六年级下册奥数试题 数的整除特征(一) 全国通用(含答案)【精】.docx
小学奥数 数的整除性 知识点+例题+练习 (分类全面)
拓展、一位采购员买了72个微波炉,在记账本上记下这笔账。
由于他不小心,火星落在账本上把这笔账的总数烧掉了两个数字。
账本是这样写的:72个微波炉,共用去□679□元(□为被烧掉的数字),请你帮忙把这笔账补上。
应是__________元。
(注:微波炉单价为整数元)。
36792
例4、五位数能被12整除,这个五位数是____________。
42972
拓展、六位数7E36F5 是1375的倍数,求这个六位数。
713625
拓展、一个五位数98
3ab能被11和9整除,这个五位数是。
39798
例5、五位数
能同时被2,3,5整除,则A=______,B=______。
48
A1
B
5/2/8 0
拓展、要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?0 1 5
拓展、已知7位自然数427
62xy是99的倍数,则x= ,y=
2 4
2、若9位数2008□2008能够被3整除,则□里的数是
3、173□是个四位数。
数学老师说:“我在这个□中先后填入3个数字,所得到的 3个四位数,依次可以被9,11,6整除。
”问:数学老师先后填入的3个数字之和是多少?
4、判断306371能否被7整除?能否被13整除?
5、判断能否被3,7,11,13整除.
6、试说明形式的6位数一定能被11整除.。
【机构秘籍】小学奥数题库《数论》整除-整除的基本概念-1星题(含解析)全国通用版
数论-整除-整除的基本概念-1星题课程目标学问提要整除的基本概念•定义假如整数a除以整数b(b≠ 0),除得的商是整数且没有余数,我们就说a能被b整除,也可以说b能整除a,记作b∣a.留意:假如除得的结果有余数,我们就说a不能被b整除,也可以说b不能整除a.•整除的性质性质1:假如a、b都能被c整除,那么它们的和与差也能被c整除。
性质2:假如b与c的积能整除a,那么b与c都能整除a。
性质3:假如b、c都能整除a,且b和c互质,那么b与c的积能整除a。
性质4:假如c能整除b,b能整除a,那么c能整除a。
精选例题整除的基本概念1. 再过12天就到2016年了,昊昊感慨地说:我到目前只经过2个闰年,并且我诞生的年份是9的倍数,那么2016年昊昊是岁.【答案】9【分析】依据题意“我到目前只经过2个闰年”可得我的诞生年份在2005 2008,这之间只有2007是9的倍数,则昊昊是2007年诞生,则2016年昊昊是2016−2007=9岁.2. 若六位数201ab7能被11和13整除,则两位数ab=.【答案】48【分析】由11的整除特征可知:(7+a+0)−(2+1+b)=a+4−b=0或11,若a+4−b=11,a−b=7,只有8−1=9−2=7,六位数201817、201927都不能被13整除.若a+4−b=0,则a+4=b,只有0+4=4,1+4=5,2+4=6,3+4=7,4+4=8,5+4=9等状况,构成的六位数201047,201157,201267,201377,201487,201597中只有201487能被13整除,则ab=48.3. 一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为20110101.假如2011年最终一个能被101整除的日子是2011ABCD,那么2011ABCD是多少?【答案】20111221【分析】试除法得出答案:20111231÷101=199121⋯⋯10,31−10=21,所以ABCD=1221.4. 若4b+2c+d=32,试问abcd能否被8整除?请说明理由.【答案】见解析.【分析】由能被8整除的特征知,只要后三位数能被8整除即可.bcd=100b+10c+d,有bcd−(4b+2c+d)=96b+8c=8(12b+c)能被8整除,而4b+2c+d=32也能被8整除,所以abcd能被8整除.。
整除的特征练习题
整除的特征练习题整除是数学中的一个重要概念,它在我们的日常生活中也有着广泛的应用。
在数学中,整除是指一个数能够被另一个数整除,也就是说,被除数可以被除数整除,而没有余数。
在本文中,我将为大家提供一些有关整除的特征练习题,帮助大家更好地理解和掌握这一概念。
1. 练习题一:判断整除性给定两个整数a和b,判断a是否能够被b整除。
如果能够整除,则输出“a能够被b整除”,否则输出“a不能够被b整除”。
解答:要判断一个数a能否被另一个数b整除,我们可以使用取余运算符%,即a % b。
如果a % b的结果为0,那么a能够被b整除;否则,a不能够被b整除。
2. 练习题二:整除的性质给定一个整数n,判断n是否满足以下条件:n能够被2整除,同时也能够被3整除,但不能被5整除。
