圆中的重要模型之辅助线模型(八大类)(学生版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆中的重要模型之辅助线模型(八大类)
在平面几何中,与圆有关的许多题目需要添加辅助线来解决。
百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。
添加辅助线的方法有很多,本专题通过分析探索归纳八类圆中常见的辅助线的作法。
模型1、遇弦连半径(构造等腰三角形)
【模型解读】已知AB 是⊙O 的一条弦,连接OA ,OB ,则∠A =∠B .
在圆的相关题目中,不要忽略隐含的已知条件。
当我们要解决有关角度、长度问题时,通常可以连接半径构造等腰三角形,利用等腰三角形的性质、勾股定理及圆中的相关定理,还可连接圆周上一点和弦的两个端点,根据圆周角的性质可得相等的圆周角,解决角度或长度的计算问题
1(2022·山东聊城·统考中考真题)如图,
AB ,CD 是⊙O 的弦,延长AB ,CD 相交于点P .已知∠P =30°,∠AOC =80°,则BD 的度数是()
A.30°
B.25°
C.20°
D.10°
2(2023•南召县中考模拟)如图,
⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE =OB ,∠AOC =84°,则∠E 等于()
A.42°
B.28°
C.21°
D.20°
3(2023·江苏沭阳初三月考)如图,已知点C 是⊙O 的直径AB 上的一点,过点C 作弦DE ,使CD =CO .若AD 的度数为35°,则BE 的度数是.
4(2023年山东省淄博市中考数学真题)如图,△ABC是⊙O的内接三角形,AB=AC,∠BAC=120°,D 是BC边上一点,连接AD并延长交⊙O于点E.若AD=2,DE=3,则⊙O的半径为()
A.10
B.3
10 C.210 D.310
2
模型2、遇弦作弦心距(解决有关弦长的问题)
【模型解读】已知AB是⊙O的一条弦,过点OE⊥AB,则AE=BE,OE2+AE2=OA2。
在圆中,求弦长、半径或圆心到弦的距离时,常添加弦心距,或作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
利用垂径定理、圆心角及其所对的弧、弦和弦心距之间的关系、弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。
一般有弦中点、或证明弦相等或已知弦相等时,常作弦心距。
5(2023年浙江省衢州市中考数学真题)如图是一个圆形餐盘的正面及其固定支架的截面图,凹槽ABCD 是矩形.当餐盘正立且紧靠支架于点A,D时,恰好与BC边相切,则此餐盘的半径等于cm.
6(2023年四川省广安市中考数学真题)如图,△ABC内接于⊙O,圆的半径为7,∠BAC=60°,则弦BC 的长度为.
7(2021·湖北中考真题)筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O 在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()
A.1米B.4-7
米C.2米D.4+7
米
8(2023·广东广州·九年级校考自主招生)如图所示,圆O的直径AB与弦MN相交于点P.已知圆的直径AB=4,∠APN=45°,则MP2+NP2的值是()
A.82
B.8
C.43
D.4
模型3、遇求角可构造同弧的圆周角(圆心角)
【模型解读】如图,已知A、B、P是⊙O上的点,点C是圆上一动点,连接AC、BC,则∠ACB=1
2∠AOB。
9(2023·四川巴中·统考中考真题)如图,⊙O 是△ABC 的外接圆,若∠C =25°,则∠BAO =()
A.25°
B.50°
C.60°
D.65°
10(2022·黑龙江哈尔滨·校考模拟预测)如图,
点P 是⊙O 上一点,若∠AOB =70°,则∠APB 的度数为()
A.110°
B.145°
C.135°
D.160°
11(2023秋·重庆·九年级校考阶段练习)如图,
一块直角三角板的30°角的顶点P 落在⊙O 上,两边分别交⊙O 于A 、B 两点,若⊙O 的直径为8,则弦AB 长为()
A.8
B.4
C.22
D.23
12(2023·辽宁鞍山·统考中考真题)如图,
AC ,BC 为⊙O 的两条弦,D ,G 分别为AC ,BC 的中点,⊙O 的半径为2.若∠C =45°,则DG 的长为()
A.2
B.3
C.32
D.2
模型4、遇直径作直径所对的圆周角(构造直角三角形)
【模型解读】如图,已知AB 是⊙O 的直径,点C 是圆上一点,连接AC 、BC ,则∠ACB =90o 。
