数字逻辑实验三

合集下载

数字逻辑实验报告实验

数字逻辑实验报告实验

一、实验目的1. 理解数字逻辑的基本概念和基本原理。

2. 掌握数字逻辑电路的基本分析方法,如真值表、逻辑表达式等。

3. 熟悉常用数字逻辑门电路的功能和应用。

4. 提高数字电路实验技能,培养动手能力和团队协作精神。

二、实验原理数字逻辑电路是现代电子技术的基础,它主要研究如何用数字逻辑门电路实现各种逻辑功能。

数字逻辑电路的基本元件包括与门、或门、非门、异或门等,这些元件可以通过组合和连接实现复杂的逻辑功能。

1. 与门:当所有输入端都为高电平时,输出端才为高电平。

2. 或门:当至少有一个输入端为高电平时,输出端为高电平。

3. 非门:将输入端的高电平变为低电平,低电平变为高电平。

4. 异或门:当输入端两个高电平或两个低电平时,输出端为低电平,否则输出端为高电平。

三、实验内容1. 实验一:基本逻辑门电路的识别与测试(1)认识实验仪器:数字电路实验箱、逻辑笔、示波器等。

(2)识别与测试与门、或门、非门、异或门。

(3)观察并记录实验现象,分析实验结果。

2. 实验二:组合逻辑电路的设计与分析(1)设计一个简单的组合逻辑电路,如加法器、减法器等。

(2)根据真值表列出输入输出关系,画出逻辑电路图。

(3)利用逻辑门电路搭建电路,进行实验验证。

(4)观察并记录实验现象,分析实验结果。

3. 实验三:时序逻辑电路的设计与分析(1)设计一个简单的时序逻辑电路,如触发器、计数器等。

(2)根据电路功能,列出状态表和状态方程。

(3)利用触发器搭建电路,进行实验验证。

(4)观察并记录实验现象,分析实验结果。

四、实验步骤1. 实验一:(1)打开实验箱,检查各电路元件是否完好。

(2)根据电路图连接实验电路,包括与门、或门、非门、异或门等。

(3)使用逻辑笔和示波器测试各逻辑门电路的输出,观察并记录实验现象。

2. 实验二:(1)根据实验要求,设计组合逻辑电路。

(2)列出真值表,画出逻辑电路图。

(3)根据逻辑电路图连接实验电路,包括所需逻辑门电路等。

数字逻辑实验三 实验四

数字逻辑实验三 实验四

实验报告课程名称电子技术综合设计与实践题目名称实验三、实验四学生学院自动化学院专业班级物联网工程学号学生姓名指导教师2016年 6 月 26 日一、实验目的1、(实验三)用两片加法器芯片74283配合适当的门电路完成两个BCD8421码的加法运算。

2、(实验四)设计一个计数器完成1→3→5→7→9→0→2→4→6→8→1→…的循环计数(设初值为1),并用一个数码管显示计数值(时钟脉冲频率为约1Hz)。

二、功能描述及分析实验三:(1)分别用两个四位二进制数表示两个十进制数,如:用A3 A2 A1A0表示被加数,用B3B2B1B0表示加数,用S3 S2 S1 S0表示“和”,用C0表示进位。

(2)由于BCD8421码仅代表十进制的0—9,所以加法修正规则:当S>9时,修正值为D3D2D1D0=0110;当S<9时,修正值为D3D2D1D0=0000。

(3)由真值表,我们可以得出D3=D0=0,D2=D1=FC4 + S4(S3+S2)实验四:(1)分别用四位二进制数来表示十进制数,触发器状态用DCBA表示,10个技术状态中的初值状态为0001。

(2)列出状态表,如下(3)得出次态方程:D n+1=BC, C n+1=B⊕C, B n+1=A D, A n+1=A⊕D(4)选用D触发器来实现,求触发器激励函数D4=BC, D3=B⊕C, D2=A D, D1=A⊕D(5)画出逻辑电路图如下:(6)四个触发器输出端一次输入到7447数码管译码器输入端。

三、实验器材实验三:(1)两片加法器芯片74283,两个或门,一个与门,8个按键,5个LED 显示灯。

(2)DE2开发板和QuartusⅡ7.2软件实验四:一个74292分频器、一个7447数码管译码器、四个D触发器、二个与门、二个非门、二个异或门四、实验结果(电路图)实验三:举例:1、当输入0001+0010时,输出是0011,,则对应的是指示灯是0与1号绿灯亮,代表十进制数里的十位数的进位指示灯C0不亮。