解答:要判断一个数n是否满足以上条件,我们可以使用逻辑运算符与(&&)和取余运算符%。
首先,我们判断n能否被2整除,即n % 2是否等于0;然后,我们判断n能否被3整除,即n % 3是否等于0;最后,我们判断n能否被5整除,即n % 5是否等于0。
如果n满足以上所有条件,则输出“n满足条件”;否则,输出“n不满足条件”。
3. 练习题三:整除的应用某班级有60名学生,他们参加了一个数学竞赛,最后的成绩按照整数排名。
现在,请你编写一个程序,能够输出前三名的学生的学号。
解答:假设每个学生的学号都是唯一的,且按照从小到大的顺序排列。
我们可以使用循环结构和条件判断来解决这个问题。
首先,我们定义一个计数器count,初始值为0;然后,我们使用一个循环,从第一个学生开始遍历到第60个学生。
在循环中,我们判断当前学生的学号是否能够被3整除,如果能够整除,则输出该学生的学号,并将计数器count加1。
当计数器count等于3时,终止循环。
4. 练习题四:整除的性质扩展给定一个整数n,判断n是否满足以下条件:n能够被7整除,同时也能够被11整除,且n除以13的余数为1。
六年级下册奥数专题练习-数的整除性规律-全国通用
数的整除性规律【能被2或5整除的数的特征】(见小学数学课本,此处略)【能被3或9整除的数的特征】一个数,当且仅当它的各个数位上的数字之和能被3和9整除时,这个数便能被3或9整除。
例如,1248621各位上的数字之和是1+2+4+8+6+2+1=243|24,则3|1248621。
又如,372681各位上的数字之和是3+7+2+6+8+1=279|27,则9|372681。
【能被4或25整除的数的特征】一个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。
例如,173824的末两位数为24,4|24,则4|173824。
43586775的末两位数为75,25|75,则25|43586775。
【能被8或125整除的数的特征】一个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。
例如,32178000的末三位数字为0,则这个数能被8整除,也能够被125整除。
3569824的末三位数为824,8|824,则8|3569824。
214813750的末三位数为750,125|750,则125|214813750。
【能被7、11、13整除的数的特征】一个数,当且仅当它的末三位数字所表示的数,与末三位以前的数字所表示的数的差(大减小的差)能被7、11、13整除时,这个数就能被7、11、13整除。
例如,75523的末三位数为523,末三位以前的数字所表示的数是75,523-75=448,448÷7=64,即7|448,则7|75523。
又如,1095874的末三位数为874,末三位以前的数字所表示的数是1095,1095-874=221,221÷13=17,即13|221,则13|1095874。
再如,868967的末三位数为967,末三位以前的数字所表示的数是868,967-868=99,99÷11=9,即11|99,则11|868967。
六年级下册数学试题-奥数专练:数的整除之四大方法综合应用(含答案)全国通用
数的整除之四大方法综合应用知识要点一、整除的定义:当两个整数a和b(b≠0),a被b除的余数为零时(商为整数),则称a被b整除或b整除a,也把a叫做b的倍数,b叫a的约数,记作b|a,如果a被b除所得的余数不为零,则称a不能被b整除,或b不整除a,记作b…a。
二、数的整除性质:⑴对称性:若甲数能被乙数整除,乙数也能被甲数整除,那么甲、乙两数相等。
记作:a|b,b|a,则a=b。
⑵传递性:若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。
记作:若a|b,b|c,则a|c。
⑶若两个数能被一个自然数整除,那么这两个数的和与差都能该自然数整除。
记作:若a|b,a|c,则a|(bc)。
⑷几个数相乘,若其中有一个因子能被某一个数整除,那么它们的积也能被该数整除。
⑸若一个数能被两个互质数中的每一个数整除,那么这个数也能分别被这两个互质数的积整除。
记作:若a|b,c|b,(a,c)=1,则ac|b。
⑹若一个数能被两个互质数的积整除,那么,这个数也能分别被这两个互质数整除。
记作:若ac|b,(a,c)=1,则a|b,c|b。
⑸若一个整数的末位是0或5,则这个数能被5整除。
⑹若一个整数能被2和3整除,则这个数能被6整除。
⑺若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。
⑻若a|b,m≠0,则am|bm。
⑼若am|bm,m≠0,则a|b。
