最新人教版数学九年级上册《24.2.2直线和圆的位置关系》同步练习(含答案)

合集下载

人教版九年级上册数学 24.2点和圆、直线和圆的位置关系 同步练习

人教版九年级上册数学   24.2点和圆、直线和圆的位置关系  同步练习

人教版九年级上册数学24.2点和圆、直线和圆的位置关系同步练习一.单选题1.下列选项中,可以用来证明命题“若21x >,则1x >”是假命题的反例是()A.2x =-B.2x =C.1x =D.0x =2.⊙O 的半径为3,点P 到圆心O 的距离为6,点P 与⊙O 的位置关系是()A.无法确定B.点P 在⊙O 外C.点P 在⊙O 上D.点P 在⊙O 内3.已知等腰三角形的腰长为10cm ,底边长为12cm ,以等腰三角形的顶点为圆心,5cm 为半径画圆,那么该圆与底边的位置关系是()A.相切B.相离C.相交D.不能确定4.矩形ABCD中,AB=10,BC =P 在边AB 上,且BP:AP=4:1,如果⊙P 是以点P 为圆心,PD 长为半径的圆,那么下列结论正确的是()A.点B、C 均在⊙P 外B.点B、C 均在⊙P 内C.点B 在⊙P 内,点C 在⊙P 外D.点B 在⊙P 外,点C 在⊙P 内5.已知:⊙O 的半径为2cm,圆心到直线l 的距离为1cm,将直线l 沿垂直于l 的方向平移,使l 与⊙O 相切,则平移的距离是()A.1cm B.3cm 或2cm C.3cm D.1cm 或3cm6.已知O 的半径为4,点A O 的距离为4,则点A 与O 的位置关系是()A.点A 在圆内B.点A 在圆上C.点A 在圆外D.无法确定7.如图,在Rt ABC △中,90BAC ∠= ,AD 为中线,若6AB =,8AC =,设ABD △与ACD 的内切圆半径分别为1r ,2r ,那么12r r 的值为()A.1B.98C.43D.48.下列说法,正确的是()A.两边分别相等的两个直角三角形全等B.两条直线被第三条直线所截,同位角相等C.“若a b >,则22a b >”的逆命题是真命题D.用反证法证明命题“三角形中不能有两个角是直角”,首先要假设“这个三角形中有两个角是直角”9.如图,PA,PB 是⊙O 的切线,切点分别为A,B,∠APB=50°,C 是⊙O 上一点,则∠ACB 的度数为()A.50°B.55°C.60°D.65°10.已知O 的半径是4,点P 在O 内,则OP 的长可能是()A.3B.4C.4.5D.5二.填空题11.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 的取值范围.12.已知直线l 与半径长为R 的O 相离,且点O 到直线l 的距离为5,那么R 的取值范围是.13.若O 的半径为5cm,点A 到圆心O 的距离为3cm ,那么点A 与O 的位置关系是:点A 在O .(填“上”、“内”、“外”)14.如图,已知A、C 是半径为2的⊙O 上的两动点,以AC 为直角边在⊙O 内作等腰Rt△ABC,∠C=90°.连接OB.则OB 的最小值为.15.如图,与边长为8的等边三角形ABC 的两边AB、BC 都相切,连接OC,则OC=.16.如图,在ABC V 中,92A ∠=︒,则点A 在以线段BC 为直径的圆.(填“上”“内”或“外”)三.解答题17.如图,已知:四边形ABCD 是O 的外切四边形,G ,H ,E ,F 分别是切点,求证:AD BC AB CD +=+.18.如图,AB 是O 的直径,CD 是O 的切线,切点为C,BE CD ⊥,垂足为E,连接,AC BC .(1)求证:BC 平分ABE ∠;(2)若60A ∠=︒,2OA =,求CE 的长.19.东东和乐乐正在练习投铅球,铅球场地分为五个区域:4m 以内,4~5m,5~6m,6~7m,7m 以外.东东投了5.2m ,乐乐投了6.7m ,他们投的球分别落在哪个区域内?20.已知:ABC ∠,求作:ABC ∠的平分线下面是婷婷设计的尺规作图过程:(1)在平面内取点P (与点B 不重合)(2)以P 为圆心,PB 为半径作P ,与BA 、BC 边分别交于F 、E ,连接EF(3)作EF 的垂直平分线交P 于D (点D 在ABC ∠内部)(4)作射线BD .所射线BD 即为的ABC ∠平分线根据琪琪设计的尺规作图过程(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:PE PF= ∴点P 在EF 的垂直平分线上,即PD EF ⊥∴ DEDF =()(填推理的依据)EBD FBD ∴∠=∠()(填推理的依据)21.如图,AB 是O 的直径,点C,D 在圆上,且四边形AOCD 是平行四边形,过点D 作O 的切线,分别交OA 的延长线与OC 的延长线于点E,F,连接BF .求证:BF 是O 的切线;22.已知:如图,ABC V .求作ABC V 的外接圆O.。

人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案

人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案

人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1点与圆的位置关系1. 点与圆的位置关系:设⊙O的半径为r点P到圆心的距离为OP=d点P在⇔d>r点P在⇔d=r点P在⇔d<r。

