南京市大气可吸入颗粒物中多环芳烃的分布状况.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第30卷第10期2007年10月
环境科学与技术
南京市大气可吸入颗粒物中多环芳烃的分布状况
张强华1,2,石莹莹1,李东2,钟秦1
(1.南京理工大学化工学院,南京210094;2.江苏淮阴工学院生命科学与化学工程学院,淮安223003
摘要:采集南京市大厂和山西路两地区四季度大气PM10样品,用索氏提取-高效液相色谱技术分析其多环芳烃组成及含量,结果表明,两地区多环芳烃总量在
42.561ng/m3 ̄121.890ng/m3之间,大厂区浓度明显高于山西路地区,是山西路地区的1.169 ̄2.628倍。

大厂地区PAHs总量受季节影响不大,山西路地区浓度与季节呈一定的相关性,即春季>冬季>夏季>秋季,两地区PAHs中蒽、荧蒽、苯并[b]荧蒽、苯并[g,h,i]苝含量相对都较高,表明燃煤和交通是南京市的主要污染源,大厂区燃煤污染更为明显。

关键词:可吸入颗粒物(PM10;多环芳烃;分布;南京
中图分类号:X830.2文献标识码:A文章编号:1003-6504(200710-0042-03
多环芳烃(Polycyclic Aromatic Hydrocarbons是指具有两个或两个以上苯环的一类有机化合物,特别是指由若干个苯环稠合在一起或由若干个苯环和环戊二烯稠合在一起组成的稠环芳烃。

煤、石油、烟草、木材等有机物在不完全燃烧或高温裂解时均可产生PAHs。

大气可吸入颗粒物(空气动力学直径≤10μm,用PM10表示比表面积大,易于富集各种多环芳烃,对环境和人体健康危害极大,可致癌、致畸和致突变[1-6],美国国家环保局(USEPA将PAHs列入优先监测名单。

近年来,随着工业的快速发展和人民生活水平的不断提高,大气中可吸入颗粒物的含量逐年增加,研究表明,目前中国绝大多数城市PM10已成为空气的首要污染物,其浓度水平均超过国家相关标准,南京市PM10的污染也很严重,2002年春季南京市城区PM10超标率达83%,超标
倍数为1.8 ̄4.9[7-8]。

因此对大气可吸入颗粒物及其PAHs进行监测,了解其分布状况,对于正确评价其对环境和人体健康的影响有着非常重要的意义,从而有助于污染控制策略的制定。

1实验部分
1.1采样
结合南京地区生活区、工业区和交通密集地区污染的分布实际情况,设立2个功能区采样点,即大厂区(典型工业区和山西路地区(典型商业区,采样点分别设在四楼平台,离地面高度15m。

采用KC-1000型大流量TSP采样器加载PM10-1000B切割器(青岛崂山电子仪器总厂有限公司产,流量调整为1m3/min,使用15cm×25cm的玻璃纤维滤膜采集样品。

采样时间为2005年1月 ̄2006年1月,每月连续采样6d,每24h换一次滤膜,同时记录温度、湿度、气压、风向和风速等气象参量。

1.2样品前处理
采样后,将样品放入索氏提取器内用二氯甲烷抽提24h,然后用K-D浓缩器进行浓缩至4 ̄5mL,用0.45μm的滤膜过滤,再经高纯氮气吹扫近干,冷冻保存。

1.3样品分析
采用美国Waters高效液相色谱仪(高压泵为Waters515型,检测器为Waters2478型紫外检测器,配置NUCLEOSIL R100-5C18PAH(德国MACHREY -NAGEL公司色谱柱,柱温25℃,流速1mL/min,以甲醇-乙腈-水和乙腈-四氢呋喃为流动相,采用梯度洗脱(表1,紫外检测波长为254nm,利用标准样品(16种PHA混标,美国SUPLECO公司采用外标法,根据保留时间和峰面积确定大气可吸入颗粒物中PAHs 及含量。

