一次风机失速现象原因分析及处理措施
一次风机失速现象原因分析及处理措施
一次风机失速现象原因分析及处理措施[摘要]本文对轴流式风机失速的机理进行了较为详细的探讨,阐述了实际运行中产生失速的原因,介绍了河北大唐王滩发电厂#1、#2机组锅炉一次风机的失速特性、失速原因,并从运行管理的角度提出了失速的相关预防措施和紧急处理方案。
[关键词]冲角;失速特性;现象;处理措施风机的失速现象主要发生于轴流式风机。
而一般情况下,大型火电机组锅炉的三大风机均为轴流式风机,失速时常常会引起振动,严重时威胁到机组的安全运行。
河北大唐王滩发电厂#1、#2机组锅炉的吸风机为静叶可调轴流风机,送风机及一次风机为动叶可调式轴流风机,下面对风机在运行过程中的失速问题作简要分析。
1 失速产生的机理1.1 失速的过程及现象轴流风机的叶片均为机翼型叶片。
风机处于正常工况时,叶片的冲角很小(气流方向与叶片叶弦的夹角即为冲角),气流绕过机翼型叶片而保持流线状态,如图1(a)所示。
当气流与叶片进口形成正冲角,即α>0,且此正冲角超过某一临界值时,叶片背面流动工况开始恶化,边界层受到破坏,在叶片背面尾端出现涡流区,即所谓“失速”现象,如图1(b)所示。
冲角大于临界值越多,失速现象越严重,流体的流动阻力越大,使叶道阻塞,同时风机风压也随之迅速降低。
风机的叶片在加工及安装过程中由于各种原因使叶片不可能有完全相同的形状和安装角,因此当运行工况变化而使流动方向发生偏离时,在各个叶片进口的冲角就不可能完全相同。
如果某一叶片进口处的冲角达到临界值时,就首先在该叶片上发生失速,而不会所有叶片都同时发生失速。
如图2中,u是对应叶片上某点的周向速度,w是气流对叶片的相对速度,α为冲角。
假设叶片2和3间的叶道23首先由于失速出现气流阻塞现象,叶道受堵塞后,通过的流量减少,在该叶道前形成低速停滞区,于是气流分流进入两侧通道12和34,从而改变了原来的气流方向,使流入叶道12的气流冲角减小,而流入叶道34的冲角增大。
可见,分流结果使叶道12绕流情况有所改善,失速的可能性减小,甚至消失;而叶道34内部却因冲角增大而促使发生失速,从而又形成堵塞,使相邻叶道发生失速。
关于风机失速及喘振的分析
关于风机失速及喘振的分析我厂在生产过程中,曾经出现过一次风机失速,影响风机的安全、稳定运行,因此此类现象的发生和处理进行进一步的分析和探讨,以便在遇到相同的事故时,能有效、及时的预防和处理。
失速和喘振发生的原因:风机在正常工况时,冲角很小,气流绕过机翼型叶片保持流线状态,当气流与叶片冲角>0超过某一临界值时,叶片背面的流动工况开始恶化,在叶片的背面出现漩涡区,即所谓的“失速”,冲角大于临界值越多,失速现象越严重,流体的阻力越大,使叶片受阻,同时风机风压也随之迅速降低。
风机的叶片在安装过程中,由于各种的原因使叶片不可能油完全相同的形状和安装角,因此,当运行工况变化而使流动方向发生改变时,各个叶片的冲角就不可能完全相同,正是因为这样,在发生失速现象时不是每个叶片都同时发生失速,风机进行到不稳定工况里运行时,叶轮将产生数个旋转失速区,叶片每经过一个失速区就会受到一次激振力的作用,使叶片发生共振。
严重时可导致叶片的断裂。
由于失速的产生,使得风管中的压力大于风机的出口压力,因此,气流回流后压力差正常后,风机有正常工作向风管送风,当风管内的压力到达一定值后,风机的出风又受阻,从而又出现倒流,如此反复风管出现周期性的振荡,这样的现象叫“喘振”。
失速是喘振的前因,喘振是失速恶化的进一步表现,但失速不一定会发生喘振,喘振还和管路的阻力特性有关。
对于一次风机、送风机和引风机发生失速和喘振的危险性有:1.引起炉膛负压波动。
2.造成被迫降负荷。
3.严重时会引起锅炉MFT。
4.造成风机本体振动加剧,造成设备损坏。
5.炉内燃烧不稳。
事故可能发生的原因:1.快速增减负荷。
2.风机动叶开度较大时。
3.空预器堵灰严重时。
4.并风机操作时。
5.两台风机电流偏差较大。
6.炉膛内燃烧不稳。
7.风机动叶或挡板的执行机构故障。
8.受热面、空预器严重积灰或烟气系统挡板误关,引起系统阻力增大,造成风机动叶开度与进入的风量、烟气量不相适应,使风机进入喘振区。
一次风机失速原因分析及预防措施
一次风机失速原因分析及预防措施一、引言风机作为一种重要的通风设备,被广泛应用于各个行业中,如空调、工业、建筑等。
如今,风机技术已经非常成熟,各种型号、规格的风机不断涌现。
然而,风机失速问题却是一个常见但难以解决的问题,一旦发生,不仅会影响设备的正常运转,还可能导致重大事故。
本文将首先介绍风机失速的概念和表现,接着探讨失速的原因和分析方法,最后提出一些预防措施,希望能够对风机失速问题有所帮助。
