2020-2021初中数学锐角三角函数的全集汇编附答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021初中数学锐角三角函数的全集汇编附答案解析
一、选择题
1.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A 的正对记作sadA ,即sadA =底边:腰.如图,在ABC ∆中,AB AC =,2A B ∠=∠.则sin B sadA ⋅=( )
A .12
B .2
C .1
D .2
【答案】C
【解析】
【分析】
证明△ABC 是等腰直角三角形即可解决问题.
【详解】
解:∵AB=AC ,
∴∠B=∠C ,
∵∠A=2∠B ,
∴∠B=∠C=45°,∠A=90°,
∴在Rt △ABC 中,BC=
sin AC B ∠=2AC , ∴sin ∠B •sadA=
1AC BC BC AC
=g , 故选:C .
【点睛】
本题考查解直角三角形,等腰直角三角形的判定和性质三角函数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
2.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40︒,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)
A .78.6米
B .78.7米
C .78.8米
D .78.9米
【答案】C
【分析】
如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长度
【详解】
如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G
∵BC 的坡度为1:0.75
∴设CF 为xm ,则BF 为0.75xm
∵BC=140m
∴在Rt △BCF 中,()2
220.75140x x +=,解得:x=112
∴CF=112m ,BF=84m
∵DE ⊥CE ,CE ∥AB ,∴DG ⊥AB ,∴△ADG 是直角三角形
∵DE=55m ,CE=FG=36m
∴DG=167m ,BG=120m
设AB=ym
∵∠DAB=40° ∴tan40°=1670.84120
DG AG y ==+ 解得:y=78.8
故选:C
【点睛】
本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值.
3.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为( )
A .π
B .2π
C .3π
D .31)π
【答案】C
【分析】 由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3的正三角形.可计算边长为2,据此即可得出表面积.
【详解】 解:由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3的正三角形. ∴正三角形的边长32==. ∴圆锥的底面圆半径是1,母线长是2,
∴底面周长为2π
∴侧面积为12222
ππ⨯⨯=,∵底面积为2r ππ=, ∴全面积是3π.
故选:C .
【点睛】 本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
4.如图,从点A 看一山坡上的电线杆PQ ,观测点P 的仰角是45︒,向前走6m 到达B 点, 测得顶端点P 和杆底端点Q 的仰角分别是60︒和30°,则该电线杆PQ 的高度( )
A .623+
B .63+
C .103
D .83+
【答案】A
【解析】
【分析】 延长PQ 交直线AB 于点E ,设PE=x 米,在直角△APE 和直角△BPE 中,根据三角函数利用x 表示出AE 和BE ,列出方程求得x 的值,再在直角△BQE 中利用三角函数求得QE 的长,则问题求解.
【详解】
解:延长PQ 交直线AB 于点E ,设PE=x .
在直角△APE中,∠A=45°,
AE=PE=x;
∵∠PBE=60°
∴∠BPE=30°
在直角△BPE中,BE=3
PE=
3
x,
∵AB=AE-BE=6米,
则x-3
x=6,
解得:x=9+33.则BE=33+3.
在直角△BEQ中,QE=
3
3
BE=
3
3
(33+3)=3+3.
∴PQ=PE-QE=9+33-(3+3)=6+23.
答:电线杆PQ的高度是(6+23)米.
故选:A.
【点睛】
本题考查解直角三角形的实际应用,解答关键是根据题意构造直角三角形解决问题.
5.将直尺、有60°角的直角三角板和光盘如图摆放,A为60°角与直尺的交点,B为光盘与直尺的交点,AB=4,则光盘表示的圆的直径是()
A.4 B.3C.6 D.43
【答案】B
【解析】
【分析】
设三角板与圆的切点为C,连接OA、OB,根据切线长定理可得AB=AC=3,∠OAB=60°,然
后根据三角函数,即可得出答案.
【详解】
设三角板与圆的切点为C ,连接OA 、OB ,
由切线长定理知,AB =AC =3,AO 平分∠BAC ,
∴∠OAB =60°,
在Rt △ABO 中,OB =AB tan ∠OAB =43,
∴光盘的直径为83.
故选:B .
【点睛】
本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数.
6.利用量角器可以制作“锐角余弦值速查卡”.制作方法如下:如图,设1OA =,以O 为圆心,分别以0.05,0.1,0.15,0.2,…,0.9,0.95长为半径作半圆,利用“锐角余弦值速查卡”可以读出相应锐角余弦的近似值.例如:cos300.87︒≈,cos450.71︒=.下列角度中余弦值最接近0.94的是( )
A .30°
B .50︒
C .40︒
D .20︒
【答案】D
【解析】
【分析】 根据“锐角余弦值速查卡”解答即可.
【详解】
从“锐角余弦值速查卡”可以读出cos 20︒≈0.94,
∴余弦值最接近0.94的是20︒,
故选:D.