数字逻辑设计实验报告

数字逻辑设计实验报告

一、实验目的1. 理解和掌握数字逻辑设计的基本原理和方法。

2. 熟悉数字电路的基本门电路和组合逻辑电路。

3. 培养动手能力和实验技能,提高逻辑思维和解决问题的能力。

4. 熟悉数字电路实验设备和仪器。

二、实验原理数字逻辑设计是计算机科学与技术、电子工程等领域的基础课程。

本实验旨在通过实际操作,让学生掌握数字逻辑设计的基本原理和方法,熟悉数字电路的基本门电路和组合逻辑电路。

数字逻辑电路主要由逻辑门组成,逻辑门是数字电路的基本单元。

常见的逻辑门有与门、或门、非门、异或门等。

根据逻辑门的功能,可以将数字电路分为组合逻辑电路和时序逻辑电路。

组合逻辑电路的输出只与当前输入有关,而时序逻辑电路的输出不仅与当前输入有关,还与之前的输入有关。

三、实验内容1. 逻辑门实验(1)实验目的:熟悉逻辑门的功能和特性,掌握逻辑门的测试方法。

(2)实验步骤:① 将实验箱中的逻辑门连接到测试板上。

② 根据实验要求,将输入端分别连接高电平(+5V)和低电平(0V)。

③ 观察输出端的变化,记录实验数据。

④ 分析实验结果,验证逻辑门的功能。

2. 组合逻辑电路实验(1)实验目的:掌握组合逻辑电路的设计方法,熟悉常用组合逻辑电路。

(2)实验步骤:① 根据实验要求,设计组合逻辑电路。

② 将电路连接到实验箱中。

③ 根据输入端的不同组合,观察输出端的变化,记录实验数据。

④ 分析实验结果,验证电路的功能。

3. 时序逻辑电路实验(1)实验目的:掌握时序逻辑电路的设计方法,熟悉常用时序逻辑电路。

(2)实验步骤:① 根据实验要求,设计时序逻辑电路。

② 将电路连接到实验箱中。

③ 观察电路的输出变化,记录实验数据。

④ 分析实验结果,验证电路的功能。

四、实验结果与分析1. 逻辑门实验结果:通过实验,验证了逻辑门的功能和特性,掌握了逻辑门的测试方法。

2. 组合逻辑电路实验结果:通过实验,掌握了组合逻辑电路的设计方法,熟悉了常用组合逻辑电路。

3. 时序逻辑电路实验结果:通过实验,掌握了时序逻辑电路的设计方法,熟悉了常用时序逻辑电路。

数字逻辑实验报告

数字逻辑实验报告

肇庆学院计算机学院软件学院数字逻辑实验报告专业班级学号学生姓名指导教师连晋平完成时间目录实验一基本门电路实验 (1)1.1预习内容 (1)1.2目的要求 (1)1.3实验仪器及材料 (1)1.4实验内容 (1)1.5实验体会及问题解答 (3)实验二组合逻辑电路实验 (3)2.1预习内容 (3)2.2目的要求 (4)2.3实验仪器及材料 (4)2.4实验内容 (4)2.5实验体会及问题解答 (5)实验三基本RS触发器和D触发器 (5)3.1预习内容 (5)3.2目的要求 (5)3.3实验仪器及材料 (5)3.4实验内容 (6)3.5实验体会及问题解答 (6)实验四计数器及其应用 (7)4.1预习内容 (7)4.2目的要求 (7)4.3实验仪器及材料 (7)4.4实验内容 (7)4.5实验体会及问题解答 (9)实验一基本门电路实验1.1预习内容1.复习门电路工作原理及相应逻辑表达式2.熟悉所用集成电路的引线位置及各引线用途1.2目的要求1.熟悉门电路逻辑功能2.熟悉数字电路教学实验系统板1.3实验仪器及材料1.数字电路教学实验系统板2.器件74LS00 二输入端四与非门 1 片74LS32 二输入端四或门 1 片74LS86 二输入端四异或门 1 片3.导线若干1.4实验内容实验前按数字电路教学实验系统板使用说明先检查实验系统板电源是否正常。

然后选择实验用的集成电路,按自己设计的实验接线图接好连线,特别注意Vcc及地线不能接错。

线接好后经实验指导教师检查无误方可通电实验。

1.测试或门电路的逻辑功能(1).选用二输入端四或门74LS32一只,插入面包板,按图1.1接线,输入端接D1、D2(电平开关输入插口),输出端接电平显示发光二极管L1。

(2).将电平开关按表1.1置位,分别测出电压及逻辑状态。

(3).将表中结果和“或门”的真值表对比,判断是否实现了“或”逻辑功能。

2.异或门逻辑功能测试 (1).选二输入四异或门电路74LS86一只,插入面包板,按图1.2接线,输入端接D1、D2(电平开关输入插口),输出端接 电平显示发光二极管L1。

哈工大数字逻辑电路与系统实验报告

哈工大数字逻辑电路与系统实验报告

哈工大数字逻辑电路与系统实验报告引言本实验旨在通过对数字逻辑电路与系统的学习与实践,加深对数字逻辑电路原理和应用的理解,掌握数字逻辑电路实验的设计与调试方法。

本报告将详细介绍实验步骤、实验结果以及实验心得体会。

实验目的1.掌握基本的数字逻辑电路设计方法;2.熟悉数字逻辑电路的布线和调试方法;3.学会使用EDA软件进行数字逻辑电路的仿真和验证。

实验器材•FPGA开发板•EDA软件实验过程实验一:逻辑门的基本控制本实验采用FPGA开发板进行实验,以下是逻辑门的基本控制步骤:1.打开EDA软件,新建工程;2.选择FPGA开发板型号,并进行相应配置;3.在原理图设计界面上,依次放置与门、或门、非门和异或门,并连接输入输出引脚;4.面向测试向量实现逻辑门的控制和数据输入;5.运行仿真并进行调试。

实验二:数字逻辑电路实现本实验以4位全加器为例,进行数字逻辑电路的实现,以下是实验步骤:1.打开EDA软件,新建工程;2.选择FPGA开发板型号,并进行相应配置;3.在原理图设计界面上,放置输入引脚、逻辑门和输出引脚,并进行连接;4.根据全加器的真值表,设置输入信号,实现加法运算;5.运行仿真并进行调试。

实验三:数字逻辑电路的串联与并联本实验旨在通过对数字逻辑电路的串联与并联实现,加深对逻辑门的理解与应用。

以下是实验步骤:1.打开EDA软件,新建工程;2.选择FPGA开发板型号,并进行相应配置;3.在原理图设计界面上,放置多个逻辑门,并设置输入输出引脚;4.进行逻辑门的串联与并联连接;5.根据逻辑门的真值表,设置输入信号,进行运算;6.运行仿真并进行调试。