⑽若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)三、整除特征⑴1与0的特性:1是任何整数的约数,即对于任何整数a,总有1/a。
0是任何非零整数的倍数,a≠0,a为整数,则a/0。
⑵若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
⑶若一个整数的数字和能被3整除,则这个整数能被3整除。
⑷若一个整数的末尾两位数能被4整除,则这个数能被4整除。
⑸若一个整数的末位是0或5,则这个数能被5整除。
⑹若一个整数能被2和3整除,则这个数能被6整除。
六年级下册数学专题练习:6、整除及数字整除特征 全国通用(含解析)
6、整除及数字整除特征【数字整除特征】例1 42□28□是99的倍数,这个数除以99所得的商是__。
(上海市第五届小学数学竞赛试题)讲析:能被99整除的数,一定能被9和11整除。
设千位上和个位上分别填上数字a、b,则:各位上数字之和为[16+(a+b)]。
要使原数能被9整除,必须使[16+(a+b)]是9的倍数,即(a+b)之和只能取2或11。
又原数奇位上的数字和减去偶位上数字和的差是(8+a-b)或(b-a-8),要使原数能被11整除,必须使(8+a-b)或(b-a-8)是11的倍数。
经验证,(b-a-8)是11的倍数不合。
所以a-b=3。
又a+b=2或11,可求得a=7,b=4。
从而很容易求出商为427284÷99=4316。
例2 某个七位数1993□□□能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数字依次是__。
(1993年全国小学数学奥林匹克初赛试题)讲析:因为2、3、4、5、6、7、8、9的最小公倍数是2520。
而1993000÷2520=790余2200。
于是再加上(2520-2200)=320时,就可以了。
所以最后三位数字依次是3、2、0。
例3 七位数175□62□的末位数字是__的时候,不管千位上是0到9中的哪一个数字,这个七位数都不是11的倍数。
(上海市第五届小学数学竞赛试题)讲析:设千位上和个位上的数字分别是a和b。
则原数奇位上各数字和与偶位上各数字之和的差是[3+(b-a)]或[(a-b)-3]。
要使原数是11的倍数,只需[3+(b-a)]或[(a-b)-3]是11的倍数。
则有 b-a=8,或者a-b=3。
①当 b-a=8时,b可取9、8;②当 a-b=3时,b可取6、5、4、3、2、1、0。
所以,当这个七位数的末位数字取7时,不管千位上数字是几,这个七位数都不是11的倍数。
例4 下面这个四十一位数55......5□99 (9)(其中5和9各有20个)能被7整除,那么中间方格内的数字是__。
小学数的整除数论奥数知识讲解及习题
小学数的整除数论奥数知识讲解及习题小学数的整除数论奥数知识讲解及习题小学的学生学习奥数对学校所学数学的一个补充和提高,同学们快来做做奥数题来锻炼自己吧!下面是小编为大家收集到的数的整除数论奥数知识讲解及习题,供大家参考。
一、基本概念和符号:1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;二、整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。
2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。
3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。
4. 能被3、9整除:各个数位上数字的和能被3、9整除。
5. 能被7整除:①末三位上数字所组成的'数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6. 能被11整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7. 能被13整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
三、整除的性质:1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
例题:在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?解:如果56□2能被9整除,那么5+6+□+2=13+□应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。
小学奥数数的整除数论知识讲解和习题
小学奥数数的整除数论知识讲解和习题1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;1。
能被2、5整除:末位上的数字能被2、5整除。