如图,当图形中含有直径时,构造直径所对的圆周角是解问题的重要思路,在证明有关问题中注意90o 的圆周角的构造。
13(2023·辽宁营口·统考中考真题)如图所示,
AD 是⊙O 的直径,弦BC 交AD 于点E ,连接AB ,AC ,若∠BAD =30°,则∠ACB 的度数是()
A.50°
B.40°
C.70°
D.60°
14(2022·山东泰安·统考中考真题)如图,
AB 是⊙O 的直径,∠ACD =∠CAB ,AD =2,AC =4,则⊙O 的半径为()
A.23
B.32
C.25
D.5
15(2022·四川巴中·统考中考真题)如图,
AB 为⊙O 的直径,弦CD 交AB 于点E ,BC =BD ,∠CDB =
30°,AC=23,则OE=()
A.3
2
B.3
C.1
D.2
模型5、遇90°的圆周角连直径
【模型解读】如图,已知圆周角∠BAC=90o,连接BC,则BC是⊙O的直径。
遇到90°的圆周角时,常连接两条弦没有公共点的另一端点,得到直径。
利用圆周角的性质,可得到直径。
16(2022·辽宁营口·统考中考真题)如图,点A,B,C,D在⊙O上,AC⊥BC,AC=4,∠ADC=30°,则BC的长为()
A.43
B.8
C.42
D.4
17(2023·四川达州·统考二模)如图,半径为3
2的⊙A经过原点O和点C0,1
,B是y轴左侧⊙A优弧上
一点,则tan∠OBC为()
A.1
3B.2
4
C.2
3
D.2
18(2023·重庆·统考中考真题)如图,⊙O是矩形ABCD的外接圆,若AB=4,AD=3,则图中阴影部分的面积为.(结果保留π)
模型6、遇切线连圆心和切点(构造垂直)
【模型解读】如图,已知直线AB连与圆O相切于点C,连接OC,则OC⊥AB。
已知圆的切线时,常把切点与圆心连接起来,得半径与切线垂直,构造直角三角形,再利用直角三角形的有关性质解题。
19(2022·黑龙江哈尔滨·校考模拟预测)如图,如图,PA、PB分别切⊙O于点A、B,点C为优弧AB上一点,若∠ACB=∠APB,则∠ACB的度数为()
A.67.5°
B.62°
C.60°
D.58°
20(2023年重庆市中考数学真题)如图,AC是⊙O的切线,B为切点,连接OA,OC.若∠A=30°,AB =23,BC=3,则OC的长度是()
A.3
B.23
C.13
D.6
21(2022春·湖北武汉·九年级统考自主招生)如图,AB是圆O的直径,BC是切线,B是切点,弦AD∥OC,CD与BA的延长线交于点E,BC=AB,则AE
AB
=()
A.1
2B.1
3
C.2
3
D.3
5
模型7、证明切线的辅助线(证垂直或直角)
【模型解读】证明直线AB是⊙O的切线.
遇到证明某一直线是圆的切线时:
(1)有点连圆心:当直线和圆的公共点已知时,联想圆的切线的判定定理,只要将该店与圆心连接,再证明该直径与直线垂直。
如图,已知过圆上一点C的直线AB,连接OC,证明OC⊥AB,则直线AB是⊙O的切线.(2)无点作垂线:需证明的切线,条件中没有告知与圆之间有交点,则联想切线的定义,过圆心作该直线的垂线,证明圆心到垂足的距离等于半径。
如图,过点O作OC⊥AB,证明OC等于⊙O的半径,则直线AB是⊙O
的切线.
22(2023年四川省攀枝花市中考数学真题)如图,AB为⊙O的直径,如果圆上的点D恰使∠ADC=∠B,求证:直线CD与⊙O相切.
23(2023秋·福建福州·九年级校考阶段练习)如图,OA=OB=5,AB=8,⊙O的直径为6.求证:直线AB是⊙O的切线.
24(2023年辽宁省盘锦市中考数学真题)如图,△ABC内接于⊙O,AB为⊙O的直径,延长AC到点G,使得CG=CB,连接GB,过点C作CD∥GB,交AB于点F,交点⊙O于点D,过点D作DE∥AB.交GB的延长线于点E.
(1)求证:DE与⊙O相切.(2)若AC=4,BC=2,求BE的长.
25(2023年辽宁省鞍山市中考数学真题)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,过点D作DF⊥BC,交BC的延长线于点F,交BA的延长线于点E,连接BD.若∠EAD+∠BDF=180°.
(1)求证:EF为⊙O的切线.(2)若BE=10,sin∠BDC=2
3,求⊙O的半径.
模型8、遇三角形的内切圆,连内心与顶点(切点)
当遇到三角形内切圆,连接内心到三角形各顶点,或连接内心到各边切点(或做垂线)。
利用内心的性质可得一内心到三角形三个顶点的连线是各角的平分线,内心到三角形三边的距离相等。
26(2022·湖北恩施·统考中考真题)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π).