2.三点圆:不在直线上的三个点一个圆。

3.三角形的外接圆:经过三角形的三个顶点可以作一个圆这个圆叫做三角形的圆.外接圆的圆心是三角形三条边的的交点叫做这个三角形的外心。

考点2直线和圆的位置关系1.直线与圆的位置关系:(1)直线和圆有两个公共点时我们说这条直线和圆.这条直线叫做圆的线。

(2)直线和圆只有一个公共点时我们说这条直线和圆.这条直线叫做圆的线这个点叫做点。

(3)直线和圆没有公共点时我们说这条直线和圆。

(4)设⊙O的半径为r圆心O到直线l的距离d直线l和⊙O⇔d<r直线l和⊙O⇔d=r直线l和⊙O⇔d>r。

2.切线的判定定理和性质定理(1)切线的判定定理:经过半径的外端并且于这条半径的直线是圆的切线。

(2)切线的性质定理:圆的切线于过切点的半径。

3.切线长定理:(1)切线长:经过圆外一点的圆的切线上这点和点之间线段的长叫做这点到圆的切线长。

(2)切线长定理:从圆外一点可以引圆的两条切线它们的切线长这一点和圆心的连线两条切线的夹角。

4.内切圆:与三角形各边都相切的圆叫做三角形的.内切圆的圆心是三角形三条的交点叫做三角形的内心。

限时训练:一选择题:在每小题给出的选项中只有一项是符合题目要求的。

1.(2024·全国·同步练习)以点P(1,2)为圆心r为半径画圆与坐标轴恰好有三个交点则r应满足( )A. r=2或√ 5B. r=2C. r=√ 5D. 2≤r≤√ 52.(2024·全国·同步练习)如图在△ABC中O是AB边上的点以O为圆心OB为半径的⊙O与AC相切于点D BD平分∠ABC AD=√ 3OD AB=12CD的长是( )A. 2√ 3B. 2C. 3√ 3D. 4√ 33.(2024·江苏省·同步练习)下列命题中真命题的个数是( ) ①经过三点可以作一个圆②一个圆有且只有一个内接三角形③一个三角形有且只有一个外接圆④三角形的外心到三角形的三个顶点的距离相等⑤直角三角形的外心是三角形斜边的中点。

人教版九年级数学上册:24.2.2 直线和圆的位置关系 同步练习(包含答案)

人教版九年级数学上册:24.2.2 直线和圆的位置关系  同步练习(包含答案)

直线和圆的位置关系班级:_____________姓名:__________________组号:_________切线的性质—拓展1一、巩固训练1.如图,已知AD 为⊙O 的切线,⊙O 的直径AB ,∠B=30°,则∠CAD= 。

2.如图,AB 是⊙O 的弦,BC 与⊙O 相切于点B ,连接OA .OB .若∠ABC=70°,则∠A 等于 ( ) A .15° B .20° C .30 D .70°3.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠ACP= ( )A .B .C .D .4.如图,已知PA 是半径为2的⊙O 的切线,切点为A ,∠APO =30°,那么OP = 。

二、错题再现1.如图,∠APB=30°,圆心在边PB 上的⊙O 半径为1cm ,OP=3cm ,若⊙O 沿BP 方向移动,当⊙O 与PA 相切时,圆心O 移动的距离为 cm 。

2.如图5,已知∠ABC =90°,AB =πr ,BC =πr 2,半径为r 的⊙O 从点A 出发,沿A→B→C方向滚动到点C 时停止。

请你根据题意,在图5上画出圆心..O 运动路径的示意图;圆心O 运动的路程是 。

3.如图,,半径为1cm 的切于点,若将在上向右滚动,则当滚动到与也相切时,圆心移动的水平距离是___cm 。

30o 45o 60o 67.5o 60ACB ∠=°O ⊙BC C O ⊙CB O ⊙CA O 完成情况三、能力提升1.如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为____________cm22.如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E。

(1)求∠AEC的度数;(2)求证:四边形OBEC是菱形。

人教版 九年级上册数学 24.2 点和圆、直线和圆的位置关系 同步训练(含答案)

人教版 九年级上册数学 24.2 点和圆、直线和圆的位置关系 同步训练(含答案)