2结果
2.1两典型地区不同季节PM10中PAHs总量的分布特征
在南京市两典型地区不同季节中均检测到美国EPA优先控制的12种多环芳烃,它们分别为:蒽(Ant、荧蒽(Flua、芘(Pyr、屈(Chr、苯并[a]蒽(BaA、苯并[b]荧蒽(B bF、苯并[k]荧蒽(BkF、苯并[a]芘(BaP、二苯并[a,h]荧蒽(DahF、茚并[1,2,3-c,d]芘(IcdP、苯并[g,h,i]苝(BghiP。

由于萘(Nap、二氢苊
基金项目:江苏省自然科学基金重点项目(BK2004216
作者简介:张强华(1967-,男,副教授,在读博士,研究方向为环境工程, (电话0517-*******(电子信箱zqh67@。

时间
流动相
A泵(%甲醇-乙腈-水
(V/V:50/25/25
B泵(%乙腈-四氢呋喃
(V/V:93/7
初始1000
0min1000
1min1000
12min0100
20min0100
25min1000
表1梯度洗脱程序
42・・
图1为两地区不同季节PM 10中PAHs 总平均浓度变化的柱形图,大厂地区全年PAHs 总平均浓度变化不大,山西路地区的PAHs 总平均浓度在秋季明显低于其他三个季节,这与我国其他城市有一定的差异[9],如北京全年PAHs 浓度季节差异明显,分布呈“凹”形,夏季PAHs 平均浓度最低[10]。

2.2两地区PM 10中多环芳烃的相对分布特征从总趋势来看,南京市两典型地区多环芳烃的相
对分布大致相同,大厂地区在春、夏、冬三季主要以
Ant 、Flua 、BbF 、BghiP 为主,分别占总PHAs49.6%、61%
和51.8%,秋季主要以Ant 、Flua 、Pyr 、BghiP 为主,占总
PHAs49.2%,同时Phe 、BbF 、DahF 、IcdP 含量也相对较
高,见图2。

山西路地区在春季和秋季主要以Ant 、Flua 、BbF 、BghiP ,分别占总PAHs54%和53.3%,夏季以Ant 、Flua 、Pyr 、BbF 为主,占总PHAs68.7%,冬季以Ant 、Flua 、Pyr 、BkF 、BghiP 为主,占总PAHs56.4%,见图3。

(Ace、
芴(Flu、苊(Acy、菲(Phe四种化合物分子量低、挥发性高,故本文对这四种化合物没有讨论。

表2、表3为两典型地区不同季节多环芳烃浓度的平均值、最大值和最小值。

这些PAHs 在总量上春季、夏季、冬季变化不大,秋季污染相对较轻,大厂地区春、夏、秋、冬的PAHs 平均浓度分别为107.256ng/m 3、
121.890ng/m 3、111.839ng/m 3和88.605ng/m 3,山西路
地区春、夏、秋、冬季的PAHs 平均总浓度分别为76.276ng/m 3、52.904ng/m 3、42.561ng/m 3和75.815ng/m 3,在四个季节中,大厂地区的PAHs 总浓度均高于山西路地区,分别是山西路地区的1.406、2.304、2.628、1.169倍。