二、风机失速的概念与表现风机失速是指风机在运转过程中,由于某些原因,导致叶轮受到的阻力大于其动力,发生旋转速度减慢的现象。
风机失速时,叶轮的旋转速度会逐渐减慢,最终停下来。
通常,这种情况发生时,风机会发出异常嘈杂的噪音,铺盖出现明显的振动,整个设备的工作效率会明显下降。
风机失速的表现主要有以下几个方面:1.叶片变形或损坏。
2.风机运行噪声加大。
3.风机振动加大,可能出现异响。
4.风机传动系与基础间的支撑结构出现变形、破坏等情况。
5.空气体系出现不正常压力变化、通道参数波动等现象。
三、风机失速的原因和分析方法风机失速的原因非常复杂,但总体上可以归纳为以下几种情况:1.机械故障:机械故障是导致风机失速的重要原因。
这类故障主要包括轴承、过度磨损、叶片变形等问题。
2.叶轮不平衡:风机在运转中叶轮不平衡会引起风机在运行中产生震动、噪音等造成整个系统失衡,进而导致失速。
3.进风道不当:若进风道的管道设计不合理或者存在阻塞现象,进风空气流量将减少,叶轮转速将降低,可能导致失速。
4.驱动电机故障:风机的驱动电机出现故障或过载过热等现象,也可能导致风机失速。
针对风机失速原因的不同,我们可以采用不同的分析方法,比较常见的有以下三种:1.模拟分析:模拟分析是通过计算机模拟来分析风机失速的原因。
其简单易行,可以模拟出风机在不同情况下的性能和工作状态。
2.水力试验:水力试验是通过实验来分析风机失速的原因,尤其是当风机叶轮失速的原因属于水动力特性时,水力试验可以得到较为准确的结果。
一次风机失速原因分析和处理
一次风机失速原因分析和处理摘要:国产超临界600MW机组一次风机选型,大部分电厂为节省厂用电,降低生产成本而选用双级动叶可调轴流一次风机,但双级动叶可调一次风机实际运用中,时常发生单台一次风机失速情况,严重影响设备可靠性和危及机组安全运行。
本文介绍福建鸿山热电有限责任公司在保证满足制粉系统风量和风压的前提条件下降低一次风机系统一次风压,使一次风机工作点远离风机失速区,提高一次风机运行稳定性,并总结单台一次风机失速事故处理经验,优化处理方法。
关键词:一次风机失速降压运行并风机1 前言福建鸿山热电有限责任公司(以下简称鸿山热电)2×600MW超临界供热机组,锅炉容量1962T/H,是哈尔滨锅炉厂生产的超临界变压运行、单炉膛、一次再热、平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构π型直流炉。
每台锅炉配有2台克容式三分仓空预器,6台北京电力设备总厂制造的ZGM113G型中速辊式磨煤机,2台豪顿华生产的双级轴流动叶可调一次风机,型号ANT-1875/1250N,动叶调节范围+10°~+55°,风量111m3/s,全压16730 Pa,转速1490rpm。
鸿山热电厂2010年5月开始调试,2011年1月全部投产发电,到2013年5月17日,前后发生十几次一次风失速事故,严重影响锅炉制粉系统运行安全和锅炉燃烧,极易造成锅炉全炉膛灭火。
经调取多次事故参数历史曲线,和利用停机检查一次风机系统各挡板、空气预热器积灰程度、一次风机动叶安装角度以及测量动叶叶顶与外壳间隙进行综合分析,发现一次风系统烟道阻力正常,一次风系统运行压力相对风机实际运行曲线而言有所偏高,造成风机工作点靠近失速区,系统稍有波动,一台风机工作点极易落入失速区,而导致一次风机失速。
2 风机失速基本原理轴流风机叶片通常为机翼型,叶片气流方向如图1所示,当空气顺着机翼叶片进口端(α=0),按图1(a)所示的流向流入时,它分成上下两股气流贴着翼面流过,叶片背部和腹部的平滑边界层处的气流呈流线形。
一次风机失速的原因分析与防范措施
1 存 在 的 问题
某发 电公 司 3机 组 为 6 7 0 MW 超 临界 机 组 , 锅
发生 前 , 两 侧 风机 的 出 口风压 基本 相 同 , 3 A较 3 B一 次风 机动 叶开 度 大 2 0 %、 电流 大 2 3 A, 由此 分 析 3 A
一
次 风机 存在 性能 下 降 的问题 , 3 A一 次 风机 失 速线
速 报警 后 , E, A, B, F , c磨 煤 机 相 继 跳 闸 , 锅 炉 主 燃
料跳闸( MF F ) 触发 , 机组 跳 闸 , 首 出原 因为 “ 炉 膛 压
力低 ” 。
( 1 ) 优化 制 粉 系统 运行 方 式 , 确 定 合 理 的 一 次 风 压力 值 。在正 常 运 行 中 , 应 根据 负荷 状 况 控 制 好
2台并 列运 行 的轴流 风 机一 般 只 是 单 台风 机 发 生失 速 , 不 会 出现 2台风 机 同时失 速 … , 失 速 的主要