人教版九年级数学24.2 点和圆、直线和圆的位置关系同步训练一、选择题(本大题共10道小题)1. 下列直线中,一定是圆的切线的是()A.与圆有公共点的直线B.垂直于圆的半径的直线C.到圆心的距离等于半径的直线D.经过圆的直径一端的直线2. 下列说法中,正确的是()A.垂直于半径的直线是圆的切线B.经过半径的外端且垂直于这条半径的直线是圆的切线C.经过半径的端点且垂直于这条半径的直线是圆的切线D.到圆心的距离等于直径的直线是圆的切线3. 如图,P是⊙O外一点,OP交⊙O于点A,OA=AP.甲、乙两人想作一条经过点P且与⊙O相切的直线,其作法如下:甲:以点A为圆心,AP长为半径画弧,交⊙O于点B,则直线BP即为所求.乙:过点A作直线MN⊥OP,以点O为圆心,OP长为半径画弧,交射线AM于点B,连接OB,交⊙O于点C,直线CP即为所求.对于甲、乙两人的作法,下列判断正确的是()A.甲正确,乙错误B.乙正确,甲错误C.两人都正确D.两人都错误4. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定5. 如图,AB为⊙O的切线,切点为A,连接AO,BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54° B.36° C.32° D.27°6. 如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是()A.DE=DO B.AB=ACC.CD=DB D.AC∥OD7.⊙⊙⊙AB⊙⊙O⊙⊙⊙⊙AC⊙⊙O⊙A⊙BC⊙⊙O⊙⊙D⊙⊙⊙C⊙70°⊙⊙⊙AOD⊙⊙⊙⊙( )A. 70°B. 35°C⊙20°D. 40°8. 2020·黄石模拟如图,在平面直角坐标系中,A(-2,2),B(8,2),C(6,6),点P为⊙ABC的外接圆的圆心,将⊙ABC绕点O逆时针旋转90°,点P的对应点P′的坐标为()A.(-2,3) B.(-3,2)C.(2,-3) D.(3,-2)9. 如图,数轴上有A,B,C三点,点A,C关于点B对称,以原点O为圆心作圆,若点A,B,C分别在⊙O外、⊙O内、⊙O上,则原点O的位置应该在()图A.点A与点B之间靠近点AB.点A与点B之间靠近点BC.点B与点C之间靠近点BD.点B与点C之间靠近点C10. 如图,在⊙ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.8二、填空题(本大题共7道小题)11. 如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.12. 如图,∠APB=30°,⊙O的半径为1 cm,圆心O在直线PB上,OP=3 cm,若⊙O沿BP方向移动,当⊙O与直线PA相切时,圆心O移动的距离为__________.13. 如图,半圆的圆心O 与坐标原点重合,半圆的半径为1,直线l 的解析式为y =x +t .若直线l 与半圆只有一个公共点,则t 的取值范围是________.14. 如图,⊙O 的半径为1,正方形ABCD 的对角线长为6,OA =4.若将⊙O 绕点A 按顺时针方向旋转360°,则在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现( )A .3次B .4次C .5次D .6次15. 如图所示,在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,有下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是⊙ACQ 的外心.其中正确的结论是________(只需填写序号).16.⊙⊙⊙⊙⊙⊙ABCD ⊙⊙⊙⊙8⊙M ⊙AB ⊙⊙⊙⊙P ⊙BC ⊙⊙⊙⊙⊙⊙⊙⊙PM ⊙⊙⊙P ⊙⊙⊙⊙PM ⊙⊙⊙⊙⊙⊙P .⊙⊙P ⊙⊙⊙⊙ABCD ⊙⊙⊙⊙⊙⊙BP ⊙⊙⊙________⊙17. 如图,⊙M的圆心为M(-2,2),半径为2,直线AB过点A(0,-2),B(2,0),则⊙M关于y轴对称的⊙M′与直线AB的位置关系是________.三、解答题(本大题共4道小题)18. 如图,点O在∠APB的平分线上,⊙O与P A相切于点C.求证:直线PB与⊙O相切.19.⊙⊙⊙⊙ABC⊙⊙⊙⊙O⊙⊙B⊙60°⊙CD⊙⊙O⊙⊙⊙⊙P⊙CD⊙⊙⊙⊙⊙⊙⊙⊙⊙AP⊙AC.(1)⊙⊙⊙P A⊙⊙O⊙⊙⊙⊙(2)⊙PD⊙5⊙⊙⊙O⊙⊙⊙⊙20. 在Rt⊙ABC中,∠C=90°,AB=13,AC=5.(1)以点A为圆心,4为半径的⊙A与直线BC的位置关系是________;(2)以点B为圆心的⊙B与直线AC相交,求⊙B的半径r的取值范围;(3)以点C为圆心,R为半径的⊙C与直线AB相切,求R的值.21. 如图,点E是⊙ABC的内心,AE的延长线交BC于点F,交⊙ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.求证:直线DM 是⊙O的切线.人教版九年级数学24.2 点和圆、直线和圆的位置关系同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】C[解析] 对于甲的作法:连接OB,如图①.∵OA=AP,∴OP为⊙A的直径,∴∠OBP=90°,即OB⊥PB,∴PB为⊙O的切线,∴甲的作法正确.对于乙的作法:如图②,∵MN ⊥OP ,∴∠OAB =90°.在⊙OAB 和⊙OCP 中,⎩⎨⎧OA =OC ,∠AOB =∠COP ,OB =OP ,∴△OAB ≌△OCP ,∴∠OAB =∠OCP =90°,即OC ⊥PC , ∴PC 为⊙O 的切线, ∴乙的作法正确.4. 【答案】B5. 【答案】D[解析] ∵AB 为⊙O 的切线,∴∠OAB =90°.∵∠ABO =36°,∴∠AOB =90°-∠ABO =54°. ∴∠ADC =12∠AOB =27°.