表2
大厂地区不同季节PAHs 的浓度
化合物春季
夏季秋季
冬季平均值
最大值
最小值
平均值
最大值
最小值
平均值
最大值
最小值
平均值
最大值
最小值
菲4.248
6.6332.107
7.45414.5530.41910.49321.8721.7892.3014.0301.039蒽
16.93826.2334.02531.50864.0521.95415.75132.1132.16611.39313.8397.503荧蒽12.21615.5266.76616.95836.0712.39812.3071
8.6983.37110.01120.1713.509芘
8.61911.0566.09210.89121.9131.48514.20028.6622.7308.84313.3854.266屈
6.51910.1644.0914.86910.0760.3146.98314.0531.3574.4855.5922.504苯并[a]蒽
5.4005.9404.9493.182
6.2250.0204.303
7.4872.1545.6116.8263.867苯并[b]荧蒽
11.27516.4626.31214.88522.7770.06310.23120.4720.34211.18618.5076.319苯并[k]荧蒽8.75212.2745.2013.3456.8180.2767.05512.3412.0815.1686.2853.816苯并[a]芘4.4254.4924.3743.3316.4690.5651.0292.4330.2835.6106.9723.621二苯并[a,h]荧蒽
9.70014.6026.8277.6989.2525.9348.16914.1652.7135.7518.4723.589总计
121.890111.83988.605107.256茚并[1,2,3-c,d]芘
6.3828.9733.3796.7858.0226.1578.60714.5272.7954.980
7.2313.070苯并[g,h,i]苝
12.782
14.10911.80110.984
17.3155.63112.711
17.86210.07513.266
17.8528.610
表3
山西路地区不同季节PAHs 的浓度
化合物春季
夏季
秋季
冬季
平均值
最大值
最小值
平均值
最大值
最小值
平均值
最大值
最小值
平均值
最大值
最小值
菲3.4916.3110.0923.0924.2680.8671.2291.8280.8352.0353.5831.083蒽13.94220.3524.80815.76922.3477.4398.03810.0655.66713.85117.4479.217荧蒽7.29010.4852.9268.52512.3903.2063.5444.5111.6396.9489.8443.226芘
6.78210.3361.2985.8598.7862.2492.1412.9660.9226.36610.3853.557屈
3.5366.0190.5502.7143.4541.7221.0211.3870.3245.4048.7762.514苯并[a]蒽
3.007
4.2500.8561.6001.7801.3782.1783.2671.3703.933
5.4632.043苯并[b]荧蒽8.34912.7193.061
6.177
7.0945.1853.5744.2603.1195.449
8.5292.052苯并[k]荧蒽3.7446.4141.0994.2845.2043.3792.9174.2342.1476.4858.0413.789苯并[a]芘
3.6725.0880.9500.4991.2860.0812.2993.2211.403
4.7109.4051.153二苯并[a,h]荧蒽
5.9007.1064.8061.8903.4170.2514.312
6.8102.812
7.3679.3874.921总计
76.276
52.904
42.561
75.815
茚并[1,2,3-c,d]芘
5.1218.6111.8451.7412.2870.8373.788
6.2992.4124.1806.5172.673苯并[g,h,i]苝
11.442
16.3894.3810.754
1.5400.3557.520
11.7445.3909.087
17.7530.057
南京市大气可吸入颗粒物中多环芳烃的分布状况张强华,

43・・
第30卷第10期2007年10月环境科学与技术
3讨论
3.1两典型地区PAHs总量的分布特征
大厂区是南京市的主要工业区,区内大型的化工厂、焦化厂、电厂等企业众多,空气污染比较严重,其污染与大厂区自身小环境密切,季节对其影响不大。

山西路地区是南京市典型的商业区,其污染水平比大厂区低,高于城市其他区域,全年PAHs浓度并没有象北方城市季节差异明显,夏季PAHs平均浓度最低,冬季最高[11-12],南京市山西路地区夏、秋两季PAHs 浓度相对较低。

这与南京市特殊的地理位置有关,南京市位于北纬33°31′,东经118°47′,其地貌特征属江苏省宁镇扬丘陵地区,三面环山,北邻长江,夏季受季风影响小,气候炎热,加之山西路地区高楼林立,加剧该区域PAHs 累积,而冬季南京受西风环流控制,同时北邻长江,季风显著,从西北吹来的相对干净的空气有利于多环芳烃的扩散,同时与北方城市相比,南京市没有采暖期,相对其他北方城市污染较轻。

3.2两地区多环芳烃的相对分布特征
大厂地区在春、夏、冬三季PAHs主要以Ant、Flua、BbF、BghiP为主,占50%左右。

且BaP/BghiP比值绝大多数都集中在0.3 ̄0.5之间,Sawicki等认为
BaP/BghiP的比值可用来判断污染类型,比值介于0.3 ̄0.44之间,为交通污染,而比值
为0.9 ̄6.6时为燃煤污染[13-14],同时Ant、Flua、BbF是燃煤标识物,BghiP 是机动车尾气主要标识物,样品中均检测出这些高含量标识物,表明燃煤和交通是大厂区春、夏、冬三季的主要污染源,山西路地区与大厂区相比,Pyr、BkF、BghiP等交通污染源的特征化合物含量相对高一些,交通是山西路地区主要污染源。