【点睛】
此题考查“锐角余弦值速查卡”,正确读出“锐角余弦值速查卡”是解题的关键.
7.“奔跑吧,兄弟!”节目组,预设计一个新的游戏:“奔跑”路线需经A 、B 、C 、D 四地.如图,其中A 、B 、C 三地在同一直线上,D 地在A 地北偏东30°方向、在C 地北偏西
45°方向.C地在A地北偏东75°方向.且BD=BC=30m.从A地到D地的距离是()
A.303m B.205m C.302m D.156m
【答案】D
【解析】
分析:过点D作DH垂直于AC,垂足为H,求出∠DAC的度数,判断出△BCD是等边三角形,再利用三角函数求出AB的长,从而得到AB+BC+CD的长.
详解:过点D作DH垂直于AC,垂足为H,由题意可知∠DAC=75°﹣30°=45°.∵△BCD是
等边三角形,∴∠DBC=60°,BD=BC=CD=30m,∴DH=3
×30=153,∴
AD=2DH=156m.故从A地到D地的距离是156m.
故选D.
点睛:本题考查了解直角三角形的应用﹣﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
8.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若4
BC=,1
DE AF
==,则GF的长为()
A.13
5
B.
12
5
C.
19
5
D.
16
5
【答案】A 【解析】【分析】
根据正方形的性质以及勾股定理求得5BE CF ==,证明BCE CDF ∆≅∆,根据全等三角形的性质可得CBE DCF ∠=∠,继而根据cos cos BC CG CBE ECG BE CE ∠=∠=
=,可求得CG 的长,进而根据GF CF CG =-即可求得答案.
【详解】
∵四边形ABCD 是正方形,4BC =,
∴4BC CD AD ===,90BCE CDF ∠=∠=︒,
∵1AF DE ==,
∴3DF CE ==,
∴22345BE CF ==+=,
在BCE ∆和CDF ∆中, BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩
,
∴()BCE CDF SAS ∆≅∆,
∴CBE DCF ∠=∠,
∵90CBE CEB ECG CEB CGE ∠+∠=∠+∠=︒=∠,
cos cos BC CG CBE ECG BE CE ∠=∠=
=, ∴453CG =,125
CG =, ∴1213555GF CF CG =-=-
=, 故选A.
【点睛】
本题考查了正方形的性质,勾股定理,全等三角形的判定与性质,三角函数等知识,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.
9.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A ,B 在同一水平面上).为了测量A ,B 两地之间的距离,一架直升飞机从A 地起飞,垂直上升1000米到达C 处,在C 处观察B 地的俯角为α,则AB 两地之间的距离约为( )
A .1000sin α米
B .1000tan α米
C .1000tan α米
D .1000sin α
米
【答案】C
【解析】
【分析】
在Rt △ABC 中,∠CAB=90°,∠B=α,AC=1000米,根据tan AC AB α=,即可解决问题. 【详解】
解:在Rt ABC ∆中,∵90CAB ∠=o ,B α∠=,1000AC =米,
∴tan AC AB α=
, ∴1000tan tan AC AB αα
==米. 故选:C .
【点睛】
本题考查解直角三角形的应用-仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.
10.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( )
A .(30)
B .(3,0)
C .(403523,32
D .(30) 【答案】B
【解析】
【分析】
根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.
【详解】
由题意知,111C A =,11160C A B ︒∠=,
则11130C B A ︒∠=,11222A B A B ==,1122333C B C B C B ===
结合图形可知,三角形在x 轴上的位置每三次为一个循环,
Q 20193673÷=,
∴2019673(123)20196733OC =++=+,
∴2019C (20196733,0)+,
故选B .
【点睛】
考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.
11.如图,平面直角坐标系中,A (8,0),B (0,6),∠BAO ,∠ABO 的平分线相交于点C ,过点C 作CD ∥x 轴交AB 于点D ,则点D 的坐标为( )
A .( 163
,2) B .( 163,1) C .( 83,2) D .(83
,1) 【答案】A
【解析】
【分析】 延长DC 交y 轴于F ,过C 作CG ⊥OA 于G ,CE ⊥AB 于E ,根据角平分线的性质得到FC =CG =CE ,求得DH =CG =CF ,设DH =3x ,AH =4x ,根据勾股定理得到AD =5x ,根据平行线的性质得到∠DCA =∠CAG ,求得∠DCA =∠DAC ,得到CD =HG =AD =5x ,列方程即可得到结论.