故选D.6. 【答案】A7.【答案】D⊙⊙⊙⊙⊙AB ⊙⊙O ⊙⊙⊙⊙AC ⊙⊙O ⊙⊙A ⊙⊙⊙BAC ⊙90°⊙⊙⊙C ⊙70°⊙⊙⊙B ⊙20°⊙⊙⊙AOD ⊙⊙B ⊙⊙BDO ⊙2⊙B ⊙2×20°⊙40°.8. 【答案】A9. 【答案】C[解析] 如图.10. 【答案】D[解析] 如图,设PQ的中点为F,⊙F与AB 的切点为D,连接FD,FC,CD.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴PQ为⊙F的直径.∵⊙F与AB相切,∴FD⊥AB,FC+FD=PQ,而FC+FD≥CD,∴当CD为Rt△ABC的斜边AB上的高且点F在CD上时,PQ有最小值,为CD 的长,即CD为⊙F的直径.∵S△ABC =12BC·AC=12CD·AB,∴CD=4.8.故PQ的最小值为4.8.二、填空题(本大题共7道小题)11. 【答案】3<r<5[解析] 连接BD.在Rt⊙ABD中,AB=4,AD=3,则BD=32+42=5.由题图可知3<r<5.12. 【答案】1 cm或5 cm[解析] 当⊙O与直线PA相切时,点O到直线PA的距离为1 cm.∵∠APB=30°,∴PO=2 cm,∴圆心O移动的距离为3-2=1(cm)或3+2=5(cm).13. 【答案】t=2或-1≤t<1[解析] 若直线与半圆只有一个公共点,则有两种情况:直线和半圆相切于点C或从直线过点A开始到直线过点B结束(不包括直线过点A).直线y=x+t与x轴所形成的锐角是45°.当点O到直线l的距离OC=1时,直线l与半圆O相切,设直线l与y轴交于点D,则OD=2,即t= 2.当直线过点A时,把A(-1,0)代入直线l的解析式,得t=y-x=1.当直线过点B时,把B(1,0)代入直线l的解析式,得t=y-x=-1.即当t =2或-1≤t <1时,直线和半圆只有一个公共点. 故答案为t =2或-1≤t <1.14. 【答案】B[解析] ∵正方形ABCD 的对角线长为6,∴它的边长为3 2.如图,⊙O 与正方形ABCD 的边AB ,AD 只有一个公共点的情况各有1次,与边BC ,CD 只有一个公共点的情况各有1次,∴在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现4次.15. 【答案】②③[解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误. 如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°,∴∠GPD =∠GDP ,∴GP =GD ,故②正确. 补全⊙O ,延长CE 交⊙O 于点F . ∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵. 又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵, ∴∠CAP =∠ACP ,∴AP =CP . ∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°, ∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点, ∴点P 为Rt △ACQ 的外心,故③正确.16. 【答案】3或4 3 [解析] 如图⊙,当⊙P 与CD 边相切时,设PC =PM =x .在Rt⊙PBM 中,⊙PM2=BM2+BP2,⊙x2=42+(8-x)2,⊙x=5,⊙PC=5,⊙BP=BC-PC=8-5=3.如图⊙,当⊙P与AD边相切时.设切点为K,连接PK,则PK⊙AD,四边形PKDC 是矩形,⊙PM=PK=CD=2BM,⊙BM=4,PM=8,在Rt⊙PBM中,BP=82-42=4 3.综上所述,BP的长为3或4 3.17. 【答案】相交[解析] ∵⊙M的圆心为M(-2,2),则⊙M关于y轴对称的⊙M′的圆心为M′(2,2).因为M′B=2>点M′到直线AB的距离,所以直线AB与⊙M′相交.三、解答题(本大题共4道小题)18. 【答案】证明:如图,连接OC,过点O作OD⊥PB于点D.∵⊙O与P A相切于点C,∴OC⊥P A.∵点O在∠APB的平分线上,OC⊥P A,OD⊥PB,∴OD=OC,∴直线PB与⊙O相切.19. 【答案】解:(1)证明:如图,连接OA.⊙⊙B=60°,⊙⊙AOC=2⊙B=120°.又⊙OA=OC,⊙⊙OAC=⊙OCA=30°.又⊙AP=AC,⊙⊙P=⊙OCA=30°,⊙⊙OAP=⊙AOC-⊙P=90°,⊙OA⊙P A.又⊙OA是⊙O的半径,⊙P A是⊙O的切线.(2)在Rt⊙OAP中,⊙⊙P=30°,⊙PO=2OA=OD+PD.又⊙OA=OD,⊙PD=OD=OA.⊙PD=5,⊙2OA=2PD=2 5,⊙⊙O的直径为2 5.20. 【答案】解:(1)∵AC⊥BC,而AC>4,∴以点A为圆心,4为半径的⊙A与直线BC相离.故答案为相离.(2)BC=AB2-AC2=12.∵BC⊥AC,∴当⊙B 的半径大于BC 的长时,以点B 为圆心的⊙B 与直线AC 相交,即r >12.(3)如图,过点C 作CD ⊥AB 于点D .∵12CD ·AB =12AC ·BC ,∴CD =5×1213=6013.即当R =6013时,以点C 为圆心,R 为半径的⊙C 与直线AB 相切.21. 【答案】证明:如图,作直径DG ,连接BG.∵点E 是⊙ABC 的内心,∴AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠G =∠BAD ,∠BDM =∠DAC ,∴∠BDM =∠G.∵DG 为⊙O 的直径,∴∠GBD =90°,∴∠G +∠BDG =90°,∴∠BDM +∠BDG =90°,即∠MDG =90°.又∵OD 是⊙O 的半径,∴直线DM 是⊙O 的切线.。