4结论
(1南京市大厂区春、夏、秋、冬的PAHs平均浓度分别为107.256ng/m3、121.890ng/m3、111.839ng/m3、和88.605ng/m3,山西路地区分别为76.276ng/m3、52.904ng/m3、42.561ng/m3和75.815ng/m3,大厂区四季度PAHs平均浓度明显高于山西路地区,分别是山西路地区的1.406、2.304、2.628、1.169倍。

大厂地区全年PAHs总平均浓度变化不大,山西路地区的PHAs总平均浓度分布与国内其他城市存在一定差异,冬、春两季浓度较高,秋季最低。

(2两地区PHAs中均以Ant、Flua、BbF、BghiP为主,燃煤和交通是两地区的主要污染源,大厂区燃煤特征明显,山西路地区交通源影响较大。

[参考文献]
[1]Kim B M,Ronald C H.Application of SAFER model to the
Los Angeles PM10data[J].Atmospheric Environment,2000, 34:1747-1759.
[2]李红,曾凡刚,邵龙义,等.可吸入颗粒物对人体健康危害的
研究进展[J].环境与健康杂志,2002,19(1:85-87.
[3]吴鹏章,张晓山,牟玉静,等.室内空气质量与人体健康[J].环
境科学与技术,2004,27(2:40-42.
[4]赵文昌,程金平,谢海贇,等.环境中多环芳烃(PAHs的来源
与监测分析方法[J].环境科学与技术,2006,29(2:105-107.
[5]郭璇华,高瑞英,黄瑞毅,等.大颗粒物中无机元素特性的研
究[J].环境科学与技术,2006,29(6:49-51.
[6]姬亚芹,朱坦,冯银广,等.天津市PM10中元素的浓度特征和
富集特征研究[J].环境科学与技术,2006,29(7:49-51.
[7]王荟,王格慧,高士祥,等.南京市大气颗粒物春季污染的特
征[J].中国环境科学,2003,23(1:55-59.
[8]杭维琦,薛光璞.南京市环境空气中苯并[a]芘的时空分布[J].
环境科学与技术,2005,28(6:50-52.
[9]戴朝霞,陈振翔,王格慧,等.典型城市大气颗粒物中多环芳
烃的污染研究[J].环境科学与技术,2006,29(2:29-31. [10]周家斌,王铁冠,黄云碧等.北京部分地区大气PM10中多环
芳烃的季节性变化[J].中国环境科学,2005,25(1:115-119.
[11]王淑兰,柴发合,张远航,等.大气颗粒物中多环芳烃的污染
特征及来源识别[J].环境科学研究,2005,18(2:19-22. [12]Guo Z G,Sheng L F,Feng J L,et al.Seasonal variation of
solvent extractable organic compounds in the aerosols in
Qingdao[J].AtmosphericEnvironment,2003,37(13:1825-1834.
[13]Sawicki E.Analysis for airborne particulate hydrons,their
relative proportion affected by different types of pollution[J].
Nat.Cancer Inst.Monograph.,1962,9(6:201-208.
[14]黄金星,张林,陈玖林,等.杭州市区空气中PM2-5细微粒监测
及污染状况分析[J].环境科学与技术,2006,29(9:49-52.
(收稿2006-12-17;修回2007-03-
13 44
・・
penetration of aerosol decreased exponentially while collection efficiency of single granule doesn't change.The smaller the diameter of filtration medium was,the smaller the penetration of aerosol.
Key words:aerosol;filtration;medium thickness;granular bed
Breeding of an Anaerobic Phenol-degradation Strain and Study on Phenol Biodegradation
LI Hong-mei1,2,LIU Dong3
(1.School of Chemical Engineering and Technology,Tianjin University,
Tianjin300072;2.Y ancheng Textile Vocational and Technical College, Y
ancheng224005;3.Zhangjiagang Vocational Education Centre,
Zhangjiagang215600
Abstract ID:1003-6504(200710-0031-03-EA
Abstract:A strain of yeast with high efficient phenolics-degrading capacity under anaerobic conditions was isolated from acclimated activated sludge,identified as Candida albicans and named as PDY-07. The phenol degradation was studied under the condition of various temperature and pH.Results showed that under the optimum temperature
of35℃with pH ranging from6.9 ̄7.1,the strain can have pretty high phenol tolerance potential up to2,600mg/L.
Key words:Candida albicans;phenol;anaerobic;biodegradation
Characterization of Submicron Aerosols of Mosquito
Coil Smoke and Ambient and Indoor Submicron
Particles
WANG Hai-xia1,2,CHEN Xin-hua1,2,LI Hai-yang1 ((1.Dalian Institute of Chemical Physics,Chinese Academy of Sciences(CAS,Dalian116023;2.Graduate School of CAS,Beijing
100039
Abstract ID:1003-6504(200710-0034-04-EA