【详解】
解:延长DC 交y 轴于F ,过C 作CG ⊥OA 于G ,CE ⊥AB 于E ,
∵CD ∥x 轴,
∴DF ⊥OB ,
∵∠BAO ,∠ABO 的平分线相交于点C ,
∴FC =CG =CE ,
∴DH =CG =CF ,
∵A (8,0),B (0,6),
∴OA =8,OB =6,
∴tan ∠OAB =
DH AH =OB OA =34
, ∴设DH =3x ,AH =4x ,
∴AD =5x ,
∵CD ∥OA ,
∴∠DCA =∠CAG ,
∵∠DAC=∠GAC,
∴∠DCA=∠DAC,∴CD=HG=AD=5x,∴3x+5x+4x=8,
∴x=2
3
,
∴DH=2,OH=16
3
,
∴D(16
3
,2),
故选:A.
【点睛】
本题考查了等腰三角形的判定和性质,进行的判定和性质,解直角三角形,正确的作出辅助线构造矩形和直角三角形是解题的关键.
12.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()
A3B.﹣3C.﹣3D.﹣3
【答案】B
【解析】
【分析】
根据已知求出B(﹣
2
,
24
b b
a a
),由△AOB为等边三角形,得到
2
b
4a
=tan60°×(﹣
2
b
a
),
即可求解;
【详解】
解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,
B(﹣
2
,
24
b b
a a
-
),
∵△AOB为等边三角形,
∴
2
b
4a
=tan60°×(﹣
2
b
a
),
∴b=﹣23;
故选B.
【点睛】
本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.
13.如图,△ABC的顶点是正方形网格的格点,则cos A=()
A.1
2
B.
2
C.
3
D.
5
【答案】B
【解析】
【分析】
构造全等三角形,证明△ABD是等腰直角三角形,进行作答.【详解】
过A作AE⊥BE,连接BD,过D作DF⊥BF于F.
∵AE=BF,∠AEB=∠DFB,BE=DF,
∴△AEB≌△BFD,
∴AB=DB.∠ABD=90°,
∴△ABD是等腰直角三角形,
∴cos∠2 .
答案选B.
【点睛】
本题考查了不规则图形求余弦函数的方法,熟练掌握不规则图形求余弦函数的方法是本题解题关键.
14.如图,点M 是正方形ABCD 边CD 上一点,连接AM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE ,若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )
A 213
B 313
C .23
D 13 【答案】B
【解析】
【分析】
首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面
积等于△ABE 的面积与△ADE 的面积之和得到
12
•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解.
【详解】
∵四边形ABCD 为正方形,
∴BA =AD ,∠BAD =90°,
∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,
∴∠AFB =90°,∠DEA =90°,
∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,
∴∠ABF =∠EAD ,
在△ABF 和△DEA 中 BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩
∴△ABF ≌△DEA (AAS ),
∴BF =AE ;
设AE =x ,则BF =x ,DE =AF =1,
∵四边形ABED 的面积为6, ∴
111622
x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2,
在Rt △BEF 中,222313BE =+=,
∴313cos 1313
BF EBF BE ∠=
==. 故选B .
【点睛】
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.
15.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )
A .4
B .3
C .2
D .1
【答案】A
【解析】
【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=
12OE 和3OE ,然后三角形的面积公式可得S △ODE 32,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC 23即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.
【详解】
解:连接OB 、OC
∵ABC V 是等边三角形,点O 是ABC V 的内心,
∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB
∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12
∠ACB=30°
∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120°
∵120FOG ∠=︒
∴∠=FOG ∠BOC
∴∠FOG -∠BOE=∠BOC -∠BOE
∴∠BOD=∠COE
在△ODB 和△OEC 中
BOD COE BO CO
OBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△ODB ≌△OEC
∴OD=OE
∴△ODE 是顶角为120°的等腰三角形,
∴ODE V 形状不变,故①正确;
过点O 作OH ⊥DE ,则DH=EH
∵△ODE 是顶角为120°的等腰三角形
∴∠ODE=∠OED=12(180°-
120°)=30° ∴OH=OE·
sin ∠OED=12OE ,EH= OE·cos ∠OED=32OE ∴DE=2EH=3OE ∴S △ODE =12DE·OH=3OE 2 ∴OE 最小时,S △ODE 最小,
过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值
∴BE ′=
12BC=12
a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=
12a ×33=36a ∴S △ODE 的最小值为34
2=2348a
∵△ODB ≌△OEC
∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =122
2=142 ∴S △ODE ≤
14
S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确;
∵S 四边形ODBE =212
a ∴四边形ODBE 的面积始终不变,故③正确;
∵△ODB ≌△OEC
∴DB=EC
∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE
∴DE 最小时BDE V 的周长最小
∵OE
∴OE 最小时,DE 最小
而OE 的最小值为
∴DE 6
a =12a ∴BDE V 的周长的最小值为a +
12a =1.5a ,故④正确; 综上:4个结论都正确,
故选A .
【点睛】
此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.