人教版九年级数学上册《24.2.2直线和圆的位置关系》同步练习题(含答案)

人教版九年级数学上册《24.2.2直线和圆的位置关系》同步练习题(含答案)

人教版九年级数学上册《24.2.2直线和圆的位置关系》同步练习题(含答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.在平面直角坐标系中,以点(2,1)为圆心,1为半径的圆必定()A.与x轴相切、与y轴相离B.与x轴、y轴都相离C.与x轴相离、与y轴相切D.与x轴、y轴都相切2.若∠OAB=30°,OA=10cm,则以O为圆心,6cm为半径的圆与直线AB的位置关系是( )A.相交B.相切C.相离D.不能确定3.已知中,AC=3、BC=4.以C为圆心作,如果圆C与斜边有两个公共点,那么圆C的半径长R的取值范围是()A.B.C.D..4.如图,AB、AC、BD是的切线,切点分别是P、C、D若AB=10,AC=6,则的长是()A.B.C.D.5.如图,过上一点作的切线,交直径的延长线于点,连接.若,则的度数为()A.B.C.D.6.如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是()A.80°B.110°C.120°D.140°7.如图,PA、PB是⊙O的切线,A、B是切点,点C在⊙O上,且,则等于()A.B.C.D.8.如图,点是的内心,的延长线和的外接圆相交于点,连接BD,BE,CE,若,则的大小为()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.正三角形的内切圆半径、外接圆半径和高的比为.10.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向以0.5个单位/秒的速度平移,使⊙P与y轴相切,则平移的时间为秒.11.已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为.12.如图,已知⊙O的半径为m,点C在直径AB延长线上,BC=m.在过点C的任一直线l上总存在点P,使过P的⊙O的两切线互相垂直,则∠ACP的最大值等于.13.如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM= .三、解答题:(本题共5题,共45分)14.ΔABC为等腰三角形,O为底边BC的中点,腰AB与O相切于点D.求证:AC是O的切线.15.如图,I是△ABC的内心,AI的延长线交△ABC的外接圆于点D.DB与DI相等吗?为什么?16.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,求∠BAC的度数.17.如图,为外一点,AP,是的切线,A,为切点,点在上,连接OA,OC,AC.(1)求证:;(2)连接,若,的半径为5,AC=6,求的长.18.如图,是的外接圆,过点A作交于点D,连接,延长到点E,连接,∠D=∠E.(1)求证:是的切线;(2)若CE=8,AE=5,求半径的长.参考答案:1.【答案】A 2.【答案】A 3.【答案】C 4.【答案】B 5.【答案】B 6.【答案】B 7.【答案】C 8.【答案】C9.【答案】1:2:310.【答案】2或1011.【答案】512.【答案】45°13.【答案】14.【答案】证明:过点O作OE⊥AC于点E,连结OD,OA∵AB与O相切于点D∴AB⊥OD∵△ABC为等腰三角形,O是底边BC的中点∴AO是∠BAC的平分线∴OE=OD,即OE是O的半径∵AC经过O的半径OE的外端点且垂直于OE∴AC是O的切线。

人教版数学九年级上册:24.2.2 直线和圆的位置关系 同步练习(附答案)

人教版数学九年级上册:24.2.2 直线和圆的位置关系  同步练习(附答案)