Abstract:Indoor combustion of mosquito coil generates smoke with submicron aerosol which is harmful to human by inhalation.This paper describes the determination of size distribution of this submicron aerosol along with the baseline(ambient and indoorsubmicron particulates by using a high resolution particle sizer.
Key words:size distribution;mosquito coil smoke;submicron aerosol; indoor and outdoor air
Correlation between COD and TOC in
Eutrophic East Lake
JIANG Li1,ZHANG Ye-ming2,CAO Gang1,
HAO Long1,LIN An1,GAN Fu-xing1,3
(1.Department of Environment Engineering,School of Resource and Environment Science,Wuhan University,Wuhan430072;2.School of Environment Science and Engineering,Huangshi Institute of Technology, Huangshi435003;3.State Key Laboratory for Metal Corrosion and
Protection,Shenyang110015
Abstract ID:1003-6504(200710-0037-04-EA
Abstract:The correlation between COD and TOC in eutrophic lakes was studied for the purpose of rapid monitoring and detecting quantities of organic pollutants.Results of organic mass spectrometry analysis of East Lake,Wuhan showed the applicability of potassium dichromate method in eutrophic waters.Based on experimental data,the equation of correlation between TOC and COD in eutrophic waters was deduced,and results illuminated highly significant linear correlation and accuracy, with the biggest error between calculated value and measured value of COD of13.72%.For the eutrophic East Lake,TOC can better represent the pollution degree of organic matters than COD.
Key words:eutrophication;COD;TOC;correlation;organic mass spectrometry
Purification of Eutrophic River Water with Bioscreen
under Low Temperature
LI Kong-yan,JIN Cheng-xiang,HUANG Min-sheng (School of Resource and Environment Science,East China Normal
University,Shanghai200062
Abstract ID:1003-6504(200710-0040-02-EA
Abstract:The purification effect of bioscreen on eutrophic river water was investigated under low temperature.The experiment,operated during middle of November to December,showed that water quality kept good level by physical chemistry action in river water when aquatic plants were resting and activeness of microorganism was lower.Average removal efficiency of COD,NH
4
+
-N,TN and TP from water was16.7% ̄38.8%,30.0% ̄41.7%,14.1% ̄
35.0%and15.4% ̄44.4%respectively under HRT of10h.The removal efficiency was decreased with the falling of temperature.In the low temperature season and high content of DO in eutrophic river water,package,aquatic plants and oxidation had no obvious effect on removal efficiency of pollutants.
Key words:eutrophic river water;bioscreen;new package; purification effect
Investigation of Polycyclic Aromatic Hydrocarbons'
Distribution in Atmospheric PM10in Nanjing City ZHANG Qiang-hua1,2,SHI Ying-ying1,LI Dong2,ZHONG Qin1 (1.School of Chemical Engineering,Nanjing University of Science and Technology,Nanjing210094;2.College of Life Science and Chemical Engineering,Huaiyin Institute of Technology,Huai’an223003 Abstract
ID:1003-6504(200710-0042-03-EA
・・