27(2023秋·浙江·九年级专题练习)如图,在△ABC中,AB+AC=5
3
BC,AD⊥BC于D,⊙O为
△ABC的内切圆,设⊙O的半径为R,AD的长为h,则R
h的值为()
A.3
8B.2
7
C.1
3
D.1
2
28(2023·广东广州·统考中考真题)如图,△ABC的内切圆⊙I与BC,CA,AB分别相切于点D,E,F,若⊙I的半径为r,∠A=α,则BF+CE-BC
的值和∠FDE的大小分别为()
A.2r,90°-α
B.0,90°-α
C.2r,90°-α
2D.0,90°-α
2
课后专项训练
1(2023·重庆·统考中考真题)如图,AC是⊙O的切线,B为切点,连接OA,OC.若∠A=30°,AB= 23,BC=3,则OC的长度是()
A.3
B.23
C.13
D.6
2(2022·黑龙江哈尔滨·校考模拟预测)如图,如图,PA、PB分别切⊙O于点A、B,点C为优弧AB上一点,若∠ACB=∠APB,则∠ACB的度数为()
A.67.5°
B.62°
C.60°
D.58°
3(2023年四川省宜宾中考数学真题)如图,已知点A 、B 、C 在⊙O 上,C 为AB
的中点.若∠BAC =35°,则∠AOB 等于(
)
A.140°
B.120°
C.110°
D.70°
4(2023年四川省凉山州数学中考真题)如图,在⊙O 中,OA ⊥BC ,∠ADB =30°,BC =23,则OC =(
)
A.1
B.2
C.23
D.4
5(2023年重庆市中考数学真题)如图,AB 为⊙O 的直径,直线CD 与⊙O 相切于点C ,连接AC ,若∠ACD =50°,则∠BAC 的度数为(
)
A.30°
B.40°
C.50°
D.60°
6(2023·广东·一模)如图,AB 是⊙O 的直径,BC 交⊙O 于点D ,DE ⏊AC 于点E ,下列说法不正确的是(
)
A.若DE=DO,则DE是⊙O的切线
B.若AB=AC,则DE是⊙O的切线
C.若CD=DB,则DE是⊙O的切线
D.若DE是⊙O的切线,则AB=AC
7(2023秋·山东聊城·九年级校考开学考试)如图,AB为⊙O的直径,CD为⊙O的弦,连接AC、AD,若∠BAC=27°,则∠ADC的度数为度.
8(2023秋·福建福州·九年级校考阶段练习)如图,⊙O的弦AB⊥CD,点E为垂足,AE=3,BE=7,且AB=CD则⊙O的半径为.
9(2023秋·江苏南京·九年级校考阶段练习)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过
点C作⊙O的切线交AB的延长线于点P,若∠ADC=115°,则∠CBA和∠P的度数分别为.
10(2022秋·黑龙江大庆·九年级统考期末)如图,△ABC的内切⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,△ABC的周长为14,则BC的长为.
11(2023·黑龙江哈尔滨·九年级校考开学考试)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA= 45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.
12(2023秋·江苏宿迁·九年级校联考阶段练习)如图,BD是⊙O的弦,点C在BD上,以BC为边作等边三角形△ABC,点A在圆内,且AC恰好经过点O,其中BC=12,OA=8,则BD的长为.
13(2023·江苏·中考真题)如图,AB是⊙O的直径,点C,D在⊙O上.若∠DAB=66°,则∠ACD=度.
14(2023·山东泰安·统考中考真题)为了测量一个圆形光盘的半径,小明把直尺、光盘和三角尺按图所示放置于桌面上,并量出AB=4cm,则这张光盘的半径是cm.(精确到0.1cm.参考数据:3≈1.73)
15(2021·四川宜宾·统考中考真题)如图,
⊙O 的直径AB =4,P 为⊙O 上的动点,连结AP ,Q 为AP 的中点,若点P 在圆上运动一周,则点Q 经过的路径长是
.
16(2023·安徽合肥·合肥寿春中学校考三模)如图,在⊙O 中,弦AB ⊥BC ,AB =8,BC =6,D 是BC
一点,∠BOD =60°,则劣弧BD
的长为
.
17(2023·河南南阳·统考三模)如图,
在2×3的网格图中,每个小正方形的边长均为1,点A ,B ,C ,D 都在格点上,线段CD 与弧AC 交于点E ,则图中弧AE 的长度为
.
18(2023·广东东莞·校考一模)如图,
从一块半径为1米的圆形铁皮圆O 上剪出一个圆心角为90度的扇形ABC ,且点A 、B 、C 都在圆上,则此时扇形的面积(保留π)是
平方米.
19(2023秋·江苏南京·九年级校考阶段练习)如图,点P在矩形AOBC的内部,⊙P与AO,OB都相切,且经过点C,与BC相交于点D.若⊙P的半径为5,AO=8.则OB的长是.
20(2022秋·江苏淮安·九年级校考阶段练习)如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=72°,求∠E的度数.
21(2023秋·湖北武汉·九年级期中)如图,⊙O的弦CD交直径AB于E,OD=DE,CE:DE=3:5,若OE=5,求CD的长.
22(2023秋·湖北襄阳·九年级校考阶段练习)如图AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC.过D点作DE⊥AC于E,求证:DE为⊙O的切线.
点D在AB上,且以AD为直径的⊙O经过点E.
(1)求证:BC是⊙O的切线;(2)当AD=3BD,且BE=4时,求⊙O的半径.
24(2023秋·江苏·九年级专题练习)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且
∠ACP=∠OBC.(1)求证:PC与⊙O相切;(2)若PA=4,PC=BC,求⊙O的半径.
25(2023·江西宜春·九年级校考阶段练习)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙
O于点E,弦AD∥OC.(1)求证:OC垂直平分BD;(2)求证:CD是⊙O的切线.。