实验结果经过实验测试,实验结果如下:1.实验一:逻辑门的基本控制–与门的功能得到实现;–或门的功能得到实现;–非门的功能得到实现;–异或门的功能得到实现。

2.实验二:数字逻辑电路实现–4位全加器的功能得到实现;–正确进行了加法运算。

3.实验三:数字逻辑电路的串联与并联–逻辑门的串联与并联功能得到实现;–通过逻辑门的串联与并联,实现了复杂的逻辑运算。

数字逻辑电路实验报告

数字逻辑电路实验报告

数字逻辑电路实验报告数字逻辑电路实验报告引言:数字逻辑电路是现代电子科技中的重要组成部分,它广泛应用于计算机、通信、控制系统等领域。

本实验旨在通过实际操作,加深对数字逻辑电路原理的理解,并通过实验结果验证其正确性和可靠性。

实验一:基本逻辑门的实验在本实验中,我们首先学习了数字逻辑电路的基本组成部分——逻辑门。

逻辑门是数字电路的基本构建单元,它能够根据输入信号的逻辑关系,产生相应的输出信号。

我们通过实验验证了与门、或门、非门、异或门的工作原理和真值表。

以与门为例,当且仅当所有输入信号都为高电平时,与门的输出信号才为高电平。

实验中,我们通过连接开关和LED灯,观察了与门的输出变化。

实验结果与预期相符,验证了与门的正确性。

实验二:多位加法器的设计与实验在本实验中,我们学习了多位加法器的设计和实现。

多位加法器是一种能够对多位二进制数进行加法运算的数字逻辑电路。

我们通过实验设计了一个4位全加器,它能够对两个4位二进制数进行相加,并给出正确的进位和和结果。

实验中,我们使用逻辑门和触发器等元件,按照电路图进行布线和连接。

通过输入不同的二进制数,观察了加法器的输出结果。

实验结果表明,多位加法器能够正确地进行二进制数相加,验证了其可靠性。

实验三:时序电路的实验在本实验中,我们学习了时序电路的设计和实验。

时序电路是一种能够根据输入信号的时间顺序产生相应输出信号的数字逻辑电路。

我们通过实验设计了一个简单的时序电路,它能够产生一个周期性的脉冲信号。

实验中,我们使用计数器和触发器等元件,按照电路图进行布线和连接。

通过改变计数器的计数值,观察了脉冲信号的频率和周期。

实验结果表明,时序电路能够按照设计要求产生周期性的脉冲信号,验证了其正确性。

实验四:存储器的设计与实验在本实验中,我们学习了存储器的设计和实现。

存储器是一种能够存储和读取数据的数字逻辑电路,它在计算机系统中起到重要的作用。

我们通过实验设计了一个简单的存储器,它能够存储和读取一个4位二进制数。

数字逻辑实验报告

数字逻辑实验报告

数字逻辑实验报告数字逻辑实验报告引言数字逻辑是计算机科学中的重要基础知识,通过对数字信号的处理和转换,实现了计算机的高效运算和各种复杂功能。

本实验旨在通过实际操作,加深对数字逻辑电路的理解和应用。

实验一:二进制加法器设计与实现在这个实验中,我们需要设计一个二进制加法器,实现两个二进制数的加法运算。

通过对二进制数的逐位相加,我们可以得到正确的结果。

首先,我们需要将两个二进制数输入到加法器中,然后通过逻辑门的组合,实现逐位相加的操作。

最后,将得到的结果输出。

实验二:数字比较器的应用在这个实验中,我们将学习数字比较器的应用。

数字比较器可以比较两个数字的大小,并输出比较结果。

通过使用数字比较器,我们可以实现各种判断和选择的功能。

比如,在一个电子秤中,通过将待测物品的重量与设定的标准重量进行比较,可以判断物品是否符合要求。

实验三:多路选择器的设计与实现在这个实验中,我们需要设计一个多路选择器,实现多个输入信号中的一路信号的选择输出。

通过使用多路选择器,我们可以实现多种条件下的信号选择,从而实现复杂的逻辑控制。

比如,在一个多功能遥控器中,通过选择不同的按钮,可以控制不同的家电设备。

实验四:时序电路的设计与实现在这个实验中,我们将学习时序电路的设计与实现。

时序电路是数字逻辑电路中的一种重要类型,通过控制时钟信号的输入和输出,实现对数据的存储和处理。

比如,在计数器中,通过时序电路的设计,可以实现对数字的逐位计数和显示。

实验五:状态机的设计与实现在这个实验中,我们将学习状态机的设计与实现。

状态机是一种特殊的时序电路,通过对输入信号和当前状态的判断,实现对输出信号和下一个状态的控制。

状态机广泛应用于各种自动控制系统中,比如电梯控制系统、交通信号灯控制系统等。

实验六:逻辑门电路的优化与设计在这个实验中,我们将学习逻辑门电路的优化与设计。

通过对逻辑门电路的布局和连接方式进行优化,可以减少电路的复杂性和功耗,提高电路的性能和可靠性。

华工 数字逻辑 实验3

华工 数字逻辑 实验3

华工数字逻辑实验3实验目的本实验旨在通过数字逻辑器件的应用,让学生对数字逻辑电路的设计和实现有更深入的理解。

通过完成本实验,学生可以进一步掌握计数器的原理和设计方法,掌握计数器的工作原理和应用。

实验内容本实验要求设计和实现一个4位二进制计数器,能够实现从0到15之间的循环计数。

计数器的工作方式为正向计数,即从0开始逐渐增加,当计数器达到15时,重新从0开始。

计数器的计数速度可通过外部时钟频率控制。

实验步骤步骤一:电路设计1.确定所需的元件类型和数量。

根据实验要求,我们需要使用4个D触发器和适当数量的逻辑门来设计计数器电路。

2.根据计数器的工作原理,设计电路的逻辑功能。

考虑计数器的逻辑功能,我们可以将每个D触发器的输出分别连接到下一个D触发器的时钟输入端。

3.将D触发器的时钟输入端和适当的逻辑门连接,以实现计数器的工作原理。

步骤二:电路实现1.根据设计的电路图,将所需的元件连接起来,以实现计数器的功能。

2.完成电路的布线和连接,注意检查连接的正确性。

3.确保电路输入和输出的可靠连接,以便外部信号能够正确传递到计数器。

步骤三:电路测试1.在实验台上接通电源,确保电路的正常供电。

2.使用示波器测量和观察计数器的输出波形,验证计数器的正常工作。

3.使用示波器观察和测量时钟信号的频率,确保计数器的计数速度符合要求。

实验结果经过实验验证,所设计的4位二进制计数器能够正常工作,并根据外部时钟信号实现从0到15的循环计数。

通过示波器观察和测量计数器的输出波形,可以清楚地看到计数器的工作状态,实现了预期的功能。

实验总结通过本实验,我深入学习了数字逻辑电路的设计和实现方法。