Abstract:This investigation involved4-seasonal sampling of air-borne PM10in downtown area and industrial area respectively,and analysis of polycyclic aromatic hydrocarbons(PAHsconcentration in PM10using Soxhlet extraction-HPLC techniques.The investigation reveals that air pollutants from both coal combustion and traffic vehicles constitutes the predominant source of PAHs.
Key words:inhalable particulate matter(PM10;polycyclic aromatic hydrocarbons(PAHs;distribution,Nanjing
Acid Rain Pollution in Yibin City:Status and Future
Trends Analysis
HUANG Fei1,SUN You-jia2,HE Liang1,ZHOU Ming-luo1 (1.School of Resources and Environmental Science,Y ibin College,Y ibin
644000;2.Environmental Monitoring Center of Y ibin City,Y ibin
644000
Abstract ID:1003-6504(200710-0045-03-EA
Abstract:The routine monitoring data of acid rain in Yibin City are collected covering the period from January2001to December2005. Seasonal variation is analyzed and future trend is predicted based on the detailed information of chemical constituent of the rainwater,e.g.SO42-, NO3-.It is concluded that main source of the acid is from local coal burning industries.
Key words:acid rain;pollution;Yibin City
TN/TP Ratio of Lake Water and Its Implication in Algae Bloom of Beijing's Urban Lake
CUI Li-feng1,YOU Liang1,HUANG Zhen-fang2,
LIU Zai-wen1
(1.Beijing Technology and Business University,Beijing100037;2.
Beijing Hydrological Centre,Beijing100039
Abstract ID:1003-6504(200710-0047-03-EA
Abstract:Ratio of TN/TP was investigated in an urban lake in Beijng with respect to variation of the ratios during different seasons.The study found that the ratio was much higher during algae resuscitation period than during algae reproduction period.According to the investigation,it was concluded that the limiting factor of nutrient for algae growing was nitrogen.
Key words:eutrophication;total nitrogen(TN;total phosphorus(TP; ratio
Environmental Loading Analysis of Titanium Industrial
Chain
LIAO Wen-jie1,JIANG Wen-ju1,
WANG Hong-tao2,JIN Yan1,ZHANG Xing1
(1.College of Architecture and Environment,Sichuan Unversity,Chengdu
610065l;2.College of Material Science and Engineering,Sichuan
University,Chengdu610064
Abstract ID:1003-6504(200710-0050-03-EA
Abstract:Environmental loading values and environmental factors were obtained by using the method of environmental loading analysis for the titanium industrial chain:from ore mining to titanium white and the relevant paint manufacturing.It was concluded that discharge of wastes including mining tailing,waste acid,slag and acidic wastewater contributed most of the environmental loading in the whole titanium industrial chain.
Key words:titanium;titanium white;environmental factor;environ-mental loading
Feasibility Study:Abandonment of Septic Tank in
Guangzhou's Old District
LU Shao-ming1,YIN Yu-peng1,ZHANG Zhong-dong2,
YU Na3
(1.Dept.of Environmental Science and Engineering,South China
University of Technology,Guangzhou510640;2.Xinxiang Environmental Science and Engineering Institute,Xinxiang453002;3.
Tianjin707High-tech Co.,Tianjin300402
Abstract ID:1003-6504(200710-0053-03-EA
Abstract:Based on the investigation of septic tank system in the old town of Guangzhou City in terms of operational conditions and the incurred sanitary and environmental problems,the paper evaluates the feasibility of abandoning the use of septic tanks in the city's old district. Key words:septic tank;combined sewer
system;wastewater treatment
EIA for Industrial Development Zone on Principle of
Circular Economy
LAN Fen,SHI Xiao-feng
(Research Center of Environmental Science,Xiamen University,Xiamen
361005
Abstract ID:1003-6504(200710-0055-03-EA
Abstract:EIA for regional industrial development often encounters problems of uncertainty,which however can be resolved by using the circular economy concept,i.e.resource-product-consuming-renewable resource.The paper concluded EIA based on circular economy would facilitate the approval of regional industrial development project and the afterwards environmental management.
Key words:industrial development zone;circular economy;EIA
Fussy Comprehensive Evaluation of Ambient Air
Quality in Wuhan
WU Xin-guo1,WANG Jie2,PENG Shu-shi1,HUA Wei1,
・・
Ⅳ。

相关文档
最新文档