四川省三台中学2021年高考数学高考数学压轴题 平面向量多选题分类精编附解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省三台中学2021年高考数学高考数学压轴题 平面向量多选题分类精编附
解析
一、平面向量多选题
1.在三棱锥M ABC -中,下列命题正确的是( )
A .若12
33
AD AB AC =
+,则3BC BD = B .若G 为ABC 的重心,则111
333
MG MA MB MC =++
C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=
D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ = 【答案】BC 【分析】
作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】
对于A ,由已知12
322233
AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则
3
2
BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,
MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即
111
333
MG MA MB MC =++,故B 正确;
对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即
()00
MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()
00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()
000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即
0MB AC ⋅=,故C 正确;
对于D ,111
()()222
PQ MQ MP MB MC MA MB MC MA ∴=-=
+-=+- ()
2
11
22
PQ MB MC MA MB MC MA ∴=+-=
+-,又
(
)
22
2
2
222MB MC MA MB MC MA MB MC MB MA MC MA
+-=+++⋅-⋅-⋅2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1
822
PQ ∴==,故
D 错误. 故选:BC 【点睛】
关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点: (1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.
(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.
2.如图,已知长方形ABCD 中,3AB =,2AD =,()01DE DC λλ→
→
=<<,则下列结论正确的是( )
A .当13λ=时,1233
E A A E D B →→
→=+
B .当23λ=时,10
cos ,10
AE BE →→=
C .对任意()0,1λ∈,AE BE →
→
⊥不成立
D .A
E BE →→
+的最小值为4 【答案】BCD 【分析】
根据题意,建立平面直角坐标系,由DE DC λ→
→
=,根据向量坐标的运算可得()3,2E λ,
当1
3
λ=
时,得出()1,2E ,根据向量的线性运算即向量的坐标运算,可求出
2133AD AE BE →
→→=+,即可判断A 选项;当2
3
λ=时,()2,2E ,根据平面向量的夹角公
式、向量的数量积运算和模的运算,求出cos ,AE BE →→
=
,即可判断B 选项;若AE BE →→
⊥,根据向量垂直的数量积运算,即可判断C 选项;根据向量坐标加法运算求得()63,4AE BE λ→
→
+=-,再根据向量模的运算即可判断D 选项.
【详解】
解:如图,以A 为坐标原点,,AB AD 所在直线分别为x 轴、y 轴建立平面直角坐标系, 则()0,0A ,()3,0B ,()3,2C ,()0,2D ,由DE DC λ→
→
=,可得()3,2E λ,
A 项,当1
3
λ=
时,()1,2E ,则()1,2AE →=,()2,2BE →=-, 设AD m AE n BE →→→
=+,又()0,2AD →=,所以02222m n m n =-⎧⎨=+⎩,得2313m n ⎧=⎪⎪⎨⎪=⎪⎩,
故2133
AD AE BE →
→→
=+,A 错误;
B 项,当2
3λ=
时,()2,2E ,则()2,2AE →=,()1,2BE →=-,
故
cos ,AE BE AE BE AE BE
→→
→
→
→
→
⋅==
=
⋅,B 正确;
C 项,()3,2AE λ→
=,()33,2BE λ→=-,
若AE BE →→
⊥,则()2333229940AE BE λλλλ→→
⋅=-+⨯=-+=, 对于方程29940λλ-+=,()2
Δ94940=--⨯⨯<, 故不存在()0,1λ∈,使得AE BE →
→
⊥,C 正确;
D 项,()63,4A
E BE λ→→
+=-,所以
4AE BE →→
+=≥,
当且仅当1
2
λ=时等号成立,D 正确. 故选:BCD.
【点睛】
关键点点睛:本题考查平面向量的坐标运算,数量积运算和线性运算,考查运用数量积表示两个向量的夹角以及会用数量积判断两个平面向量的垂直关系,熟练运用平面向量的数量积运算是解题的关键.
3.正方形ABCD 的边长为1,记AB a =,BC b =,AC c =,则下列结论正确的是( )
A .()
0a b c -⋅= B .()
0a b c a +-⋅= C .()0a c b a --⋅=
D .2a b c ++=
【答案】ABC 【分析】
作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解】 如下图所示:
对于A 选项,四边形ABCD 为正方形,则BD AC ⊥,
a b AB BC AB AD DB -=-=-=,()
0a b c DB AC ∴-⋅=⋅=,A 选项正确;
对于B 选项,0a b c AB BC AC AC AC +-=+-=-=,则()
00a b c a a +-⋅=⋅=,B 选项正确;
对于C 选项,a c AB AC CB -=-=,则0a c b CB BC --=-=,则
()0a c b a --⋅=,C 选项正确;
对于D 选项,2a b c c ++=,222a b c c ∴++==,D 选项错误. 故选:ABC. 【点睛】
本题考查平面向量相关命题正误的判断,同时也考查了平面向量加、减法法则以及平面向量数量积的应用,考查计算能力,属于中等题.