通过实际动手设计和搭建电路,我对计数器的工作原理和应用有了更深入的理解。

在实验过程中,我发现了一些问题和挑战。

例如,电路连接错误会导致计数器不能正常工作,需要仔细检查和排除问题。

另外,时钟信号的频率控制也是一个关键的问题,需要确保时钟频率满足实验要求。

数字逻辑实验报告

数字逻辑实验报告

数字逻辑实验报告数字逻辑实验报告引言:数字逻辑是计算机科学中的基础知识,它研究的是数字信号的处理与传输。

在现代科技发展的背景下,数字逻辑的应用越来越广泛,涉及到计算机硬件、通信、电子设备等众多领域。

本实验旨在通过设计和实现数字逻辑电路,加深对数字逻辑的理解,并掌握数字逻辑实验的基本方法和技巧。

实验一:逻辑门电路设计与实现逻辑门是数字电路的基本组成单元,由与门、或门、非门等构成。

在本实验中,我们设计了一个4位全加器电路。

通过逻辑门的组合,实现了对两个4位二进制数的加法运算。

实验过程中,我们了解到逻辑门的工作原理,掌握了逻辑门的真值表和逻辑方程的编写方法。

实验二:多路选择器的设计与实现多路选择器是一种常用的数字逻辑电路,它可以根据控制信号的不同,从多个输入信号中选择一个输出信号。

在本实验中,我们设计了一个4位2选1多路选择器电路。

通过对多路选择器的输入信号和控制信号的设置,实现了对不同输入信号的选择。

实验过程中,我们了解到多路选择器的工作原理,学会了多路选择器的真值表和逻辑方程的编写方法。

实验三:时序逻辑电路的设计与实现时序逻辑电路是一种能够存储和处理时序信息的数字逻辑电路。

在本实验中,我们设计了一个简单的时序逻辑电路——D触发器。

通过对D触发器的输入信号和时钟信号的设置,实现了对输入信号的存储和传输。

实验过程中,我们了解到D触发器的工作原理,掌握了D触发器的真值表和逻辑方程的编写方法。

实验四:计数器电路的设计与实现计数器是一种能够实现计数功能的数字逻辑电路。

在本实验中,我们设计了一个4位二进制计数器电路。

通过对计数器的时钟信号和复位信号的设置,实现了对计数器的控制。

实验过程中,我们了解到计数器的工作原理,学会了计数器的真值表和逻辑方程的编写方法。

结论:通过本次实验,我们深入了解了数字逻辑的基本原理和应用方法。

通过设计和实现逻辑门电路、多路选择器、时序逻辑电路和计数器电路,我们掌握了数字逻辑实验的基本技巧,并加深了对数字逻辑的理解。

数字逻辑实验报告代码

数字逻辑实验报告代码

实验名称:数字逻辑基础实验实验目的:1. 理解并掌握基本的数字逻辑门电路及其功能。

2. 学习使用数字逻辑门电路设计简单的组合逻辑电路。

3. 掌握数字逻辑电路的仿真方法。

实验器材:1. 数字逻辑实验箱2. 仿真软件(如Multisim)实验内容:一、实验一:基本逻辑门电路测试1. 实验原理基本逻辑门电路是数字逻辑电路的基础,包括与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。

本实验通过测试这些基本逻辑门电路,验证其功能。

2. 实验步骤(1)按照实验箱说明书连接电路。

(2)使用开关模拟输入信号,观察输出结果。

(3)分别测试与门、或门、非门、异或门的功能。

3. 实验结果与门:输入均为高电平时,输出为高电平;否则,输出为低电平。

或门:输入至少有一个高电平时,输出为高电平;否则,输出为低电平。

非门:输入为高电平时,输出为低电平;输入为低电平时,输出为高电平。

异或门:输入不同时,输出为高电平;输入相同时,输出为低电平。

二、实验二:组合逻辑电路设计1. 实验原理组合逻辑电路是由基本逻辑门电路组合而成的电路,其输出仅与当前的输入有关,而与电路历史状态无关。

2. 实验步骤(1)设计一个4位二进制加法器。

(2)使用基本逻辑门电路搭建电路。

(3)测试电路功能。

3. 实验结果设计了一个4位二进制加法器,其功能正常。

三、实验三:数字逻辑电路仿真1. 实验原理数字逻辑电路仿真是一种利用计算机软件模拟实际电路的方法,可以直观地观察电路的输入输出关系。

2. 实验步骤(1)打开仿真软件,创建一个新的项目。

(2)根据实验要求,使用基本逻辑门电路搭建电路。

(3)设置输入信号,观察输出结果。

(4)调整电路参数,观察输出变化。

3. 实验结果使用仿真软件成功搭建了实验二中的4位二进制加法器电路,并验证了其功能。

实验总结:通过本次数字逻辑实验,我们对基本逻辑门电路及其功能有了更深入的了解。

同时,我们学会了使用基本逻辑门电路设计简单的组合逻辑电路,并掌握了数字逻辑电路的仿真方法。

实验三 三态门

实验三 三态门

实验三三态门一、实验目的1.熟悉计三态输出门的逻辑功能和使用方法。

2.掌握用三态门构成公共总线的特点和方法。

二、实验器材1.数字逻辑实验箱2.双踪示波器3.与非门74LS00(1片)、三态门74LS125(1片)三、预习要求1.复习三态门有关知识,了解其逻辑功能及管脚。

2.复习三态门实现总线传输的方法。

四、实验原理1.三态门(TS)三态门有三种输出状态:高电平输出、低电平输出和高阻输出状态。

常见的三态门有控制端高电平有效和低电平有效两种类型。

三态输出门除了有多输入三态与非门,还经常做成单输入、单输出的总线驱动器,并且输入与输出有同相和反相两种类型。

例如:74LS125就是单输入、单输出的控制端低电平有效的同相三态输出门。

即E=0时,Y=A;E=1时为高阻态。

三态门主要用途之一是实现总线传输,各三态门输出端可以并联使用一个传输通道,以选通的方式传送多路信息。

使用时注意输出端并接的三态门只能有一个处于工作状态(E=0)。

其余必须处于高阻状态(E=1)。

三态门驱动能力强,开关速度快,在中大规模集成电路中广泛采用三态门输出电路,作为计算机和外围电路的接口电路。

如图2-1为三态门逻辑符号。

A B图2-1 三态门逻辑符号五、实验内容1.三态门逻辑功能测试:查出三态门74LS125的引脚图,验证各三态门逻辑功能。

按图2-1(A)在实验箱上连线,先接上电源和地线,然后用逻辑电平控制输入端A和使能端E,用L显示输出Y的状态,实验结果填入下表:表2-1 74LS125逻辑功能表:2.用三态门74LS125构成公共总线:要求:用三个三态门构成一条公共总线,参考图21(B)。

