
【分析】
(1)由甲船行驶的函数图象可以看出,甲船从A港出发,0.5h后到达B港,ah后到达C 港,又由于甲船行驶速度不变,则可以求出a的值;
(2)分别求出0.5h后甲乙两船行驶的函数表达式,联立即可求解;
(3)将该过程划分为0≤x≤0.5、0.5<x≤1、x>1三个范围进行讨论,得到能够相望时x的取值范围.
【详解】
解:(1)A、C两港口间距离s=30+90=120(km),
又由于甲船行驶速度不变,
故30÷0.5=60(km/h),
则a=2(h).
(2)由点(3,90)求得,y2=30x.
当0.5<x≤2时,设解析式为y1=ax+c,
由点(0.5,0),(2,90)则,
0.50 290
a c
a c
+=⎧
⎨
+=
⎩
解得:
60
30 a
c
=
⎧
⎨
=-⎩
∴y1=60x-30,
当y1=y2时,60x-30=30x,解得,x=1.此时y1=y2=30.
所以点P的坐标为(1,30).
(3)))①当x≤0.5时,依题意,(-60x+30)+30x≤8.解得,x≥11
15
.不合题意.
②当0.5<x≤1时,依题意,30x-(60x-30)≤8
解得,x≥11
15
.所以
11
15
≤x≤1.
③当1<x≤2时,依题意,(60x-30)-30x≤8
解得,x≤19
15
.所以1<x≤
19
15
④当2<x≤3时,甲船已经到了而乙船正在行驶,
∵90-30x≤8,解得x≥41 15
,
所以,当41
15
≤x≤3,甲、乙两船可以相互望见;
综上所述,当11
15
≤x≤
19
15
或
41
15
≤x≤3时,甲、乙两船可以相互望见.
【点睛】
本题考查一次函数的应用以及函数方程、函数图象与实际结合的问题,解题关键是利用数形结合得出关键点坐标.
22.(1)9
4
;(2)P(1.5,0) 或(-4.5,0)
【解析】
【分析】
(1)分别求直线与x,y轴交点坐标,再求面积.
(2)利用面积,可求得P点距离A点的距离,求出P点坐标.【详解】
(1) 由x=0得:y=3,即:B(0,3).
由y=0得:2x+3=0,解得:
3
2 x=-
∴OA=3
2
,OB=3 .
∴△AOB 的面积: 1393224
⨯⨯=. (2) ∵△ABP 的面积是92
, OB =3 3922
AP ∴= ∴AP =3
∴P (1.5,0) 或 (-4.5,0)
【点睛】
本题考查了一次函数图象上点的坐标特征.
23.(1)300;1.2 (2)y =110x ﹣195 (3)3.9;234千米
【解析】
【分析】
(1)由图象可求解;
(2)利用待定系数法求解析式;
(3)求出OA 解析式,联立方程组,可求解.
【详解】
解:(1)由图象可得:甲、乙两地相距300km ,轿车比货车晚出发1.2小时; 故答案为:300;1.2;
(2)设线段CD 所在直线的函数表达式为:y =kx +b ,
由题意可得:300=4.580 2.5k b k b +⎧⎨=+⎩
解得:110195
k b =⎧⎨=-⎩ ∴线段CD 所在直线的函数表达式为:y =110x ﹣195;
(3)设OA 解析式为:y =mx ,
由题意可得:300=5m ,
∴m =60,
∴OA 解析式为:y =60x ,
∴60110195y x y x =⎧⎨=-⎩
∴ 3.9234x y =⎧⎨
=⎩ 答:货车出发3.9小时两车相遇,此时两车距离甲地234千米.
【点睛】
本题考查了一次函数的应用,理解图象,是本题的关键.
24.详见解析.
【解析】
【分析】
根据题目要求画出线段a、h,再画△ABC,使AB=a,△ABC的高为h;首先画一条直线,再画垂线,然后截取高,再画腰即可.
【详解】
解:作图:
①画射线AE,在射线上截取AB=a,
②作AB的垂直平分线,垂足为O,再截取CO=h,
③再连接AC、CB,△ABC即为所求.
【点睛】
此题主要考查了复杂作图,关键是掌握垂线的画法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.25.(1)6;(2)120°
【解析】
【分析】
(1)根据线段垂直平分线性质得出AD=BD,CE=AE,求出△ADE的周长=BC,即可得出答案;
(2)由∠DAE=60°,即可得∠ADE+∠AED=120°,又由DA=DB,EA=EC,即可求得∠BAC 的度数.