原 因是压 头 高 、 流 量低 , 导 致运 行工 况接 近 不稳定 工
为运行人员及时处理风机失速故障争取足够时间。 2 . 3 . 1 一 次风 机 R B功 能完善
锅 炉 主燃 料 跳 闸 , 保证 了机组的安全运行 。
关键 词 : 一次 风机 ; 失速 ; 快减负荷保护逻辑
中图分类号 : T K 2 2 3 . 2 6 文献标 志码 : B 文章编号 : 1 6 7 4—1 9 5 1 ( 2 0 1 5 ) 0 2— 0 0 5 7—0 2
第3 7卷 第 2期
2 01 5年 2月
华 Байду номын сангаас 技 术
Hu a d i a n Te c h n o l o g y
一次风机失速原因分析及处理
一次风机失速原因分析及处理近期#6炉运行过程中多次出现一次风机失速现象,严重影响机组的安全运行,现将现象、原因及处理进行分析,以保证机组的安全稳定。
一、一次风机失速现象:
1、风机发失速报警;
2、风机电流与动叶开度不匹配;
3、风机出口风压下降,入口风温不正常上升,风机振速增大,就地检查风机振动大;
二、风机失速的危害:
1、风机不出力或少出力,风机内部有倒流现象,可能造成风机损坏;
2、风机本体振动增大,可能造成风机损坏;
3、出口风压大幅下降,影响制粉系统运行,可能造成磨煤机内堵煤;
三、造成风机失速的原因:
1、两侧风量不平衡,风机失速一般发生在风机并列运行过程中;在低负荷运行过程中及风机并列运行中负荷较低一侧的风机容易发生失速;
2、风机出力低,风机出口风量少,风压高的运行工况中容易出现风机失速;
3、风道特性发生变化,造成低风量,高风压运行工况中容易出现风机失速;
四、防止风速失速的预防措施及失速处理:
1、防止两侧风量不平衡,在风机并列过程中应保持低风压,大风量运行方式(通过磨煤机通风量调节);
2、在一次风机启动初期应避免运行在低负荷区域,有失速现象应多打开几台磨煤机的风道并开大风量调节档板以保证风机有足够通风量;
3、出现失速现象应维持制粉系统运行所需一次风量,在保证磨煤机出力情况下降低失速风机的动叶,注意其电流、风压、振速变化趋势,就地检查风机振动变化情况,当风机振速超过最大允许值应申请停运,以防设备损坏。
4、当风机失速现象消失后可重新接带负荷,在并列过程中应保持各参数稳定,加大通风量以防再次失速。
风机失速事件现场处置方案
风机失速事件现场处置方案
一、背景介绍
风机失速是风力发电场常见的一种故障,其原因可能是风力过大或变化突然导致的超速,或是风力减弱或变化缓慢导致的低速。
当风机出现失速时,不仅会造成设备损坏,还会带来安全隐患,因此对于失速事件的现场处置非常重要。
二、风机失速事件现场处置方案
以下是对风机失速事件的现场处置方案:
1. 初步评估
发现失速事件后,首先要对风机进行初步评估,包括:
•确定风机失速的原因
•判断是否存在安全隐患
•确定损坏程度
2. 现场处理
在评估完毕后,需要对失速风机进行现场处理,包括:
•切断风机的电源
•确保周围区域安全
•拍照或拍摄视频记录失速风机的现场情况
•进行必要的维修工作
维修工作主要包括:
•更换或修复损坏的部件
•调整风机的参数,使其恢复正常运转
3. 数据分析
在现场处理完毕后,需要对事件进行数据分析,包括:
•分析失速原因,及时发现故障点并排除
•分析失速时间和地点,检查是否同其他风机存在类似故障情况
•分析事件对风机的影响,总结经验教训,改进后续管理措施
三、总结
风机失速事件的现场处理非常重要,需要对风机进行初步评估、现场处理和数
据分析。
这些措施的目的在于及时发现和排除故障,保障风能发电的安全稳定运行,降低经济和社会损失。
风机失速的原因现象及处理方法
风机失速的原因现象及处理方法风机失速是指风机在运行过程中突然停止旋转的现象,通常是由于一些问题导致风机无法产生足够的升力而引起的。
风机失速不仅会影响到风机的正常运行,还可能带来一定的安全隐患。
本文将从风机失速的原因及现象入手,探讨一些常见的处理方法。
风机失速的原因主要有以下几个方面:1. 风速变化:风机在高速运行时,风速的突然变化可能导致风机失速。
例如,风速突然减小,风机无法产生足够的升力维持旋转;或者风速突然增大,风机受到过大的风阻力而停止旋转。
2. 气流不稳定:气流的不稳定也是导致风机失速的一个常见原因。
在某些特殊的气象条件下,风机所处的气流可能出现湍流或涡流,使得风机无法稳定地旋转。
3. 设计问题:风机的设计不合理也可能导致失速。
例如,风机的叶片设计不当,无法产生足够的升力;或者风机的重心位置设计不合理,导致风机失去平衡。
风机失速的现象一般可通过以下几点来判断:1. 风机突然停止旋转,无法产生足够的升力维持运转。