人教版数学九年级上册:24.2.2 直线和圆的位置关系同步练习(附答案)第1课时直线和圆的位置关系1.已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为() A.相离 B.相切 C.相交 D.无法确定2.已知一条直线与圆有公共点,则这条直线与圆的位置关系是() A.相离 B.相切C.相交 D.相切或相交3.如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是()A.相离B.相交C.相切D.以上三种情况均有可能4.⊙O的半径为6,一条弦长63,以3为半径的同心圆与这条弦的关系是() A.相切 B.相交C.相离D.相切或相交5.在Rt△ABC中,∠C=90°,AB=4 cm,BC=2 cm,以C为圆心,r为半径的圆与AB有何种位置关系?请你写出判断过程.(1)r=1.5 cm;(2)r= 3 cm;(3)r=2 cm.6.设⊙O的半径为4,点O到直线a的距离为d,若⊙O与直线a至多只有一个公共点,则d的取值范围为()A.d≤4 B.d<4C.d≥4 D.d=47.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5C.3D.58.⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2-4x+m=0的两根,当直线l与⊙O相切时,m的值为.9.如图,在Rt△ABC中,∠A=90°,∠C=60°,BO=x,⊙O的半径为2,当x在什么范围内取值时,AB所在的直线与⊙O相交、相切、相离?10.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是11.如图,⊙O的半径OC=5 cm,直线l⊥OC,垂足为H,且l交⊙O于A,B两点,AB=8 cm.若l沿OC所在直线平移与⊙O相切,则平移的距离是.12.如图,在Rt△ABC中,∠B=90°,∠A=60°,BC=4 cm,以B为圆心,2 cm长为半径作圆,则⊙B与AC的位置关系是()A.相离B.相切C.相交D.外切13.以坐标原点O为圆心,作半径为2的圆,若直线y=-x+b与⊙O相交,则b的取值范围是()A.0≤b<2 2 B.-22≤b≤2 2C.-23<b<2 3 D.-22<b<2 214.已知如图,∠BOA=30°,M是OB上一点,以M为圆心、2 cm为半径作⊙M,点M在射线OB上运动,当OM=5 cm时,⊙M与直线OA的位置关系是.15.如图,在Rt△ABC中,∠C=90°,AC≠BC,点M是边AC上的动点.过点M 作MN∥AB交BC于点N,现将△MNC沿MN折叠,得到△MNP.若点P在AB上,则以MN为直径的圆与直线AB的位置关系是16.如图所示,半径为2的⊙P的圆心在直线y=2x-1上运动.(1)当⊙P和x轴相切时,写出点P的坐标;并判断此时y轴与⊙P的位置关系;(2)当⊙P和y轴相切时,写出点P的坐标;并判断此时x轴与⊙P的位置关系;(3)⊙P是否能同时与x轴和y轴相切?若能,写出点P的坐标;若不能,说明理由.17.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM =d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=;(2)当m=2时,d的取值范围是.第2课时切线的判定与性质1.下列说法中,正确的是()A.AB垂直于⊙O的半径,则AB是⊙O的切线B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线D.圆心到直线的距离等于半径,那么这条直线是圆的切线2.如图,AB是半圆的直径,O为圆心,AD,BD是半圆的弦,且∠PDA=∠PBD.判断直线PD是否为⊙O的切线,并说明理由.3.如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA=30°,则OB 的长为()A.4 3 B.4 C.2 3 D.24.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O 上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°5.如图,PA切⊙O于点A,PO交⊙O于点B,若PA=6,PB=3,则⊙O的半径是()A.5 B.4 C.4.5 D.3.56.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,若∠B=25°,则∠C等于.7.如图,AB与⊙O相切于点C,∠A=∠B,⊙O的半径为6,AB=16.求OA的长.8.如图,在平面直角坐标系第一象限内有一矩形OABC,B(4,2),现有一圆同时和这个矩形的三边都相切,则此圆的圆心P的坐标为(1,1)或(3,1)或(2,0)或(2,2).9.如图,两个同心圆的半径分别为4 cm和5 cm,大圆的一条弦AB与小圆相切,则弦AB的长为()A.3 cm B.4 cm C.6 cm D.8 cm10.如图,AB为⊙O的直径,PD是⊙O的切线,点C为切点,PD与AB的延长线相交于点D,连接AC.若∠D=2∠CAD,CD=2,则BD的长为()A.22-2 B.2- 2 C.22-1 D.2-111.如图,以△AOB的顶点O为圆心,OA为半径的⊙O交BO于点C,此时AB恰好与⊙O相切,P为⊙O上任意一点(不与A,C重合),已知BC=AO,则∠P=.12.如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB 于点E,F,点G是AD的中点.求证:GE是⊙O的切线.13.如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)若∠A=30°,AC=6,求⊙O的周长.14.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.求证:∠1=∠2.15.如图,等腰△ABC中,AC=BC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求DF的值.第3课时切线长定理1.如图,从⊙O外一点P引⊙O的两条切线PA,PB,切点分别为A,B.如果∠APB =60°,PA=8,那么弦AB的长是( )A.4 B.8 C.4 3 D.8 32.如图,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是( ) A.15° B.30° C.60° D.75°3.如图,AB,AC,BD是⊙O的切线,P,C,D为切点,如果AB=5,AC=3,则BD的长为 .4.如图,PA,PB是⊙O的切线,切点分别是A,B,若∠APB=60°,OA=2 cm,则OP= cm.5.为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径.若三角板与圆相切且测得PA=5 cm,求铁环的半径.6.如图,⊙O是△ABC的内切圆,则点O是△ABC的( )A.三条边的垂直平分线的交点 B.三条角平分线的交点C.三条中线的交点 D.三条高的交点7.