使三个输入端状态分别为“0”、“1”、CP,观测公共总线输出状态。

(1)按上述要求画出公共总线的逻辑图。

(2)在实验箱上连线:A1、0(GND),A2、1(Vcc),A3、CP(1KHz或100KHz信号源输出),三个使能端E1……E3分别由三个逻辑开关控制其电平的高低。

数电实验三数据选择器和译码器应用

数电实验三数据选择器和译码器应用

数电实验三数据选择器和译码器应用IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】上海电力学院数字电路与数字逻辑院(系):计算机科学与技术学院实验题目:数据选择器和译码器应用专业年级:学生姓名:学号:一、实验目的和要求:1、了解并掌握集成组合电路的使用方法。

2、了解并掌握仿真(功能仿真及时序仿真)方法及验证设计正确性。

3、使用数据选择器和译码器实现特定电路。

二、实验内容:1.要求用数据选择器74153和基本门设计用3个开关控制1一个电灯的电路,改变任何一个开关的状态都能控制电灯由亮变暗或由暗变亮。

(提示:用变量A、B、C表示三个开关,0、1表示通、断状态;用变量L表示灯,0、1表示灯灭、亮状态。

)画出电路的原理图,将电路下载到开发板进行验证。

根据题意画出真值表如下根据上表,可画出原理图试验现象:当开关断开的数量是奇数时,灯是亮的,除此之外是灭的.2.人的血型有A,B,AB和O这4种,试用数据选择器74153和基本门设计一个逻辑电路,要求判断供血者和受血者关系是否符合下图的关系(提示:可用两个变量的4种组合表示供血者的血型,用另外两个变量的4种组合表示受血者的血型,用Y表示判断的结果)。

画出电路的原理图,通过仿真进行验证。

真值表:根据上表,可画出原理图验证逻辑功能表,仿真结果如下3.试用集成译码器74LS138和基本门实现1位全加器,画出电路连线图,并通过仿真验证其功能。

根据题意画出真值表如下根据上表,可画出原理图.验证逻辑功能表,仿真结果如下4.试用数据选择器74151实现1位全加器电路,画出电路连线图,并通过仿真验证其功能。

原理图.验证逻辑功能表,仿真结果如下图三、实验小结:通过本次试验,我更加了解集成组合电路的使用方法,了解并掌握了仿真包括功能仿真及时序仿真的方法及验证设计正确性。

我还学会使用数据选择器和译码器实现特定电路。

数字逻辑实验报告3

数字逻辑实验报告3

数字逻辑实验报告3数字逻辑实验报告3引言数字逻辑实验是计算机科学与技术专业的基础课程之一,通过实验来加深对数字逻辑电路的理解和应用。

本次实验报告将详细介绍我在数字逻辑实验3中的实验过程、结果和分析。

实验目的本次实验的主要目的是设计一个4位二进制加法器电路,实现两个4位二进制数的加法运算,并通过七段数码管显示结果。

实验装置本次实验使用的装置包括:数字逻辑实验箱、示波器、数字逻辑门芯片、七段数码管、开关等。

实验步骤1. 首先,根据设计要求,确定所需的逻辑门芯片种类和数量。

本次实验需要使用AND门、OR门、XOR门、全加器等逻辑门芯片。

2. 根据设计要求,绘制电路图。

将四个4位二进制数的输入引脚连接到开关上,并将七段数码管的显示引脚连接到输出引脚上。

3. 根据电路图,搭建实验电路。

将逻辑门芯片按照电路图的连接方式插入实验箱中,并将开关和七段数码管连接到相应的引脚上。

4. 打开电源,观察七段数码管的显示情况。

如果显示正确,则说明电路连接正确。

5. 输入两个4位二进制数,并将开关切换到加法器模式。

观察七段数码管的显示结果。

实验结果与分析经过实验,我们成功设计并实现了一个4位二进制加法器电路。

输入两个4位二进制数,通过逻辑门芯片的计算和运算,将结果显示在七段数码管上。

实验中,我们发现当两个输入数相加时,如果结果超过了4位二进制数的表示范围,则七段数码管会显示错误的结果。

这是因为我们设计的电路只能处理4位二进制数的加法运算,超出范围的结果无法正确显示。

为了解决这个问题,我们可以进一步扩展电路,增加位数,以处理更大范围的加法运算。

另外,我们还可以进一步优化电路,减少逻辑门芯片的使用数量,提高电路的效率和可靠性。

结论通过本次实验,我们深入学习了数字逻辑电路的设计和实现。

通过搭建4位二进制加法器电路,我们成功实现了两个4位二进制数的加法运算,并通过七段数码管显示了结果。

在实验过程中,我们还发现了电路设计的局限性,并提出了进一步改进的建议。

数字电路实验:常用数字逻辑门输入输出特性测试

数字电路实验:常用数字逻辑门输入输出特性测试

五、实验任务
1.反相器电压传输特性的测试 1)用示波器实测电源电压VDD 【测试提示】:
用数字示波器测试直流信号电压值时,应选择参数平 均值(Vavg),而不是峰峰值(Vpp)或幅值(Vamp),否则 测到的只是直流的纹波。
示波器垂直因数不宜过大或过小。垂直因数过大可能 影响测试精度,垂直因数过小当电压值变化时波形容易超出 屏幕显示范围,不便观察。一般设置为(1V—2对输出的影响测试
• 按图3.3.7连接电路,输 入加入1KHz TTL信号,
测试输出波形的上升时 间(trise)。在输出和地 之间加入0.01μ电容,
测试此时输出波形的上 升时间(trise)。比较两 次测量结果有何不同并 加以分析。
0.01μF
思考题
• 本实验中你实测的输出逻辑电平的范围是 多少?
辑电平未定义区域。造成电路工 作不正常。
5V电源下 CMOS非门电压传输特性
VTH=VDD/2
• 影响 TTL门电路工作速度的主要因素是电路内部管子的开 关特性、电路结构及内部的各电阻阻数值。电阻数值越大, 工作速度越低。管子的开关时间越长,门的工作速度越低。
• 影响CMOS电路工作速度的主要因素在于电路的外部,即 负载电容CL。CL是主要影响器件工作速度的原因,由CL 所决定的影响CMOS门的传输延时约为几十纳秒。
门的输出电压VO 随输入电压Vi 而变化的曲线VO=f(Vi)
称为门的电压传输特性。
VOUT
VTH
• 当负载电路所需驱动电流增大时, 5.0 输出特性就不像理论值那样理想
了,逻辑门的输出电压值与规定
值之间有较明显的差异。
• 当负载电路所需驱动电流过大时, 逻辑门的输出电压值就会落在逻