2. 风机发出异常的噪音或振动,可能是由于叶片与空气之间发生了不正常的相互作用。
3. 风机产生异常的热量,可能是由于风机受到过大的风阻力而导致发热。
针对风机失速的处理方法,可以从以下几个方面考虑:1. 检查风速:在风机运行之前,应该先检查风速的情况。
如果风速过大或者过小,都可能导致风机失速。
在风速较大的情况下,可以考虑减小风机的叶片面积,以降低风阻力;而在风速较小的情况下,可以考虑增加风机的叶片面积,以增加风机的升力。
2. 检查气流情况:如果风机所处的气流不稳定,可以考虑对风机进行定位调整,使其远离湍流和涡流的影响。
此外,也可以通过改变风机的旋转速度来适应不稳定的气流环境。
3. 优化设计:如果风机失速是由于设计问题导致的,可以进行风机的优化设计。
例如,可以改进风机的叶片形状,以提高升力的产生效果;或者改变风机的重心位置,使其更加平衡稳定。
风机失速是一种常见的问题,可能会对风机的正常运行和安全性产生较大的影响。
轴流式一次风机异常失速分析及防范措施
轴流式一次风机异常失速分析及防范措施摘要:沈阳风机厂制造的双级动叶可调轴流式风机,主要由转子总装、轴承组、进气箱、主体风筒、中导风筒、扩散器、液压调节管路、自控调节系统、联轴器、挠性连接与底座、消声器等部件构成。
在运行过程中出现出力受限甚至失速的情况,影响机组安全稳定运行。
本文简述失速分析及防范措施,以供参考。
关键词:一次风机;风机失速;风量裕量引言轴流式一次风机并联运行时,在制粉系统管路压力扰动时,易造成开度较大侧一次风机进入不稳定区域,出现出力受限甚至失速的情况。
一次风机系统匹配性不佳,尤其是风机在高负荷运行时压力失速裕量偏低,风机存在着较大的失速风险。
因此为了保障一次风机的安全稳定运行,如何降低故障概率成为解决重点。
一、事故经过锅炉采用中速一次风正压直吹制粉系统,配有上海重型机械厂生产的HP1003型磨煤机六台,每台磨煤机的最大出力为66.5t/h,正常运行时五运一备。
锅炉一次风系统配备两台沈阳鼓风机(集团)有限公司生产的AST-1792/1120型动叶可调式轴流一次风机。
随着机组近年来掺烧经济适烧煤种,二期机组一次风机在运行过程中出现出力受限甚至失速的情况,影响机组安全稳定运行。
典型事例如下。
8月26日,#3机组协调投入,AGC、一次调频投入,负荷400MW,3A/3B/3C/3D/3F制粉系统运行,其中3C,3D制粉系统已开始燃用“托福11”印尼煤(低位发热量3811Kcal/kg,干燥无灰基挥发份51.49%,全水34.71%,属于极易自燃煤种),六大风机均正常运行,各辅机自动调节均在投入状态。
3A/3B一次风机电流121.9/121.5A,一次风母管压力9.03kPa,3A/3B引风机电流为230.5/233.14A,炉膛负压-0.16kPa,3B密封风机运行,密封风母管压力13.33kPa。
3C磨煤机给煤量35.5t/h、电流34.85A、一次风流量104.2t/h、一次风进出口风温279℃/65℃、一次风进、出口风压为5.70kPa/3.49kPa。
一次风机失速分析及并入操作注意事项
一次风机失速原理及并列过程注意事项一、一次风机失速原理分析及处理(一)失速微观原理1.冲角和安装角安装角:风机叶片的弦线与叶轮转动方向的夹角,记β。
我厂风机动叶调节即是通过改变动叶的安装角进行调节。
冲角:气流相对于叶片的速度w方向与叶片弦线之间的夹角,记α。
其中气流相对速度w等于气流绝对速度c与叶轮旋转速度u之间的矢量差。
图1 冲角和安装角2.旋转脱流风机运行时,气流通过叶轮将在叶片表面形成边界层。
当冲角α较小时,气流绕过叶片并保持流线状态。
当冲角α过大并超过临界值时,在叶轮尾部将发生边界层分离,即脱流,如图2所示,此时叶片背面流动工况开始恶化,在叶片背面尾端形成涡流区,这将阻塞气道,此叶片出力随之降低,即失速。
图2 叶片脱流冲角是气流相对于叶片的速度w方向与叶片弦线之间的夹角。
如图1所示,冲角的大小取决于叶片安装角β和气流相对速度w的大小。
叶片安装角即动叶开度。
我厂一次风机为定转速运行,即叶轮速度u为定值,故气流相对速度w取决于气流绝对速度c,即气流相对速度取决于风机实际流量。
由图1可知,动叶开度较大且流量较低时,易发生叶片脱流。
由于各叶片加工和安装的差异性,各叶片的冲角不完全相同,当某一叶片冲角达到临界值时,则首先在该叶片上发生脱流。
假设叶片2和3间的叶道23首先出现脱流,叶道受阻塞后,通过的流量减少,在叶道前形成低速停滞区,气流分流进入两侧通道12和34,改变了原来的气流方向,使进入叶道12的气流冲角减小,进入叶道34的冲角增大。
由此促使叶道34内发生脱流形成阻塞。