4.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .12
33
BE BA BC =
+ C .数列{a n }为等比数列 D .14n
n n a a +-=
【答案】BD 【分析】 证明12
33
BE BA BC =
+,所以选项B 正确;设BD tBE =(0t >),易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误;数列{1n n a a --}
是以4为首项,4为公比的等比数列,所以14n
n n a a +-=,所以选项D 正确,易得
321a =,选项C 不正确.
【详解】
因为2AE EC =,所以2
3
AE AC =, 所以2
()3
AB BE AB BC +=+, 所以12
33
BE BA BC =
+,所以选项B 正确;
设BD tBE =(0t >),
则当n ≥2时,由()()1123n n n n BD tBE a a BA a a BC -+==-+-,所以
()()1111
23n n n n BE a a BA a a BC t t
-+=
-+-, 所以
()11123n n a a t --=,()11233
n n a a t +-=, 所以()11322n n n n a a a a +--=-, 易得()114n n n n a a a a +--=-,
显然1n n a a --不是同一常数,所以选项A 错误;
因为2a -1a =4,
11
4n n
n n a a a a +--=-, 所以数列{1n n a a --}是以4为首项,4为公比的等比数列,
所以14n
n n a a +-=,所以选项D 正确,
易得321a =,显然选项C 不正确. 故选:BD 【点睛】
本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平.
5.设O ,A ,B 是平面内不共线的三点,若()1,2,3n OC OA nOB n =+=,则下列选项正确的是( )
A .点1C ,2C ,3C 在同一直线上
B .123O
C OC OC ==
C .123OC OB OC OB OC OB ⋅<⋅<⋅
D .123OC OA OC OA OC OA ⋅<⋅<⋅
【答案】AC 【分析】
利用共线向量定理和向量的数量积运算,即可得答案; 【详解】
()
12212()C C OC OC OA OB OA OB OB =-=+-+=,()()2332
32C C OC OC OA OB OA OB OB =-=+-+=,所以1
2
23C C
C C =,A 正确.
由向量加法的平行四边形法则可知B 不正确.
21OC OA OC OA OA OB ⋅-⋅=⋅,无法判断与0的大小关系,而()
2
1OC OB OA OB OB OA OB OB ⋅=+⋅=⋅+,
()2
2
22OC OB OA OB OB OA OB OB
⋅=+⋅=⋅+,
同理2
33OC OB OA OB OB ⋅=⋅+,所以C 正确,D 不正确. 故选:AC .
【点睛】
本题考查向量共线定理和向量的数量积,考查逻辑推理能力、运算求解能力.
6.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,
2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )
A .//P
B CQ B .1233
BP BA BC =
+ C .0PA PC ⋅> D .4S =
【答案】BD 【分析】
利用向量的共线定义可判断A ;利用向量加法的三角形法则以及向量减法的几何意义即可判断B ;利用向量数量积的定义可判断C ;利用三角形的面积公式即可判断D. 【详解】
由20PA PC +=,2QA QB =,
可知点P 为AC 的三等分点,点Q 为AB 延长线的点, 且B 为AQ 的中点,如图所示:
对于A ,点P 为AC 的三等分点,点B 为AQ 的中点, 所以PB 与CQ 不平行,故A 错误; 对于B ,()
2212
3333
BP BA AP BA AC BA BC BA BA BC =+=+=+-=+, 故B 正确;
对于C ,cos 0PA PC PA PC PA PC π⋅==-<,故C 错误; 对于D ,设ABC 的高为h ,1
32
ABC
S AB h =
=,即6AB h =, 则APQ 的面积12122
26423233
APQ
S AQ h AB h =
⋅=⋅⋅=⨯=,故D 正确; 故选:BD 【点睛】
本题考查了平面向量的共线定理、共线向量、向量的加法与减法、向量的数量积,属于基础题
7.在ABC 中,D ,E ,F 分别是边BC ,AC ,AB 中点,下列说法正确的是( )
A.0 AB AC AD
+-= B.0 DA EB FC
++=
C .若
3 |||||
|
AB AC AD
AB AC AD
+=,则BD是BA在BC的投影向量
D.若点P是线段AD上的动点,且满足BP BA BC
λμ
=+,则λμ的最大值为
1
8
【答案】BCD
【分析】
对选项A,B,利用平面向量的加减法即可判断A错误,B正确.对选项C,首先根据已知得到AD为BAC
∠的平分线,即AD BC
⊥,再利用平面向量的投影概念即可判断C正确.对选项D,首先根据,,
A P D三点共线,设(1)
BP tBA t BD,01
t
≤≤,再根据已知得
到1
2
t
t
λ
μ
=
⎧
⎪
⎨-
=
⎪⎩
,从而得到2
1111
()()
2228
t
y t t,即可判断选项D正确.