16.如图,正方形ABCD 的边长为4,点E 、F 分别在AB 、BC 上,且AE=BF=1,CE 、DF 交于点O ,下列结论:①∠DOC=90°,②OC=OE ,③CE=DF ,④tan ∠OCD=
43,⑤S △DOC =S 四边形EOFB 中,正确的有( )
A.1个B.2个C.3个D.4个
【答案】D
【解析】
分析:由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确,③CE=D F正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得④正确;由①易证得⑤正确.
详解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°.
∵AE=BF=1,∴BE=CF=4﹣1=3.
在△EBC和△FCD中,
BC CD
B DCF
BE CF
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,CE=DF,故③正确,
∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;
连接DE,如图所示,若OC=OE.
∵DF⊥EC,∴CD=DE.
∵CD=AD<DE(矛盾),故②错误;
∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠
DFC=
DC
FC
=
4
3
,故④正确;
∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故⑤正确;
故正确的有:①③④⑤.
故选D.
点睛:本题考查了正方形的性质、全等三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想与转化思想的应用.
17.如图,在边长为8的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 ( )
A .183π-
B .183-π
C .32316π-
D .1839π-
【答案】C
【解析】
【分析】 由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.
【详解】
解:∵四边形ABCD 是菱形,∠DAB=60°,
∴AD=AB=8,∠ADC=180°-60°=120°,
∵DF 是菱形的高,
∴DF ⊥AB ,
∴DF=AD •sin60°=3843⨯=, ∴图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积
=2
120(43)84332316360
ππ⨯⨯-=-. 故选:C.
【点睛】
本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.
18.如图,河坝横断面的迎水坡AB 的坡比为3:4,BC =6m ,则坡面AB 的长为( )
A .6m
B .8m
C .10m
D .12m 【答案】C
【解析】
【分析】 迎水坡AB 的坡比为3:4得出3tan 4
BAC ∠=,再根据BC =6m 得出AC 的值,再根据勾
股定理求解即可.【详解】
由题意得
3 tan
4
BAC
∠=
∴
4
68
tan3
BC
AC m
BAC
==⨯=
∠
∴10
AB m
=
故选:C.
【点睛】
本题考查解直角三角形的应用,把坡比转化为三角函数值是关键. 19.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosA的值是()
A.4
5
B.
3
5
C.
4
3
D.
3
4
【答案】B
【解析】
【分析】
根据勾股定理,可得AB的长,根据锐角的余弦等于邻边比斜边,可得答案.【详解】
解:在Rt△ABC中,∠C=90°,AC=3,BC=4,
由勾股定理,得
cosA=AC AB
=
3
5
故选:B.
【点睛】
本题考查锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
20.如图,在平面直角坐标系中,四边形ABCD是菱形,点B的坐标是(0,4),点D的
坐标是(4),点M和点N是两个动点,其中点M从点B出发,沿BA以每秒2个单位长度的速度做匀速运动,到点A后停止,同时点N从点B出发,沿折线BC→CD以每秒4个单位长度的速度做匀速运动,如果其中一个点停止运动,则另一点也停止运动,设M,N两点的运动时间为x,△BMN的面积为y,下列图象中能表示y与x的函数关系的图象大致是()
A .
B .
C .
D .
【答案】D
【解析】
【分析】
根据两个点的运动变化,写出点N 在BC 上运动时△BMN 的面积,再写出当点N 在CD 上运动时△BMN 的面积,即可得出本题的答案;
【详解】
解:当0<x ⩽2时,如图1:
连接BD ,AC ,交于点O′,连接NM ,过点C 作CP ⊥AB 垂足为点P ,
∴∠CPB=90°,
∵四边形ABCD 是菱形,其中点B 的坐标是(0,4),点D 的坐标是3,4), ∴BO ′3,CO′=4,
∴228O B O C +'=',
∵AC=8,
∴△ABC 是等边三角形,
∴∠ABC=60°,
∴CP=BC×sin60°33,BP=4, BN=4x ,BM=2x , 242BM x x BP ==,2
BN x BC =,
∴=BM BN BP BC , 又∵∠NBM=∠
CBP ,
∴△NBM ∽△CBP ,
∴∠NMB=∠CPB=90°, ∴114438322
CBP S BP CP =⨯⨯=⨯⨯=V ; ∴2NBM CBP S BN S BC ⎛⎫= ⎪⎝⎭
V V , 即y=22
283=232NBM CBP BN x S S x BC ⎛⎫⎛⎫=⨯=⨯ ⎪ ⎪⎝⎭⎝⎭V V , 当2<x ⩽4时,作NE ⊥AB ,垂足为E ,
∵四边形ABCD 是菱形,
∴AB ∥CD ,
∴3
BM=2x ,
∴y=
11=2434322
BM NE x x ⨯⨯=g g ; 故选D.
【点睛】 本题主要考查了动点问题的函数图象,掌握动点问题的函数图象是解题的关键.。