叶道34内的脱流进一步又促使临近叶道出现脱流。
脱流阻塞区将沿着叶轮旋转的反方向推进。
此即为旋转脱流,又称旋转失速。
图3 旋转脱流示意图1图4 旋转脱流示意图2(二)失速宏观原理性能曲线及不稳定工况区风机性能曲线是用以表示通风机的主要性能参数(如风量、风压、动叶及效率)之间关系的曲线。
如图所示,定速轴流风机的性能一般为驼峰型,其表征不同动叶开度下,出口风压与流量的关系。
一次风机失速现象原因分析及处理措施
一次风机失速现象原因分析及处理措施摘要:国能铜陵电厂630MW机组一次风机是轴流式双级动叶可调式风机,是锅炉的重要辅机之一,针对4月7日和4月15日机组高负荷情况下分别发生两次1A一次风机出现的失速事件,从运行现象、原因分析及处理方案以及结论等,详细阐述了事件的经过。
关键词:一次风机;失速;现象;原因分析引言一次风机是锅炉辅机(包括风机、磨煤机、空预器等)中运行风险较大的重要设备之一,大容量机组都采用了轴流式双极动叶可调风机,电动机采用进口滑动轴承,取消电机稀油站。
一次风机发生失速后首先影响机组负荷和设备安全,因此在规定时间内必须进行及时处理,防止设备损坏。
本例一次风机失速原因是1号机组锅炉空预器的差压较高,带635MW负荷时分别达到1.6KPa和1.7KPa,使一次风机失速有了一个基本的条件。
由于原煤潮湿,各磨煤机冷风调门关小,而热风调门开到接近最大,总的来说,风机的管道特性曲线变陡并向左移动,更接近风机P-Q曲线的失速分界点。
一次风机及配套电机的相关参数如表1:表1一次风机及配套电机的相关参数1 轴流式一次风机失速特性轴流风机的失速特性是由风机的叶型等特性决定的[1],同时也受到风道阻力等特性的影响,动叶调节轴流式一次风机的特性曲线如图1所示,其中鞍形曲线M为一次风机不同安装角的失速点连线,工况点落在鞍形曲线的左上方,均为不稳定工况区,这条线也称为失速线。
由图中我们可以看出:(1)在同一叶片角度下,管路阻力越大,风机出口压力越高,风机运行越接近不稳定工况区;(2)在管路阻力特性下,风机动叶开度越大,风机运行点越接近不稳定工况区。
图1 轴流式动叶调节一次风机特性曲线2 一次风机失速工况分析2.1现象分析4月7日和4月15日分别发生两次1A一次风机失速事件,当时1号机组负荷分别为612MW和630MW,经运行人员紧急事故处理,保证了机组的安全运行。
但在高负荷下发生一次风机失速,对机组的安全威胁极大。
风机失速的原因现象及处理方法
风机失速的原因现象及处理方法
风机失速是指风机在运行过程中,空气通过风机时阻力过大,导致风机无法保持恒定的速度。
风机失速的原因可能包括以下几个方面:
1. 风机设计缺陷:风机设计存在缺陷,导致风机内部的气流组织不合理,导致空气流动阻力过大。
2. 风机叶片损坏:风机叶片损坏或磨损严重,导致叶片的迎水面出现了凹凸不平的情况,使得空气通过风机时受到了更大的阻力。
3. 风机叶轮摩擦:风机叶轮与叶轮之间的摩擦会导致空气通过风机时产生大量的热量,进而导致风机失速。
4. 风机内部堵塞:风机内部存在堵塞物,导致风机的进气通道被堵塞,使得空气无法进入风机。
5. 电源故障:电源故障会导致风机无法正常工作,从而导致失速。
针对风机失速,可以采取以下处理方法:
1. 检查风机设计缺陷:对于存在设计缺陷的风机,需要进行修复或更换。
2. 检查风机叶片损坏:对于叶片损坏或磨损严重的风机,需要进行更换或修理。
3. 检查风机叶轮摩擦:对于存在叶轮摩擦的风机,需要进行润滑剂的添加或更换。
4. 检查风机内部堵塞:对于存在堵塞物的风机,需要进行清除或更换。
5. 检查电源故障:对于电源故障的风机,需要进行修复或更换。
通过采取上述处理方法,可以有效地防止风机失速的发生,提高风机的性能和可靠性。
空调风机失速的原因现象及处理方法
空调风机失速的原因现象及处理方法1.电源故障:电源不稳定、电压过高或过低可能导致风机失速。
此时应检查电源线路,确保电压稳定,如有必要更换或调整电源线。
2.电机故障:空调风机的电机可能出现损坏、绕组开路或短路等问题。
当电机故障时,风机可能无法正常工作或工作不稳定。
处理方法是更换或修理电机。
3.风机叶片脏污:长期使用后,空调风机叶片可能会积聚灰尘、脏污,导致叶片不平衡,从而导致风机失速。
此时应定期清洁叶片,确保叶片的平衡性。
4.皮带松驰或磨损:空调风机使用的传动皮带可能会出现松驰、磨损等问题,导致风机失速。
处理方法是及时检查和维护皮带,确保其紧固标准和更换周期。
5.风机轴承故障:风机轴承损坏或磨损也可能导致风机失速。
此时应及时更换风机轴承。
6.控制系统故障:空调的控制系统可能会出现故障,导致风机无法正常运行。