2。
能被4、25整除:末两位的数字所组成的数能被4、25整除。
3。
能被8、125整除:末三位的数字所组成的数能被8、125整除。
4。
能被3、9整除:各个数位上数字的和能被3、9整除。
5。
能被7整除:①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6。
能被11整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7。
能被13整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
1。
如果a、b能被c整除,那么(a+b)与(a—b)也能被c 整除。
2。
如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3。
如果a能被b整除,b又能被c整除,那么a也能被c整除。
4。
如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
例题:在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?解:如果56□2能被9整除,那么5+6+□+2=13+□应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。
六年级下册数学试题-小升初能力训练:数论综合——整除特征(解析版)全国通用
第03讲 数论综合——整除特征【一】第一类1、已知道六位数20279□是13的倍数,求□中的数字是几?根据一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、 11或13整除的特点知道:27920=7-□□,7□是13的倍数,□是8的时候是13倍数, 所以知道方格中填1。
2、 一个19位数99777744444⋅⋅⋅⋅⋅⋅1424314243个个能被13整除,求内的数字.∵13|99777744444⋅⋅⋅⋅⋅⋅1424314243个个,∴13|97777444⋅⋅⋅14243,∴13|7777770000000+7770444 ∵13|777777,∴13|7777770000000,∴13|777444,∴13|77-(444+7) ∵451139÷L ,∴777139÷L ,∴6=3、 三位数的百位、十位和个位的数字分别是5,a 和b ,将它连续重复写2008次成为:20095555abab ab ab L L 1442443个.如果此数能被91整除,那么这个三位数5ab 是多少?因为91713=⨯,所以20095555abab ab ab L L 1442443个也是7和13的倍数,因为能被7和13整除的特点是末三位 和前面数字的差是7和13的倍数,由此可知20085200755555555000ab abab ab ab ab ab ab ab -=L L L L 14424431442443个个也是7和 13的倍数,即20075555ab ab ab ab L L 1442443个也是7和13的倍数,依次类推可知20075555abab ab ab L L 1442443个末三位和前面数 字的差即为:20065200555555555000ab ab ab ab ab ab ab ab ab -=L L L L 14424431442443个个也是7和13的倍数,即20055555abab ab ab L L 1442443个也 是7和13的倍数,由此可知5ab 也是7和13的倍数,百位是5能被7和13即91整除的数是: 916546⨯=,所以46ab =.4、 已知九位数2007122□□既是9的倍数,又是11的倍数;那么,这个九位数是多少? 方法一:设原数2007122=a b ,∵9|2007122a b ⇒ 4+=a b 或者13+=a b ,∵11| 2007122a b ⇒ 20+++a 22+- (071+++b )0=或者(071+++b )(2202)-++++a 11=⇒2-=a b或者9-=b a 根据两数和差同奇偶,得:42+=⎧⎨-=⎩a b a b ⇒ 31=⎧⎨=⎩a b 或者139+=⎧⎨-=⎩a b b a ⇒ 211=⎧⎨=⎩a b 不成立. 所以,2007122a b 200731212=.方法二:根据一个数能被99整除的特点知道若想2007122□□能被99整除,则207122++++必能被99整除,列竖式分析得20731212++++才满足,所以答案为2007312125、 用1~9这九个数字组成三个三位数(每个数字都要用),每个数都是4的倍数。
【精编】六年级下册奥数试题 数的整除特征(一) 全国通用(含答案)