数字逻辑实验报告完整版

数字逻辑实验报告完整版

华中科技大学计算机学院数字逻辑实验报告实验一组合逻辑电路的设计实验二同步时许逻辑电路设计实验三:异步时序逻辑电路设计姓名:学号:班级:指导老师:完成时间:实验一组合逻辑电路的设计一、实验目的1掌握组合逻辑电路的功能测试.2验证半加器和全加器的逻辑功能。

3学会二进制的运算规律。

二、实验器材74LS00 二输入四与非门、74LS04 六门反向器、74LS10 三输入三与非门、74LS86 二输入四异或门、74LS73 负沿触发JK触发器、74LS74 双D触发器。

三、实验内容内容A 一位全加全减器的实现。

电路做加法还是做减法由S控制。

当s=0时做加法运算,s=1时做减法运算,当作为全加器输入信号A、B和Cin分别作为加数、被加数和低位来的进位,F1和F2为合数和向上位的进位。

当作为全减器输入信号A、B和Cin分别作为减数、被减数和低位来的借位,F1和F2为差数和向上位的借位。

内容B 舍入与检测电路的设计。

用所给定的集成电路组件设计一个多输出逻辑电路,输入为8421码.F1为四舍五入输入信号,F2为奇偶检测输出信号。

当输入的信号大于或等于(5)10时,电路输出F1=1,其他情况为0;当输入代码中含1的个数为奇数是,输出F2=1,其他情况为0.框图如图所示:四、实验步骤内容A 一位全加全减器的实现。

由要求可得如下真值表:F1的卡诺图为: F2的卡诺图为:化简得F1=A○+B○+C, F2=.由F1和F2表达式画出电路图如下:根据电路图,连接电路。

接线后拨动开关,结果如图:内容B 舍入与检测电路的设计。

由题意,列出真值表如图:化简卡诺图得F1=, F2=A ○+B ○+C ○+D.由此画出电路图如下:按照所示的电路图连接电路,将电路的输出端接实验台的开关,通过拨动开关输入8421代码,电路输出接实验台显示灯。

每输出一个代码后观察显示灯,并记录结果如下表:接开关接灯五、试验体会1、化简包含无关变量的逻辑函数时,,由于是否包含无关项以及对无关项是令其值为1为0并不影响函数的实际逻辑功能,因此在化简时,利用这种任意性可以使逻辑函数得到更好的化简,从而使设计的电路得到更简2、多输出函数的组合逻辑电路,因为各函数之间往往存在相互联系,具有某些共同部分,因此应当将它们当做一个整体来考虑,而不应该将其截然分开。

数字逻辑实验报告三

数字逻辑实验报告三

武汉科技大学城市学院数字逻辑实验报告实验三实验名称:译码器等常用组合IC的应用专业班级:算机科学与技术一班学号:201110137133_ _____姓名: _ _____实验时间:2013年 5 月 22 日指导老师: ____实验三译码器等常用组合IC的应用一、实验目的1.掌握2:4、3:8译码器的基本原理与用法。

2.掌握常用数据编码器的基本原理与用法3.掌握共阴极和共阳极数码管的工作原理及相应七段显示译码器的用法(其中2、3为选做内容)二、实验要求1.在Proteus仿真环境下设计基于2:4译码器的半加器电路和基于3:8译码器的全加器电路。

2.用一片74139实现3:8译码器的功能。

3.验证基于74148的8:3编码器的逻辑功能。

4.验证基于74147的BCD编码器的逻辑功能5.验证共阴极数码管译码器7448或74248的逻辑功能及相应数码管驱动显示。

或者验证共阳极数码管译码器7447或74247的逻辑功能及相应数码管驱动显示。

三.实验内容、实施方案与结果分析1.在Proteus ISIS环境下,选用双2:4译码器74HC139,用其中之一的2:4译码器,在其3个输入端连接LOGICSTATE,在其4个输出端连接LOGICPROBE,通过仿真验证2:4译码器功能,并根据仿真数据填写其功能表。

如图3.1所示:图3.1 验证2:4译码器74HC139表3-1 2:4译码器74HC139逻辑功能表2.设计基于74HC139的半加器电路,仿真验证并说明其工作原理。

如图3.2所示:图3.2 基于74HCI39的半加器电路3.将一片74HC139的两个2:4译码器通过辅助门电路连接成一个3:8译码器,仿真验证并说明其工作原理。

如图3.3所示:图3.3 基于74HC139设计的3:8译码器4.在Proteus ISIS环境下,选用3:8译码器74HC138,在其6个输入端连接LOGICSTATE,在其8个输出端连接LOGICPROBE,通过仿真验证3:8译码器功能,并根据仿真数据填写其功能表。

【西安交通大学】【数字逻辑实验】【实验三 组合电路与全加器设计实验】

【西安交通大学】【数字逻辑实验】【实验三  组合电路与全加器设计实验】

Xi’an Jiaotong University 全加器电路参考图:ADDER_F.QDF
半加器电路参考图:ADDER_H.QDF
1.使用 使用QUARTUS软件完成电路设计 使用 软件完成电路设计 2.先设计半加器电路,并进行仿真测试 先设计半加器电路, 先设计半加器电路 3.利用半加器电路再完成全加器电路设计,并进行 利用半加器电路再完成全加器电路设计, 利用半加器电路再完成全加器电路设计 仿真测试 4.下载后连线做硬件验证测试 下载后连线做硬件验证测试
Xi’an Jiaotong University
1. 半加器 半加器是能实现两个一位二进制数相加求得和数及向高位 进位的逻辑电路。因为只考虑 了两个加数本身,没有考虑低 位来的进位,这也就是半加器一词的由来。 。
建立真值表: 建立真值表:
输入
被加数A 0 0 1 1 加数B 0 1 0 1 0 1 1 0
An
B C 为进位, 为本位和, 为向高位的进位; 为被加数, 为加数, 为被加数, n 为加数, n −1 为进位, S n 为本位和,Cn 为向高位的进位;
逻辑表达式
Sn=An⊕Bn⊕Cn-1 Cn=(An⊕Bn)Cn-1+ An·Bn
Xi’an Jiaotong University
三、实验设计与调试
输出
和数S 进位C 0 0 0 1
ห้องสมุดไป่ตู้
由真值表得逻辑表达式
S = A⊕ B C = A• B
Xi’an Jiaotong University
前面是由与非门构成的半加器 下图是由异或门、 下图是由异或门、与门构成的半加器
这两个电路同样实现两 个一位二进制数相加的功 是它们的和, 是向 能。S是它们的和,C是向 是它们的和 高位的进位。根据S和 的 高位的进位。根据 和C的 表达式, 表达式,将原电路图改画 成如图所示的逻辑图。 成如图所示的逻辑图。