处理方法是检查和修复控制系统的故障。
7.风机叶片安装不当:风机叶片安装不牢固或不正确也可能导致风机失速。
处理方法是调整叶片的位置和角度,确保叶片安装正确。
8.风机负载过重:空调风机如果承载过重,超过了其设计负载能力,也可能导致风机失速。
此时应降低风机负载,以减轻压力。
总之,空调风机失速可能是由于电源故障、电机故障、风机叶片脏污、皮带松驰或磨损、风机轴承故障、控制系统故障、风机叶片安装不当以及风机负载过重等原因造成的。
解决这些问题的方法包括修复电源故障、更换或修理电机、清洁叶片、维护皮带、更换风机轴承、修复控制系统、调整叶片位置和角度以及降低风机负载等。
综上所述,定期维护和保养空调风机,确保其正常运行,对于延长其使用寿命和保持稳定性非常重要。
空调风机失速的原因现象及处理方法
空调风机失速的原因现象及处理方法1.电源故障:电源问题可能会导致风机失速。
例如,供电不稳定、电压过低或过高、线路故障等都可能造成风机工作不正常。
此时可以检查电源电压是否正常,若不正常则需要及时解决电源问题,保证正常的供电。
2.电机故障:空调风机使用的是电动机驱动,如果电机出现故障则会导致风机失速。
电机故障的原因可能包括电机过热、电机轴承磨损、电机绕组短路等。
检查电机是否发热,是否发出异常噪音,如果存在以上情况,则需要检修电机或更换电机。
3.风机叶片问题:风机叶片正常运转时可以提供足够的风力,但如果叶片出现磨损、脱落或堵塞等问题,则会导致风机失速。
检查风机叶片是否完整、是否与风机轴连接牢固,清洁叶片上的灰尘、杂物,并定期对风机进行维护保养。
4.风机控制系统故障:风机失速还可能是由于控制系统故障引起的,例如风机启动器故障、控制器故障等。
检查风机控制系统的连接线路是否松脱,观察控制器是否显示异常,如有故障则需要检修或更换控制系统。
处理方法如下:1.检查电源线路和电源供应是否正常,确保正常的供电。
2.检查电机是否出现故障,如发热、发出异常噪音等,根据情况进行修理或更换电机。
3.检查风机叶片是否完整,清洁叶片上的灰尘和杂物,保持叶片干净。
4.检查风机控制系统是否正常工作,修复或更换故障的控制器或启动器。
为避免空调风机失速,还可以采取以下措施:1.定期对空调设备进行维护保养,包括清洁风机叶片和换气孔,检查电机、电源等部件是否正常工作。
2.避免长时间过载使用空调设备,以免造成电机过热。
3.定期检查风机控制系统,确保其正常工作。
4.注意防护措施,避免灰尘、杂物等进入风机内部。
5.及时修理或更换有故障的部件,确保空调设备的正常运行。
总之,空调风机失速可能由于电源故障、电机故障、风机叶片问题或控制系统故障引起。
通过定期维护保养,及时检修故障部件,保持空调设备正常运行,可以有效避免风机失速的发生。
空调风机失速的原因现象及处理方法
空调风机失速的原因现象及处理方法以空调风机失速的原因现象及处理方法为标题,下面将详细介绍。
一、原因分析:空调风机失速通常是由以下几个原因引起的:1. 电源问题:电源电压不稳定或供电线路老化、接触不良等问题,可能会导致空调风机失速。
2. 风机电机故障:风机电机损坏或磨损严重,无法正常运转,从而导致风机失速。
3. 风机叶片问题:风机叶片可能出现积尘、变形、断裂等问题,影响空调风机的正常运转。
4. 风机轴承故障:风机轴承老化、损坏或润滑不良,会导致风机运转不畅,甚至失速。
5. 控制电路故障:控制电路出现故障,无法正确控制风机的启停,可能导致风机失速。
二、现象描述:当空调风机失速时,可能会出现以下现象:1. 风机无法启动:无论调节空调的风速和温度,风机都无法启动。
2. 风机启动后立即停止:风机启动后仅持续运转片刻,然后突然停止。
3. 风机转速不稳定:风机转速不稳定,时快时慢,无法保持恒定转速。
4. 风机运转噪音大:风机运转时产生异常噪音,可能是由于风机轴承故障或风机叶片问题导致的。
三、处理方法:针对空调风机失速问题,可以采取以下处理方法:1. 检查电源问题:首先检查电源电压是否稳定,可以使用电压表进行测量。
同时检查供电线路是否老化、接触不良,如有问题应及时更换或修复。
2. 检查风机电机:检查风机电机是否损坏或磨损严重,如有问题应及时更换。
如果风机电机只是磨损较轻,可以尝试给电机添加适量润滑油,以提高运转效果。
3. 清洁风机叶片:定期清洁风机叶片,避免积尘影响风机运转。
如果叶片变形或断裂,应及时更换。
4. 检查风机轴承:检查风机轴承是否老化、损坏或润滑不良,如有问题应及时更换或进行润滑维护。
5. 检查控制电路:检查空调的控制电路是否正常工作,如有故障应及时修复或更换控制模块。
空调风机失速可能是由于电源问题、风机电机故障、风机叶片问题、风机轴承故障或控制电路故障引起的。