【详解】
解:(1)∵在△ABC中,边AB、AC的垂直平分线分别交BC于D、E,
∴DB=DA,EA=EC,
又BC=6,
∴△ADE的周长=AD+DE+EA=BD+DE+EC=BC=6,
(2)∵∠DAE=60°,
∴∠ADE+∠AED=120°
∵DB=DA,EA=EC,
∴∠B=∠BAD,∠C=∠CAE
∴∠ADE=∠B+∠BAD=2∠B,∠AED=∠C+∠CAE=2∠C
∴2∠B+2∠C=120°
∴∠B+∠C=60°
∴∠BAC=180°﹣(∠B+∠C)=120°
【点睛】
本题考查的知识点是线段垂直平分线的性质,熟记性质内容是解此题的关键.
四、压轴题
26.(1)56°;(2)y=454x +
;(3)36°或1807
°. 【解析】
【分析】
(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;
(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;
(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454
x +
解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,
∴∠ABC=∠ACB=(180-44)÷2=68°,
∵CD ⊥AB ,
∴∠BDC=90°,
∵BE 平分∠ABC ,
∴∠ABE=∠CBE=34°,
∴∠BPD =90-34=56°;
(2)∵∠A =x °,
∴∠ABC=(180°-x°)÷2=(902
x -
)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -
)°=(454x +)°, 即y 与 x 的关系式为y=454x +
; (3)①若EP=EC ,
则∠ECP=∠EPC=y ,
而∠ABC=∠ACB=902x -
,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454
x +, ∴902x -+902x --(454
x +)=90°, 解得:x=36°;
②若PC=PE ,
则∠PCE=∠PEC=(180-y )÷2=902y -
, 由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454
x +, 解得:x=
1807
°; ③若CP=CE , 则∠EPC=∠PEC=y ,∠PCE=180-2y ,
由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454
x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或
1807°. 【点睛】
本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.
27.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析
【解析】
【分析】
(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;
(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;
(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH EF ,CH =
CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.
【详解】
解:(1)∵AB =AC ,AE =AB ,
∴AB =AC =AE ,
∴∠ABE =∠AEB ,∠ACE =∠AEC ,
∵∠AED =20°,
∴∠ABE =∠AED =20°,
∴∠BAE =140°,且∠BAC =90°
∴∠CAE =50°,
∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,
∴∠AEC =∠ACE =65°,
∴∠DEC =∠AEC ﹣∠AED =45°,
故答案为:45;
(2)猜想:∠AEC﹣∠AED=45°,
理由如下:∵∠AED=∠ABE=α,
∴∠BAE=180°﹣2α,
∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,
∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,
∴∠AEC=45°+α,
∴∠AEC﹣∠AED=45°;
(3)如图,过点C作CG⊥AH于G,
∵∠AEC﹣∠AED=45°,
∴∠FEH=45°,
∵AH⊥BE,
∴∠FHE=∠FEH=45°,
∴EF=FH,且∠EFH=90°,
∴EH2EF,
∵∠FHE=45°,CG⊥FH,
∴∠GCH=∠FHE=45°,
∴GC=GH,
∴CH2CG,
∵∠BAC=∠CGA=90°,
∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,
∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,
∴△AFB≌△CGA(AAS)
∴AF=CG,
∴CH2AF,
∵在Rt△AEF中,AE2=AF2+EF2,
2AF)2+2EF)2=2AE2,
∴EH2+CH2=2AE2.
【点睛】
本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.
28.(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.
【解析】
【分析】
(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;
(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;
(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP (SAS),即可得出结论.
【详解】
(1)证明:∵∠BAC=∠DAE,
∴∠BAC+∠CAD=∠DAE+∠CAD,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
AB AC
BAD CAE
AD AE
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴△ABD≌△ACE;
(2)如图2,
∵△ABC和△ADE是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
AB AC
BAD CAE
AD AE
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴△ABD≌△ACE,
∴BD=CE,①正确,∠ADB=∠AEC,
记AD与CE的交点为G,
∵∠AGE=∠DGO,
∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,
∴∠BOC=60°,②正确,
在OB上取一点F,使OF=OC,
∴△OCF是等边三角形,
∴CF=OC,∠OFC=∠OCF=60°=∠ACB,
∴∠BCF=∠ACO,
∵AB=AC,
∴△BCF≌△ACO(SAS),
∴∠AOC=∠BFC=180°-∠OFC=120°,
∴∠AOE=180°-∠AOC=60°,③正确,
连接AF,要使OC=OE,则有OC=1
2 CE,
∵BD=CE,
∴CF=OF=1
2 BD,
∴OF=BF+OD,
∴BF<CF,
∴∠OBC>∠BCF,
∵∠OBC+∠BCF=∠OFC=60°,
∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,
即:正确的有①②③,
故答案为①②③;
(3)如图3,
延长DC至P,使DP=DB,
∵∠BDC=60°,
∴△BDP是等边三角形,
∴BD=BP,∠DBP=60°,
∵∠BAC=60°=∠DBP,
∴∠ABD=∠CBP,
∵AB=CB,
∴△ABD≌△CBP(SAS),
∴∠BCP=∠A,
∵∠BCD+∠BCP=180°,
∴∠A+∠BCD=180°.