第1讲数的整除特征(一)知识网络数的整除性质主要有:(1)若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。
(2)若两个数能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。
(3)几个数相乘,若其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。
(4)若一个数能被两个互质数中的每一个数整除,那么这个数也能被这两个互质数的积整除。
(5)若一个数能被两个互质数的积整除,那么这个数也能分别被这两个互质数整除。
(6)若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。
(7)个位上是0、2、4、6、8的数都能被2整除。
(8)个位上是0或者5的数都能被5整除。
(9)若一个整数各位数字之和能被3整除,则这个整数能被3整除。
(10)若一个整数末尾两位数能被4整除,则这个数能被4整除。
(11)若一个整数末尾三位数能被8整除,则这个数能被8整除。
(12)若一个整数各位数字之和能被9整除,则这个整数能被9整除。
重点·难点数的整除概念、性质及整除特征为解决一些整除问题带来了很大方便,在实际问题中应用广泛。
要学好数的整除问题,就必须找到规律,牢记上面的整除性质,不可似是而非。
学法指导能被2和5,4和25,8和125整除的数的特征是分别看这个数的末一位、末两位、末三位。
我们可以综合推广成一条:末n位数能被(或)整除的数,本身必能被(或)整除;反过来,末n位数不能被(或)整除的数,本身必不能被(或)整除。
例如,判断253200、371601能否被16整除,因为,所以只要看各数的末四位数能否被16整除。
学习这一讲知识要学会举一反三。
经典例题[例1]在568后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数尽可能小。
思路剖析这个六位数分别被3、4、5整除,故它应满足如下三个条件:(1)各位数字和是3的奇数;(2)末两位数组成的两位数是4的倍数;(3)末位数为0或5。
六年级下册奥数试题数的整除特征(一)全国通用(含答案)
第1讲数的整除特征(一)知识网络数的整除性质主要有:(1)若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。
(2)若两个数能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。
(3)几个数相乘,若其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。
(4)若一个数能被两个互质数中的每一个数整除,那么这个数也能被这两个互质数的积整除。
(5)若一个数能被两个互质数的积整除,那么这个数也能分别被这两个互质数整除。
(6)若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。
(7)个位上是0、2、4、6、8的数都能被2整除。
(8)个位上是0或者5的数都能被5整除。
(9)若一个整数各位数字之和能被3整除,则这个整数能被3整除。
(10)若一个整数末尾两位数能被4整除,则这个数能被4整除。
(11)若一个整数末尾三位数能被8整除,则这个数能被8整除。
(12)若一个整数各位数字之和能被9整除,则这个整数能被9整除。
重点·难点数的整除概念、性质及整除特征为解决一些整除问题带来了很大方便,在实际问题中应用广泛。
要学好数的整除问题,就必须找到规律,牢记上面的整除性质,不可似是而非。
学法指导能被2和5,4和25,8和125整除的数的特征是分别看这个数的末一位、末两位、末三位。
我们可以综合推广成一条:末n位数能被(或)整除的数,本身必能被(或)整除;反过来,末n位数不能被(或)整除的数,本身必不能被(或)整除。
例如,判断253200、371601能否被16整除,因为,所以只要看各数的末四位数能否被16整除。
学习这一讲知识要学会举一反三。
经典例题[例1]在568后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数尽可能小。
思路剖析这个六位数分别被3、4、5整除,故它应满足如下三个条件:(1)各位数字和是3的奇数;(2)末两位数组成的两位数是4的倍数;(3)末位数为0或5。
六年级下册数学知识点解析 四、数的整除性 全国通用
四、数的整除性153.为什么要学习“数的整除性”这部分知识?“数的整除性”在小学数学教学中是一个重要的基础知识。
说它重要是因为这部分知识所涉及的基本数学概念不仅多,而且相对集中,如果不能明确、清晰地掌握这些基本数学概念的区别和联系,就会引起混淆,而混淆也必然给以后的数学知识的学习,带来严重的后遗症。