根据具体情况,可以采取相应的处理方法来解决风机失速问题。
一次风机失速的原因分析及处理
一次风机失速的原因分析及处理摘要:一次风机是燃煤电厂燃烧系统的重要辅机设备,其运行正常直接关系到机组稳定运行。
基于电厂集控运行工作经验,通过对锅炉一次风机在运行中失速的实例介绍,并进行原因分析,给出相应处理措施,确保机组安全运行。
关键词:一次风机;失速;处理;一、设备概况锅炉型号为SG-2028/17.5-M908,亚临界参数,一次中间再热。
机组额定功率为630MW。
6台中速磨煤机,型号为HP-983。
2台动叶可调轴流式一次风机,型号为PFA19-11.8-2,TB点流量为105m3/s,TB点压力为10153Pa,600MW点流量为81 m3/s,600MW点压力为8957Pa。
二、风机失速前工况机组负荷608MW A、B、C、E、F磨运行,A一次风机动叶开度64°,电流102A,B一次风机动叶开度70°,电流102A,热一次风量550t/h,风机出口最高压力9.6Kpa三、事情经过15时33分,一次风机动叶偏差大报警,热一次风压降至6.5kPa,B一次风机发失速报警;15时34分,撤出机组AGC;A、B一次风机动叶自动开至98.5%、99.4%,热一次风母管压力为6.9kpa;撤出A、B一次风机动叶自动并关小;15时34分45秒,停运F给煤机,触发机组RB;热一次风压力上升至8.9kpa; 15时36分,停运E给煤机;热一次风压至7.5kpa;15时59分,RB减负荷至300MW,B一次风机失速没有消除,风机轴承温度达到84℃(任一道轴承温度三取二≥90℃跳闸风机),停运B一次风机;16时27分,检修开票打开风机人孔门检查风机动叶、入口消音器以及烟风系统挡板,更换新液压缸一个;次日05时20分,重新启动4B一次风机,并列完成,动叶投入自动,恢复正常运行方式。
四、原因分析影响轴流风机失速特性的因素有:风道阻力等系统特性,风机技术出力、风机叶形等特性。
因素一,风管阻力改变。
B一次风机失速前负荷在600MW附近,磨煤机热一次风调门开度均为80%以上,但为稳定磨煤机出口温度冷一次风会以一定的调节幅度参与调节,其对改变风管阻力有一定影响。
火电厂某型一次风机故障分析与处理
火电厂某型一次风机故障分析与处理一次风机在火电厂生产中作用较大,直接影响着火电厂正常发电。
因此就要做好一次风机的预防措施,确保风机正常工作。
为了探究风机故障,就对火电厂某型的一次风机中出现的常见故障进行分析,进而有针对性的制定出处理措施,有效将各种故障排除掉。
1 火电厂某型一次风机故障分析与处理事实上,一次风机出现的故障现象较多,本研究就选择了几种比较常见的故障进行分析和处理,具体分析如下:1.1 一次风机失速故障分析与处理1.1.1 一次风机失速故障分析要分析该故障原因,首先就要明白其产生失速的根本机理。
在风机是轴流风机叶片上大都采用了机翼叶片。
如果风机按照正常工况运转,叶片上具有较小冲角,气流通过机翼型的叶片保持着流线状态,具体如图1(a),一旦气流和叶片的进口处形成了正冲角,也就是a>0,假如正冲角高过了某临界值,叶片背面的流动性就开始出现恶化,破坏了边界层,在其背面的尾端产生了涡流区,就出现了失速现象(图b)。
出现这种根本原因体现在如下几个方面:①风机出口的挡板销子出现脱落或者断裂等现象,致使发生突然关闭或者部分关闭,就产生失速。
②在变负荷的过程之中,如果调节失灵或者误操作致使两台风机所产生的风量出现偏差,不能维持平衡。
③堵塞住了风机的出入口风道,比如空预器或者暖风器长时间没有清理灰尘,而发生了严重的积灰。
④运行之时出现了不当调整,导致系统的风量不足或者没有保持合理的风压,必然造成风速故障。
1.1.2 一次风机失速故障处理措施事实上,对于一次风机失速故障处理上就是要想方设法降低冲角,尽可能恢复叶片线形的扰流。
具体措施就是将风机投入到自动控制模式中运行,一旦发生故障就要快速切除自动,段时间内降低机组的负荷,采用手动将风机动叶关小,一直到系统的风压回升以及风机的电流快速恢复到正常值,此时工况的动叶开度大约在50%左右。
而且还要将部分备用设备的出口挡板以及总风门及冷热风门打开,加强系统的通风量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次风机失速现象原因分析及处理措施
[摘要]本文对轴流式风机失速的机理进行了较为详细的探讨,阐述了实际运行中产生失速的原因,介绍了河北大唐王滩发电厂#1、#2机组锅炉一次风机的失速特性、失速原因,并从运行管理的角度提出了失速的相关预防措施和紧急处理方案。
[关键词]冲角;失速特性;现象;处理措施