【点睛】
此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.
29.(1)y=﹣2x+6;(2)点P(m﹣6,2m﹣6);(3)y=﹣x+3 2
【解析】
【分析】
(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求直线BC的解析式;
(2)证明△PGA≌△QHC(AAS),则PG=HQ=2m﹣6,故点P的纵坐标为:2m﹣6,而点P在直线AB上,即可求解;
(3)由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=
∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=3,可求m的值,进而可得点P,点Q的坐标,即可求直线PQ的解析式.
【详解】
(1)∵直线y=2x+6与x轴交于点A,与y轴交于点B,
∴点B(0,6),点A(﹣3,0),
∴AO=3,BO=6,
∵AB=BC,BO⊥AC,
∴AO=CO=3,
∴点C(3,0),
设直线BC解析式为:y=kx+b,则
03
6
k b
b
=+
⎧
⎨
=
⎩
,解得:
2
6
k
b
=-
⎧
⎨
=
⎩
,
∴直线BC解析式为:y=﹣2x+6;
(2)如图1,过点P作PG⊥AC于点G,过点Q作HQ⊥AC于点H,∵点Q横坐标为m,
∴点Q(m,﹣2m+6),
∵AB=CB,
∴∠BAC=∠BCA=∠HCQ,
又∵∠PGA=∠QHC=90°,AP=CQ,
∴△PGA≌△QHC(AAS),
∴PG=HQ=2m﹣6,
∴点P的纵坐标为:2m﹣6,
∵直线AB的表达式为:y=2x+6,
∴2m﹣6=2x+6,解得:x=m﹣6,
∴点P(m﹣6,2m﹣6);
(3)如图2,连接AM,CM,过点P作PE⊥AC于点E,∵AB=BC,BO⊥AC,
∴BO是AC的垂直平分线,
∴AM=CM,且AP=CQ,PM=MQ,
∴△APM≌△CQM(SSS)
∴∠PAM=∠MCQ,∠BQM=∠APM=45°,
∵AM=CM,AB=BC,BM=BM,
∴△ABM≌△CBM(SSS)
∴∠BAM=∠BCM,
∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,
∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,
∴∠APM=∠AMP=45°,
∴AP=AM,
∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,
∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)
∴AE=OM,PE=AO=3,
∴2m﹣6=3,
∴m=9
2
,
∴Q(9
2
,﹣3),P(﹣
3
2
,3),
设直线PQ的解析式为:y=ax+c,
∴
9
3
2
3
3
2
a c
a c
⎧
-=+
⎪⎪
⎨
⎪=-+
⎪⎩
,解得:
1
3
2
a
c
=-
⎧
⎪
⎨
=
⎪⎩
,
∴直线PQ的解析式为:y=﹣x+3
2.
【点睛】
本题主要考查三角形全等的判定和性质定理,等腰直角三角形的性质定理以及一次函数的图象和性质,添加辅助线,构造全等三角形,是解题的关键.
30.(1)证明见解析;(2)证明见解析;(3)当AC =2BD 时,对于满足条件的任意点N ,AN =CP 始终成立,证明见解析.
【解析】
【分析】
(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM ;
(2)过点N 作NE ⊥AC 于E ,由“AAS ”可证△NEC ≌△CDM ,可得NE=CD ,由三角形面积公式可求解;
(3)过点N 作NE ⊥AC 于E ,由“SAS ”可证△NEA ≌△CDP ,可得AN=CP .
【详解】
(1)∵∠BAC=45°,
∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM .
∵∠NCM=135°,
∴∠ACN=135°﹣∠ACM ,∴∠ACN=∠AMC ;
(2)过点N 作NE ⊥AC 于E ,
∵∠CEN=∠CDM=90°,∠ACN=∠AMC ,CM=CN ,
∴△NEC ≌△CDM (AAS ),
∴NE=CD ,CE=DM ;
∵S 112=AC•NE ,S 212
=AB•CD ,
∴1
2
S AC
S AB
;
(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,
理由如下:过点N作NE⊥AC于E,
由(2)可得NE=CD,CE=DM.
∵AC=2BD,BP=BM,CE=DM,
∴AC﹣CE=BD+BD﹣DM,
∴AE=BD+BP=DP.
∵NE=CD,∠NEA=∠CDP=90°,AE=DP,
∴△NEA≌△CDP(SAS),
∴AN=PC.
【点睛】
本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.。