如图,△ABC中,AB=7 cm,AC=8 cm,BC=6 cm,点O是△ABC的内心,过点O作EF∥AB,与AC,BC分别交于点E,F,则△CEF的周长为 cm.8.如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=18 cm,BC=26 cm,CA=28 cm,求AF,BD,CE的长.9.如图,△ABC是圆的内接三角形,点P是△ABC的内心,∠A=50°,则∠BPC 的度数为.10.如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D ,C ,E.若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是( )A .9B .10C .12D .1411.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6 m 和8 m .按照输油中心O 到三条支路的距离相等来连接管道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点)是( )A .2 mB .3 mC .6 mD .9 m12.如图,菱形ABCD 的边长为10,⊙O 分别与AB ,AD 相切于E ,F 两点,且与BG 相切于点G.若AO =5,且⊙O 的半径为3,则BG 的长度为( )A .4B .5C .6D .713.如图,PA ,PB 分别与⊙O 相切于点A ,B ,⊙O 的切线EF 分别交PA ,PB 于点E ,F ,切点C 在AB ︵上,若PA 长为2,则△PEF 的周长为 .14.如图所示,点I为△ABC的内心,点O为△ABC的外心,若∠BOC=140°,求∠BIC的度数.15.如图,CD是⊙O的直径,且CD=2 cm,点P为CD的延长线上一点,过点P 作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=1cm时,四边形AOBD是菱形;②当DP=(2-1)cm时,四边形AOBP是正方形.答案:24.2.2 直线和圆的位置关系第1课时 直线和圆的位置关系1.C2.D3.C4.A5.解:过点C 作CD ⊥AB ,垂足为D.∵AB =4,BC =2,∴AC =2 3.又∵S △ABC =12AB ·CD =12BC ·AC , ∴CD =BC ·AC AB = 3. (1)r =1.5 cm 时,相离.(2)r = 3 cm 时,相切.(3)r =2 cm 时,相交.6.C7.B8.4.9.解:过点O 作OD ⊥AB ,垂足为D.∵∠A =90°,∠C =60°,∴∠B =30°.∴OD =12OB =12x. 当AB 所在的直线与⊙O 相切时,OD =r =2,∴BO =4.∴0<x<4时,相交;x =4时,相切;x>4时,相离.10.相切或相交.11.2__cm 或8__cm .12.B13.D14.相离.15. 相交.16.解:(1)∵⊙P 的圆心在直线y =2x -1上,∴圆心坐标可设为(x ,2x -1).当⊙P 和x 轴相切时,2x -1=2或2x -1=-2,解得x 1=1.5,x 2=-0.5.∴P 1(1.5,2),P 2(-0.5,-2).∵1.5<2,|-0.5|<2,∴y 轴与⊙P 相交.(2)当⊙P 和y 轴相切时,x =2或-2.得2x -1=3或2x -1=-5.∵|-5|>2,3>2,∴x轴与⊙P相离.(3)不能.∵当x=2时,y=3,当x=-2时,y=-5,|-5|≠2,3≠2,∴⊙P不能同时与x轴和y轴相切.17.(1)1;(2)1<d<3.第2课时切线的判定与性质1.D2.解:PD是⊙O的切线.理由如下:∵AB为直径,∴∠ADB=90°.∴∠ADO+∠ODB=90°.∵OD=OB,∴∠OBD=∠ODB.∵∠PDA=∠PBD,∴∠ADO+∠PDA=90°,即∠PDO=90°.又∵直线PD经过⊙O半径的外端,∴PD是⊙O的切线.3.B4.D5.C6.40°.7.解:连接OC.∵AB 与⊙O 相切于点C ,∴OC ⊥AB.∵∠A =∠B ,∴OA =OB.∴AC =BC =12AB =8. ∵OC =6,∴OA =62+82=10.8.(1,1)或(3,1)或(2,0)或(2,2).9.C10.A11.30°.12.证明:连接OE ,DE.∵CD 是⊙O 的直径,∴∠AED =∠CED =90°.∵G 是AD 的中点,∴EG =12AD =DG. ∴∠GED =∠GDE.∵OE =OD ,∴∠OED =∠ODE .∴∠GED +∠OED =∠GDE +∠ODE ,即∠OEG =∠ODG. ∵CD ⊥AB ,∴∠ODG =90°.∴∠OEG =90°.又∵OE 是⊙O 的半径,∴GE 是⊙O 的切线.13.解:(1)证明:连接OC.∵OA =OB ,CA =CB ,∴OC ⊥AB.∵OC 是⊙O 的半径,∴AB 是⊙O 的切线.(2)∵∠A =30°,∴OC =12OA. 根据勾股定理,得OC 2+AC 2=OA 2, 即(12OA )2+AC 2=OA 2. ∵AC =6,∴OA =4 3.∴OC =12OA =2 3. ∴⊙O 的周长为2π·23=43π. 14.证明:连接OD.∵DE 为⊙O 的切线,∴OD ⊥DE.∴∠ODE =90°,即∠2+∠ODC =90°.∵OC =OD ,∴∠C =∠ODC.∴∠2+∠C =90°.而OC⊥OB,∴∠C+∠3=90°.∴∠2=∠3. ∵∠1=∠3,∴∠1=∠2.综合题15.解:(1)证明:连接CD.∵BC为⊙O的直径,∴∠BDC=90°.∴CD⊥AB.∵AC=BC,∴∠ACD=∠BCD.∵OC=OD,∴∠BCD=∠ODC.∴∠ODC=∠ACD.∴OD∥AC.∵DF⊥AC,∴OD⊥EF.又∵OD是⊙O的半径,∴EF与⊙O相切.(2)∵△ABC是等腰三角形,∴BD=AD=6.在Rt△BDC中,CD=BC2-BD2=102-62=8.设AF=x,则CF=10-x.在Rt△ADF和Rt△CDF中,AD2-AF2=CD2-CF2.∴62-x2=82-(10-x)2.解得x=3.6.∴DF=62-3.62=4.8.第3课时切线长定理1.B2.D3.2.4.4__cm.5.解:设圆心为O,连接OA,OP.∵三角板有一个锐角为30°,∴∠PAO=60°.又∵PA与⊙O相切,∴∠OPA =90°.∴∠POA =30°.∵PA =5 cm ,∴OP =5 3 cm.∴铁环的半径为5 3 cm.6.B7.14__cm .8.解:根据切线长定理,得AE =AF ,BF =BD ,CE =CD.设AF =AE =x cm ,则CE =CD =(28-x )cm ,BF =BD =(18-x )cm. ∵BC =26 cm ,∴(18-x )+(28-x )=26.解得x =10.∴AF =10 cm ,BD =8 cm ,CE =18 cm.9.115°.10.D11.C12.C13.4.14.解:∵点O 为△ABC 的外心,∠BOC =140°, ∴∠A =70°.又∵点I 为△ABC 的内心,∴∠BIC =90°+12∠A =90°+35°=125°. 15.证明:连接OA.∵PA 为⊙O 的切线,∴∠OAP =90°.在Rt △AOP 中,∠AOP =90°-∠APO=90°-30°=60°.∴∠ACP =12∠AOP =12×60°=30°. ∴∠ACP =∠APO.∴AC =AP. ∴△ACP 是等腰三角形.。