例如:约数与倍数、质数与合数、奇数与偶数、公约数与公倍数……这些概念在教学中几乎同时出现,但又有相反的内涵,因此,这些概念必须牢固而又明确地建立起来。
还必须看到:“数的整除性”是学习分数的前提和准备。
在分数的四则运算中,约分和通分是一定要掌握的基础知识,而构成这些基础知识,是离不开“数的整除性”这部分内容的。
例如:不掌握求最大公约数的方法,就不可能进行正确、迅速的约分;不掌握求最小公倍数的方法,也无法进行正确、迅速的通分。
从这个意义上讲,学习“数的整除性”是进一步学习数学的需要。
除此之外,学生在过去的学习中,已经知道整数与整数的和、差、积都是整数,但整数除整数时,商不一定是整数,有时会是小数,到底在什么情况下,整数与整数相除,商仍然是整数呢?这就需要根据“数的整除性”的知识来进行正确的判断了。
在未学习“数的整除性”前,学生是很难准确、迅速地判断出下列各式的商是不是整数。
87459÷3 65246÷732846÷11 96375÷2574321÷9 79432÷8由于数字较大,一时难于做出正确的判断,一旦掌握了“数的整除性”这部分知识,这些问题就不难解决了。
154.整除和除尽有什么不同?整除和除尽是两个既有区别又有联系的概念,也是两个易于混淆的概念。
可以通过下面两道题的计算过程,来加以说明。
这两道题相同的地方是都没有余数,都可以说成是“除尽”。
但这两道题又有不同的地方,(1)题中的被除数、除数和商都是整数,这种情况称作“整除”。
按原题可以说成是896能被16整除。
六年下册奥数试题-数的整除特征二全国通用含答案
第2 讲数的整除特征(二)知识网络上一章我们已经学习了被 2、3、5、8、9、25、125 等整除的数的特征和一些整除的基本性质,但作为奥林匹克竞赛仅仅掌握以上知识还不够,这一讲继续学习有关数的整除知识。
(1)能被 7、11 和13 整除的数的特征:如果一个数的末三位数字所表示的数与末三以前的数字所表示的差(一定要大数减小数)能被7、 11 或 13 整除,那么这个数就能被 7、11 或 13 整除。
(2)能被 11 整除的数的特征还有:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是 11 的倍数。
重点•难点同学们在牢记上面整除的数的特征的同时,重点应弄清楚能被 7、11、13 整除的数为什么有上面的特征。
学法指导上面数的整除特征可以结合例子来理解。
例如:443716,判断它能否被 7、11、13 整除的方法是: 716-443=273。
因为 273 能被 7 整除,所以 443716 能被 7 整除;因为 273不能被 11 整除,所以 443716 不能被 11 整除;因为 273 能被 13 整除,所以 443716 能被 13 整除。
记忆要理论联系实际。
经典例题[例 1]用 1、9、8、8 这四个数字能排成几个被 11除余 8 的四位数?思路剖析能被 11 整除的数的特征是这个数的奇位数字之和与偶位数字之和的差能被 11 整除。
一个数要能被 11 除余 8,那么这样的数加上 3 后,就能被 11 整除了,于是得到被 11 除余 8 的数的特征是:将偶位数字相加得到一个和数,再将奇位数字相加再加上 3,得到另一个和数,如果这两个和数之差能被 11整除,那么这个数就是被 11除余 8 的数。
解答要把 1、9、8、8 排成被 11 除余 8的四位数,可以把这四个数字分成两组,每组两个数字,其中一组作为千位和十位数,它们的和记作P,另外一组作为百位和个位数,它们之和加上3记作q,且p和q的差能被11整除,满足要求的分组只可能是 p=1+8=9,q=(9+8) +3=20, q — p=20 — 9=11,所以1988是被11除余8的四位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲数的整除特征(一)知识网络数的整除性质主要有:(1)若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。
(2)若两个数能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。
(3)几个数相乘,若其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。
(4)若一个数能被两个互质数中的每一个数整除,那么这个数也能被这两个互质数的积整除。
(5)若一个数能被两个互质数的积整除,那么这个数也能分别被这两个互质数整除。
(6)若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。
(7)个位上是0、2、4、6、8的数都能被2整除。
(8)个位上是0或者5的数都能被5整除。
(9)若一个整数各位数字之和能被3整除,则这个整数能被3整除。