【详解】
如图所示:
对选项A,20
AB AC AD AD AD AD
+-=-=≠,故A错误.
对选项B,
111
()()()
222
DA EB FC AB AC BA BC CA CB
++=-+-+-+
111111
222222
AB AC BA BC CA CB
=------
111111
222222
AB AC AB BC AC BC
=--+-++=,故B正确.
对选项C,
||
AB
AB
,
||
AC
AC
,
||
AD
AD
分别表示平行于AB,AC,AD的单位向量,
由平面向量加法可知:
||||
AB AC
AB AC
+为BAC
∠的平分线表示的向量.
因为
3
||||||
AB AC AD
AB AC AD
+=,所以AD为BAC
∠的平分线,
又因为AD为BC的中线,所以AD BC
⊥,如图所示:
BA 在BC 的投影为cos BD BA
B
BA
BD BA
,
所以BD 是BA 在BC 的投影向量,故选项C 正确. 对选项D ,如图所示:
因为P 在AD 上,即,,A P D 三点共线, 设(1)BP
tBA t BD ,01t ≤≤.
又因为1
2BD BC =
,所以(1)2
t BP tBA BC . 因为BP BA BC λμ=+,则12t
t λμ=⎧⎪
⎨-=⎪⎩
,01t ≤≤.
令21111()2
228
t y
t
t , 当12t =时,λμ取得最大值为1
8.故选项D 正确.
故选:BCD 【点睛】
本题主要考查平面向量的加法,减法的几何意义,数形结合为解决本题的关键,属于中档题.
8.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤
B .若a b c b ⋅=⋅且0b ≠,则a c =
C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向
D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是
5,3⎛⎫-+∞ ⎪⎝⎭
【答案】AC 【分析】
根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】
对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,
对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,
对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即
22||||a b a b -⋅=,cos 1θ=-,
则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得5
3
λ>-
, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时5
3
λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】
本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.
9.已知,a b 是单位向量,且(1,1)a b +=-,则( ) A .||2a b += B .a 与b 垂直
C .a 与a b -的夹角为4
π D .||1a b -=
【答案】BC 【分析】
(1,1)a b +=-两边平方求出||2a b +=;利用单位向量模长为1,求出0a b ⋅=;
||a b -平方可求模长;用向量夹角的余弦值公式可求a 与a b -的夹角.
【详解】
由(1,1)a b +=-两边平方,得2222||21(12|)|a b a b ++⋅=+-=, 则||2a b +=,所以A 选项错误;
因为,a b 是单位向量,所以1122a b ++⋅=,得0a b ⋅=,所以B 选项正确;
则222||22a b a b a b -=+-⋅=,所以||2a b -=,所以D 选项错误;
2()cos ,2||||1a a b a a b a a b ⋅-〈-〉====-⨯, 所以,a 与a b -的夹角为
4
π.所以C 选项正确; 故选:BC.
【点睛】 本题考查平面向量数量积的应用.
求向量模的常用方法:
(1)若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式2+a x y = (2)若向量a b , 是以非坐标形式出现的,求向量a 的模可应用公式22
•a a a a ==或 2222
||)2?(a b a b a
a b b ==+,先求向量模的平方,再通过向量数量积的运算求解. 判断两向量垂直:根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 解两个非零向量之间的夹角:根据公式•a b cos a b =
=求解出这两个
向量夹角的余弦值.
10.ABC ∆是边长为3的等边三角形,已知向量a 、b 满足3AB a =,3AC a b =+,则下列结论中正确的有( )
A .a 为单位向量
B .//b B
C C .a b ⊥
D .()6a b BC +⊥ 【答案】ABD
【分析】
求出a 可判断A 选项的正误;利用向量的减法法则求出b ,利用共线向量的基本定理可判断B 选项的正误;计算出a b ⋅,可判断C 选项的正误;计算出()6a b BC +⋅,可判断D 选项的正误.综合可得出结论.
【详解】
对于A 选项,
3AB a =,13a AB ∴=,则113a AB ==,A 选项正确; 对于B 选项,3AC a b AB b =+=+,b AC AB BC ∴=-=,//b BC ∴,B 选项正
确;
对于C 选项,21123cos 0333
a b AB BC π⋅=⋅=⨯⨯≠,所以a 与b 不垂直,C 选项错误; 对于D 选项,()()()22
60a b BC AB AC AC AB AC AB +⋅=+⋅-=-=,所以,()6a b BC +⊥,D 选项正确.
故选:ABD.
【点睛】
本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题.。