数字逻辑入门实验报告

数字逻辑入门实验报告

一、实验目的1. 理解数字逻辑的基本概念和原理。

2. 掌握基本的数字逻辑电路及其功能。

3. 培养动手能力和实际操作技能。

4. 学会使用实验设备进行数字逻辑电路的搭建和测试。

二、实验环境1. 实验设备:数字逻辑实验箱、数字万用表、示波器、逻辑分析仪等。

2. 实验软件:Multisim、Logisim等数字电路仿真软件。

三、实验内容1. 基本逻辑门电路实验a. 与门、或门、非门、与非门、或非门、异或门、同或门的搭建与测试。

b. 逻辑门电路组合实验,如半加器、全加器、译码器、编码器等。

2. 时序逻辑电路实验a. 基本触发器(D触发器、JK触发器、SR触发器)的搭建与测试。

b. 时序逻辑电路组合实验,如计数器、寄存器、顺序控制器等。

3. 组合逻辑电路实验a. 逻辑函数的化简与实现。

b. 逻辑电路的优化设计。

4. 时序逻辑电路实验a. 计数器的设计与实现。

b. 寄存器的应用与实现。

四、实验步骤1. 实验一:基本逻辑门电路实验a. 搭建与门、或门、非门、与非门、或非门、异或门、同或门电路。

b. 使用示波器观察输入、输出波形,验证电路功能。

c. 使用逻辑分析仪分析电路逻辑关系。

2. 实验二:时序逻辑电路实验a. 搭建D触发器、JK触发器、SR触发器电路。

b. 使用示波器观察触发器的输入、输出波形,验证电路功能。

c. 搭建计数器、寄存器、顺序控制器电路,观察电路功能。

3. 实验三:组合逻辑电路实验a. 使用真值表化简逻辑函数。

b. 设计逻辑电路,实现化简后的逻辑函数。

c. 使用示波器观察电路输入、输出波形,验证电路功能。

4. 实验四:时序逻辑电路实验a. 设计计数器电路,实现特定计数功能。

b. 设计寄存器电路,实现数据存储功能。

c. 使用示波器观察电路输入、输出波形,验证电路功能。

五、实验结果与分析1. 实验一:成功搭建了基本逻辑门电路,验证了电路功能。

2. 实验二:成功搭建了时序逻辑电路,验证了电路功能。

3. 实验三:成功实现了逻辑函数的化简与电路设计,验证了电路功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三触发器、移位寄存器实验一、实验目的1、掌握基本RS触发器、D触发器、JK触发器的工作原理。

2、学会正确使用RS触发器、D触发器、JK触发器。

3、熟悉移位寄存器的电路结构及工作原理。

4、掌握中规模集成移位寄存器74LS194的逻辑功能及使用方法。

5、掌握用双D触发器74LS74和双JK触发器74LS73来搭建时序电路。

二、实验所用器件和仪表1、与非门74LS00 1片2、双D触发器74LS74 1片3、双JK触发器74LS73 1片4、四位双向通用移位寄存器74LS194 1片5、万用表6、示波器7、实验箱三、实验内容(7个实验中可以任意选做其中的4个即可)1、设计基本RS触发器并验证其功能。

2、验证D触发器功能。

3、验证JK触发器功能。

4、验证双向移位寄存器74LS194的逻辑功能。

6、用双D触发器74LS74和双JK触发器74LS73来搭建时序电路。

四、实验接线图和测试步骤1、实验内容1的接线图和测试步骤(每个芯片的电源和地端要连接)右图是基本RS触发器接线图。

图中,K1、K2是电平开关输出,LED0、LED1是电平指示灯。

基本SR触发器的测试步骤及结果如下:(1)R = 0,S = 1,测得Q = ,Q = 。

(2)R = 1,S = 1,测得Q = ,Q = 。

(3)R = 1,S = 0,测得Q = ,Q = 。

(4)R = 1,S = 1,测得Q = ,Q = 。

根据触发器的定义,Q和Q应互补,因此R = 0,S = 0是非法状态。

SR触发器真值表如下:输入输出R S Q Q0 0 1 10 1 1 01 0 0 11 1 Q Q2、实验内容2的的接线图、测试步骤(每个芯片的电源和地端要连接。

)注:PR=S D,CLR=R D上图是测试D触发器的接线图,K1、K2、K3是电平开关输出,LED0、LED1是电平指示灯,AK1宽单脉冲,1MHz、10MHz是时钟脉冲。

左图为单次脉冲的测试,右图为连续脉冲的测试。

测试步骤如下:(1)CLR = 0,PR = 1,测得Q = ,Q = 。

(2)CLR = 1,PR = 1,测得Q = ,Q = 。

(3)CLR = 1,PR = 0,测得Q = ,Q = 。

(4)CLR = 1,PR = 1,测得Q = ,Q = 。

(5)CLR = 1,PR = 1,D = 1,CK接宽单脉冲,按按钮,测得Q = ,Q = 。

(6)CLR = 1,PR = 1,D = 0,CK接宽单脉冲,按按钮,测得Q = ,Q = 。

(7)CLR = 1,PR = 1,D接1MHz脉冲,CK接10MHz,在示波器上同时观测Q、CLK 的波形,观测到Q的波形只在CLK上升沿才发生变化。

输入输出PR CLR CLK D Q QL H X X H LH L X X L HH H ↑H H LH H ↑L L HH H L X Q Q3、实验内容3的的接线图、测试步骤(每个芯片的电源和地端要连接。