风机的失速现象主要发生于轴流式风机。
而一般情况下,大型火电机组锅炉的三大风机均为轴流式风机,失速时常常会引起振动,严重时威胁到机组的安全运行。
河北大唐王滩发电厂#1、#2机组锅炉的吸风机为静叶可调轴流风机,送风机及一次风机为动叶可调式轴流风机,下面对风机在运行过程中的失速问题作简要分析。
1 失速产生的机理
1.1 失速的过程及现象
轴流风机的叶片均为机翼型叶片。
风机处于正常工况时,叶片的冲角很小(气流方向与叶片叶弦的夹角即为冲角),气流绕过机翼型叶片而保持流线状态,如图1(a)所示。
当气流与叶片进口形成正冲角,即α>0,且此正冲角超过某一临界值时,叶片背面流动工况开始恶化,边界层受到破坏,在叶片背面尾端出现涡流区,即所谓“失速”现象,如图1(b)所示。
冲角大于临界值越多,失速现象越严重,流体的流动阻力越大,使叶道阻塞,同时风机风压也随之迅速降低。
风机的叶片在加工及安装过程中由于各种原因使叶片不可能有完全相同的形状和安装角,因此当运行工况变化而使流动方向发生偏离时,在各个叶片进口的冲角就不可能完全相同。
如果某一叶片进口处的冲角达到临界值时,就首先在该叶片上发生失速,而不会所有叶片都同时发生失速。
如图2中,u是对应叶片上某点的周向速度,w是气流对叶片的相对速度,α为冲角。
假设叶片2和3间的叶道23首先由于失速出现气流阻塞现象,叶道受堵塞后,通过的流量减少,在该叶道前形成低速停滞区,于是气流分流进入两侧通道12和34,从而改变了原来的气流方向,使流入叶道12的气流冲角减小,而流入叶道34的冲角增大。
可见,分流结果使叶道12绕流情况有所改善,失速的可能性减小,甚至消失;而叶道34内部却因冲角增大而促使发生失速,从而又形成堵塞,使相邻叶道发生失速。
这种现象继续进行下去,使失速所造成的堵塞区沿着与叶轮旋转相反的方向推进,即产生所谓的“旋转失速”现象。
风机进入到不稳定工况区运行,叶轮内将产生一个到数个旋转失速区。
叶片每经过一次失速区就会受到一次激振力的作用,从而可使叶片产生共振。
此时,叶片的动应力增加,致使叶片断裂,造成重大设备损坏事故。
1.2 影响冲角大小的因素
王滩电厂的一次、送、吸风机都是定转速运行的,即叶片周向速度u是一定
值,这样影响叶片冲角大小的因素就是气流速度与叶片开度角。
如图3所示,可以看出:当叶片开度角β一定时,如果气流速度c越小时,冲角α就越大,产生失速的可能性也就越大。
从图3还可以看出,当流速c一定时,如果叶片角度β减小,则冲角α也减小;当流速C很小时,只要叶片角度β很小,则冲角α也很小。
因此,当风机刚启动或低负荷运行时,风机失速的可能性大大减小甚至消失。
1.3 运行中风机失速的原因
(1)风机出口挡板销子脱落或断裂等原因导致其突然关闭或部分关闭时。
(2)变负荷过程中由于调节失灵或误操作致使两台风机风量严重不平衡。
(3)风机出入口风道堵塞,如暖风器或空预器严重积灰。
(4)运行调整不当,系统风量不足或风压保持不合适。
2 王滩电厂一次风机发生失速的现象及处理
一次风机失速一般发生在两风机运行且负荷偏差大、动叶投自动时,是由于风压过高或风量过小导致一台风机的动叶出口产生涡流而不打风。
其现象是两台风机并列运行并且投入自动控制时,风机动叶迅速开大;一次风母管风压迅速下降;一台风机电流基本保持不变,另一台(发生失速的)风机电流迅速降低,电流下降的风机轴承温度迅速升高,振动增大。
处理失速方法的本质是设法减小冲角,恢复叶片线形绕流。
具体做法是风机投入自动控制方式运行时,立即切除自动,迅速降低机组负荷、手动关小风机动叶,直至系统风压回升、风机电流迅速恢复到故障前数值为止(此工况动叶开度一般在50%左右)。
同时,要开启部分备用磨煤机出口挡板及总风门、冷热风门,增加系统通风量。
监视系统风压稳定后,调平两台一次风机的出力。
系统稳定后,风机控制可以重新投入自动方式。
处理一次风机失速过程中有两个关键点值得监盘人员注意,一是手动关小动叶过程中要密切监视制粉系统的运行情况,及时开大冷、热风门及减少燃料量,防止堵磨;二是一次风机由失速转为正常运行后,一次风母管压力有一个突增的过程,此时制粉系统内的存粉会大量进入炉膛不但会造成气压快速升高,投自动的制粉系统还会快速减少燃料易造成风粉配比失调而灭火,因此发现一次风母管压力上升后应立即将燃烧切至手动,迅速升高机组电负荷(热负荷不变),必要时开启向空排汽门。
处理过程中还要密切监视汽包水位、气温等相关参数。
3 结论
失速是一种很危险的情况,处理不当很容易造成锅炉灭火、机组非停甚至设
备损坏事故。
我们应认真了解失速的机理,认真预防;在真正发生了失速的情况下,胆大细心,严格按照运行规程及各项技术措施,保证机组稳定运行。