(10)若一个整数末尾两位数能被4整除,则这个数能被4整除。
(11)若一个整数末尾三位数能被8整除,则这个数能被8整除。
(12)若一个整数各位数字之和能被9整除,则这个整数能被9整除。
重点·难点数的整除概念、性质及整除特征为解决一些整除问题带来了很大方便,在实际问题中应用广泛。
要学好数的整除问题,就必须找到规律,牢记上面的整除性质,不可似是而非。
学法指导能被2和5,4和25,8和125整除的数的特征是分别看这个数的末一位、末两位、末三位。
我们可以综合推广成一条:末n位数能被(或)整除的数,本身必能被(或)整除;反过来,末n位数不能被(或)整除的数,本身必不能被(或)整除。
例如,判断253200、371601能否被16整除,因为,所以只要看各数的末四位数能否被16整除。
学习这一讲知识要学会举一反三。
经典例题[例1]在568后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数尽可能小。
思路剖析这个六位数分别被3、4、5整除,故它应满足如下三个条件:(1)各位数字和是3的奇数;(2)末两位数组成的两位数是4的倍数;(3)末位数为0或5。
按此条件很容易找到这个六位数。
解答不妨设补上三个数字后的位数为,由于这个六位数被4、5整除,因为被4整除,所以c不能是5而只能是0,且b只可能是2、4、6、8、0。
又因,所以3|(5+6+8+a+b+0),所以:当b=2时,3|(5+6+8+a+2),a可为0、3、6、9;当b=4时,3|(5+6+8+a+4),a可为1、4、7;当b=6时,3|(5+6+8+a+6),a可为2、5、8;当b=8时,3|(5+6+8+a+8),a可为0、3、6、9;当b=0时,3|(5+6+8+a+0),a可为2、5、8。
为了使六位数尽可能地小,则a应取0、b应取2、c应取0。
故能被3、4、5整除的最小六位数应为568020。
[例2]四位数能同时被2、3、5整除,问这个四位数是多少?思路剖析能同时被2、3、5整除,所以满足以下三个条件:个位数字B在0、2、4、6、8之中,各位数字之和是3的倍数,个位数B在0、5之中。
第一个和第三个条件都是针对个位数字的,所以先根据第二个条件确定百位数字A。
解答要使能同时被2和5整除,个位数字只能是B=0;又要使能被3整除,所以各位数字之和8+A+1+0=9+A应能被3整除。
可以看出,当A取0、3、6、9时,各位数字之和9+A可以被3整除。
所求的四位数是8010、8310、8610、8910。
[例3]有两堆糖果,第一堆有513块,第二堆有633块,哪一堆可以平均分给9个小朋友而无剩余?思路剖析本题实际上是判断513与633能否被9整除。
解答513各位上数字之和是5+1+3=9,能被9整除;633各位上数字的和是6+3+3=12,不能被9整除。
所以,第一堆可以平均分给9个小朋友而无剩余,第二堆平均分给9个小朋友还剩余3块。
[例4]有一个四位数是9的倍数,求A的值。
思路剖析四位数是9的倍数,即能被9整除,根据能被9整除的数的特征,这个四位数的各位数字之和一定是9的倍数。
解答(1)当和是9时,3+A+A+1=9,即2A=5,所以A=2.5(舍);(2)当和是18时,3+A+A+1=18,即2A=14,A=7;(3)当和是27时,3+A+A+1=27,即2A=23,可见A=11.5>10(舍)。
所以,A的值是7。
[例5]一位马虎的采购员买了72只桶,洗衣时将购货发票洗烂了,只能依稀看到:72只桶,共□67.9□元(□内的数字洗烂了),请你帮他算一算,他一共用了多少钱?思路剖析用整除性质:一个数能被两个数和的积整除,那么这个数就能同时被这两个数整除。
例如,整数a能被15整除,那么这个数一定能同时被3和5整除。
这种方法是分析整数问题的基本方法。
解答将□67.9□元看做□679□分,这是72只桶的总价,因为单价×72=□679□,所以□679□能被72整除。
72=8×9,所以□679□应该能被8和9整除。
如果□679□能被8整除,那么它的末三位一定能被8整除,即8|79□,容易算出□内是2。
因为□6792能被9整除,所以其各数之和能被9整除。
□+6+7+9+2=□+24,显然,□中的数只能是3。
所以这笔账是367.92元。
答:一共用了367.92元。
[例6]在□里填上适当的数字,使得六位数□678□□能被8、9和25整除。
解答☆解法一:根据8、9和25整除的数的特征很容易解出此题。
这个六位数能被25整除,根据能被25整除的数的特征知,六位数的末两位数可能是00、25、50、75;该数又能被8整除,所以这个六位数的末三位数应能被8整除,而在800、825、850、875中只有800满足条件,所以这个六位数的个位、十位都是0;又因为这个六位数能被9整除,所以这个六位数的各位数字之和(不妨设首位为x)为:x+6+7+8=21+x能被9整除,可推出x只能为6,所以这个六位数为667800。