输入来源于开关,输出送到LED灯上,观察在不同的输入时LED灯的亮灭情况。

AK1是实验箱下方的手动单脉冲输入端,选用宽脉冲连接,每次用手按一下黑色按钮后松开,就输入一个单脉冲到电路中)上图是测试JK 触发器的接线图。

K2、K3、K4是电平开关输出,LED0、LED1是电平指示灯,AK1是宽单脉冲。

74LS73引脚4接+5V ,引脚11接地。

74LS73只有复位端CLR 。

(1) CLR = 0,测得Q = 1,Q = 0。

(2) CLR = 1,J = 0,K = 0,按宽单脉冲按钮AK1,测得Q = ,Q = 。

(3) CLR = 1,J = 1,L = 0,按宽单脉冲按钮AK1,测得Q = ,Q = 。

(4) CLR = 1,J = 0,K = 0,按宽单脉冲按钮AK1,测得Q = ,Q = 。

(5) CLR = 1,J = 0,K = 1,按宽单脉冲按钮AK1,测得Q = ,Q = 。

(6) CLR = 1,J = 0,K = 0,按宽单脉冲按钮AK1,测得Q = ,Q = 。

(7) CLR = 1,J = 1,K = 1,按宽单脉冲按钮AK1,测得Q = ,Q = ;再按宽单脉冲按钮AK1,测得Q = ,Q = 。

4、 实验内容4的接线图(每个芯片的电源和地端要连接。

输入来源于开关,输出送到LED 灯上,观察在不同的输入时LED 灯的亮灭情况)输入 输出功能 /CR M1 M0 CP D SL D SR D 0 D 1 D 2 D 3Q 0 Q 1 Q 2 Q 3 L H H H H H H× × H H L H L H H L H L L L × ↑ ↑ ↑ ↑ ↑ × × × × × × H × L H × L × × ×a b c d L L L L a b c dH Q 0 Q 1 Q 2L Q 0 Q 1 Q 2Q 1 Q 2 Q 3 HQ 1 Q 2 Q 3 LQ 0 Q 1 Q 2 Q 3 清零 置数 右移 右移 左移 左移 保持5、双D触发器74LS74构成的二进制计数器(分频器)(每个芯片的电源和地端要连接。

输入来源于开关,输出送到LED灯上,观察在不同的输入时LED灯的亮灭情况)(1)按下图接线。

接电平指示灯图D触发器74构成的二进制计数器(2)将Q0、Q1、Q2、Q3复位。

(3)由时钟输入单脉冲,测试并记录Q0、Q1、Q2、Q3的状态。

(4)由时钟输入连续脉冲,观测Q0、Q1、Q2、Q3的波形。

图中,K1是电平开关输出,AK1是按单脉冲按钮AK1产生的单脉冲,LED0、LED1、LED2和LED3是电平指示灯。

(1)置K1为低电平,四个电平指示灯灭,表示Q3Q2Q1Q0为0000。

(2)置K1为高电平,按单脉冲按钮AK1,Q3Q2Q1Q0的值变化如下:表74LS74构成的计数器状态转移表Q3Q2Q1Q00 0 0 00 0 0 10 0 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 11 0 0 01 0 0 11 0 1 01 0 1 11 1 0 01 1 0 11 1 1 10 0 0 0(3)将接单脉冲AK1的线(CLK)改接10MHz连续脉冲,用示波器观测Q0、Q1、Q2、Q3。

画出连续计数时钟下Q0、Q1、Q2和Q3的波形图如下:图二进制计数器波形图(5)Q0、Q1、Q2、Q3也构成一个计数器,Q3是最高位,Q0是最低位。

这是一个递减计数器。

6、异步十进制计数器(1)按图8.2构成一个十进制计数器。

(2)将Q0、Q1、Q2、Q3复位。

(3)由时钟端CLK输入单脉冲,测试并记录Q0、Q1、Q2、Q3的状态。

(4)由时钟端CLK输入连续脉冲,观测Q0、Q1、Q2、Q3的波形。

图异步十进制计数器图中,K1是电平开关输出,AK1是按单脉冲按钮AK1产生的单脉冲,LED0、LED1、LED2和LED3是电平指示灯。

(1)置K1为低电平,四个电平指示灯灭,表示Q3Q2Q1Q0为0000。

(2)置K1为高电平,按单脉冲按钮AK1,Q3Q2Q1Q0的值变化如下:表异步十进制计数器状态转移表接电平指示灯0 0 0 00 0 0 10 0 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 11 0 0 01 0 0 10 0 0 0(3)将接单脉冲AK1的线(CLK)改接10MHz连续脉冲,用示波器观测Q0、Q1、Q2、Q3。

画出连续计数时钟下Q0、Q1、Q2和Q3的波形图如下:图异步十进制计数器波形图7、自循环寄存器(1)用双D触发器74LS74构成一个四位自循环寄存器。

方法是第一级的Q端接第二级的D端,依次类推,最后第四级的Q端接第一级的D端。

四个D触发器的CLK端连接在一起,然后接单脉冲时钟。

(2)将触发器Q0置1,Q1、Q2、Q3清0。

按单脉冲按钮,观察并记录Q0、Q1、Q2、Q3的值。

(1)接线图图自循环计数器接线图图中,K1、K2是电平开关输出,AK1是按单脉冲按钮AK1产生的单脉冲,LED0、LED1、LED2和LED3是电平指示灯。

(2)置K1为低电平,K2为高电平,四个电平指示灯灭,表示Q3Q2Q1Q0为0000。

(3)置K1为高电平,K2为低电平,LED0指示灯亮,表示Q3Q2Q1Q0为0001。

(4)置K1、K2为高电平。

按单脉冲按钮AK1,Q3Q2Q1Q0的值变化如下:表自计数器状态转移表Q3Q2Q1Q00 0 0 10 0 1 00 1 0 01 0 0 00 0 0 1(5)将接单脉冲AK1的线(CLK)改接10MHz连续脉冲,用示波器观测Q0、Q1、Q2、Q3。

画出连续计数时钟下Q0、Q1、Q2和Q3的波形图如下:图自循环计数器波形图实验提示1.74LS73引脚11是GND,引脚4是Vcc。

2.D触发器74LS74是上升沿触发,JK触发器74LS73是下降沿触发。

相关文档
最新文档