☆解法二:根据数的整除性质(4):如果一个数能被两个互质数中的每一个数整除,那么这个数也能被这两个互质数的积整除。
因为8×25=200,而且8与25互质,根据整除的性质(4),所求的六位数能被200整除,所以个位、十位都应该是0。
然后由这六位数能被9整除,和解法一一样的方法可知这个六位数为667800。
[例7]有一水果摊一天进货6筐,分别装着香蕉和苹果,重量为8千克、9千克、16千克、19千克、23千克和27千克。
头一天卖出一筐苹果,在剩下的5筐中,香蕉的重量是苹果重量的2倍。
问卖掉的那筐重多少千克?剩下的5筐,哪几筐是苹果,哪几筐是香蕉?思路剖析根据已知条件:剩下的5筐中香蕉的重量是苹果的2倍。
可推出:剩下的5筐中香蕉重量与苹果重量之和是3的倍数,即能被3整除。
解答因为6筐水果的总重量:8+9+16+19+23+27=102(千克),根据题意,剩下的5筐中香蕉与苹果总重量之和是3的倍数,那么卖出的一筐苹果也必须是3的倍数。
从6筐水果数中可知有两种情况,卖出一筐苹果可能是9千克或是27千克。
如果卖出的一筐苹果是9千克,那么102-9=93(千克)。
根据剩下的5筐中香蕉的重量与苹果总重量的2倍,则苹果为93÷(1+2)=31(千克)。
从剩下的8、16、19、23和27中可知8千克和23千克为苹果(8+23=31)。
最后剩下16千克、19千克和27千克这三筐为香蕉。
如果卖出的一筐苹果是27千克,同理,102-27=75(千克),苹果为75÷(1+2)=25(千克),即16千克与9千克这两筐。
香蕉便是最后剩下的8千克、19千克和23千克这三筐。
所以本题有两种答案:如果卖出的那筐是9千克苹果,则剩下的5筐中8千克、23千克两筐为苹果,16千克、19千克和27千克三筐为香蕉。
如果卖出的那筐是27千克苹果,则剩下的5筐中9千克、16千克两筐为苹果,8千克、19千克、23千克三筐为香蕉。
[例8]把1至1997这1997个自然数依次写下来,得一个多位数12345678910111213…1994199519961997,试求这个多位数除以9的余数。
思路剖析根据一个数能被9整除的特征可以知道:一个自然数除以9的余数,等于这个自然数各个数位上数字和除以9的余数。
所以上面求多位数除以9的余数问题,便转化为求1至1997这1997个自然数中所有数字之和是多少的问题。
解答☆解法一:因为1至9这9个数字之和为45,所以10至19,20至29,30至39,…,80至89,90至99这十个数的各位数位上的数字和分别为:45+10,45+20,45+30,45+40,…,45+80,45+90。
所以,1至99这99个自然数各位数字之和为:45+55+65+…+125+135=900因为1至99这99个自然数各数位上数字之和为900,所以100至199,200至299, (800)899,900至999这些100个数各位数位上的数字和分别为:900+100,900+200,…,900+800,900+900。
所以,1至999这999个自然数各位上数字之和为:900+1000+…+1700+1800=13500因为1至999这999个自然数各位上数字和为13500,所以1000至1999这1000个自然数各数位上的数字和为13500+1000=14500,这样1至1999这1999个自然数各数位的数字和为:13500+14500=28000。
1998、1999这两个数各数位上的数字和为:27、28。
28000-27-28=27945,9能整除27945,所以多位数除以9余0☆解法二:将0至1999这2000个自然数一头一尾搭配成如下的100组:(0,1999),(1,1998),(2,1997),(3,1996),(4,1995),(5,1994),(6,1993)(7,1992),(8,1991)(9,1990),(10,1989),…,(994,1005),(995,1004),(996,1003),(997,1002),(998,1001)(999,1000),以上各组两数之和为1999,并且每一组数相加时都不进位,1至1999这1999个自然数的所有数字之和等于:(1+9+9+9)×1000=280001998、1999这两个数各位数上的数字之和为:27、28。
28000―27―28=27945,9能整除27945,所以多位数除以9余0。
☆解法三:因为依次写出的任意连续9个自然数所组成的多位数,一定能被9整除。
而从1至1997一共有1997个数,1997÷9=221……8,1990、1991、1992、1993、1994、1995、1996、1997这8个数所有数位上的数字和为19+20+21+22+23+24+25+26=180,180能被9整除,所以多位数除以9余0。