部编版人教初中数学九年级上册《24.2.2直线和圆的位置关系 同步练习题(含答案)》最新精品优秀

部编版人教初中数学九年级上册《24.2.2直线和圆的位置关系 同步练习题(含答案)》最新精品优秀

前言:
该同步练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。

以高质量的同步练习题助力考生查漏补缺,在原有基础上更进一步。

(最新精品同步练习题)
基础导练
1.如图,PA切⊙O于点A,PO交⊙O于点B,若PA=6,OP=8,则⊙O的半径是( )
A.4 B.2
7 C
.5 D.10
第1题图第2题图
2.如图,PA,PB是⊙O的两条切线,切点是A,B.如果OP=4,OA=2,那么∠AOB=( )
A.90° B.100° C.110° D.120°
3.直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D 与B、C不重合),若∠A=40°,则∠BDC的度数是( ).
A.25°或155°
B.50°或155°
C.25°或
130° D.50°或130°
能力提升
4.如图,⊙O是△ABC的内切圆,与AB,BC,CA分别切于点D,E,F,∠DOE=120°,∠EOF=110°,则∠A=______,∠B=______,∠C=______.
5.如图所示,EB,EC是⊙O的两条切线,B,C 是切点,A,D是⊙O上两点,
1。

【新】人教版九年级数学上册24.2 点和圆,直线和圆的位置关系同步练习及答案

【新】人教版九年级数学上册24.2 点和圆,直线和圆的位置关系同步练习及答案

24.2《点和圆,直线和圆的位置关系》同步练习及答案 (1)一、填空题(每小题3分,共24分)1.与直线L相切于已知点的圆的圆心的轨迹是______.2.在△ABC中,∠A=40°,∠B=80°,I是△ABC的内心,则∠AIB=______________,∠BIC=__________,∠CIA=___________.3.已知直角三角形的两直角边长分别为5和12,则它的外接圆半径R=______,内切圆半径r=______.4.如图1,割线P AB、PCD分别交⊙O于AB和CD,若PC=2,CD=16,P A∶AB=1∶2,则AB=______.5.如图2,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,设AB=12,则两圆构成圆环面积为______.图1图2图36.圆外切等腰梯形的底角是30°,中位线长为a,则圆半径长为______.7.P A、PB是⊙O的切线,切点是A、B,∠APB=50°,过A作⊙O直径AC,连接CB,则∠PBC=______.8.如图3,PE是⊙O的切线,E为切点,P AB、PCD是割线,AB=35,CD=50,AC∶DB=1∶2,则P A=______.二、选择题(每小题4分,共32分)9.直线L上的一点到圆心的距离等于⊙O的半径,则L与⊙O的位置关系是A.相离B.相切C.相交D.相切或相交10.圆的最大的弦长为12 cm,如果直线与圆相交,且直线与圆心的距离为d,那么A.d<6 cm B.6 cm<d<12 cmC.d≥6 cm D.d>12 cm11.P是⊙O外一点,P A、PB切⊙O于点A、B,Q是优弧AB上的一点,设∠APB=α,∠A Q B=β,则α与β的关系是A.α=βB.α+β=90°C.α+2β=180°D.2α+β=180°12.在⊙O中,弦AB和CD相交于点P,若P A=4,PB=7,CD=12,则以PC、PD的长为根的一元二次方程为A.x2+12x+28=0B.x2-12x+28=0C.x2-11x+12=0D.x2+11x+12=013.如图4,AB是⊙O的直径,弦AC、BD相交于P,则CD∶AB等于A.sin BPC B.cos BPC C.tan BPC D.cot BPC图4图5图6图7 14.如图5,点P为弦AB上一点,连结OP,过PC作PC⊥OP,PC交⊙O于C,若AP=4,PB=2,则PC的长是A.2B.2 C.22D.315.如图6,BC是⊙O直径,点A为CB延长线上一点,AP切⊙O于点P,若AP=12,AB∶BC=4∶5,则⊙O的半径等于A.4 B.5 C.6 D.716.如图7,在⊙O中,P是直径AB上一动点,在AB同侧作AA′⊥AB,BB′⊥AB,且AA′=AP,BB′=BP,连结A′B′,过点P从点A移到点B时,A′B′的中点的位置A.在平分AB的某直线上移动B.在垂直AB的某直线上移动C.在弧AMB上移动D.保持固定不移动三、解答题(共44分)17.如图8,已知AB是⊙O的直径,AC切圆O于A,CB交圆O于D,AC=26,CD=3,求tan B的值.(10分)图818.如图9,AB是⊙O的直径,点D在AB的延长线上,且BD=OB,点C在⊙O上,∠CAB =30°,求证:DC 是⊙O 的切线.(10分)图919.如图10,BC 是⊙O 的直径,A 是弦BD 延长线上一点,切线DE 平分AC 于E ,求证: (1) AC 是⊙O 的切线.(2)若AD ∶DB =3∶2,AC =15,求⊙O 的直径.(12分)图1020.如图11,AB 是⊙O 的直径,点P 在BA 的延长线上,弦CD ⊥AB ,垂足为E ,且PC 2=PE ·PO .(1)求证:PC 是⊙O 的切线;(2)若OE ∶EA =1∶2, P A =6,求⊙O 的半径;(3)求sin PCA 的值.(12分)图11参考答案一、1.过已知点,垂直于直线L 的一条直线 2.120° 110° 130° 3.6.5 2 4.43 5.36π 6.41a 7.155° 8.45 二、9.D 10.A 11.C 12.B 13.B 14.C 15.B 16.D 三、17.证明:连结AD∵AB 是直径,∴∠ADB =90° ∴在Rt △ADC 中,AD =1592422=-=-DC AC ,∴tan CAD =515153==AD DC ∵AC 是⊙O 的切线,∴∠CAD = ∠B , ∴tan CAD =tan B =51518.证明:连结OC ,BC ∵AB 是直径,∴∠ACB =90°又∵∠CAB =30°,∴∠CBA =60°,∴BC =21AB =BO ∵BO =BD ,∴BC =BD , ∴∠BCD =∠BDC =21∠ABC ,∴∠BCD =30° ∵AO =OC ,∴∠ACO =30°,∴∠ACO =∠BCD ∵∠ACO +∠OCB =90°, ∴∠BCD +∠OCB =90° ∴DC 是⊙O 的切线. 19.证明:(1)连结OD 、DC ∵BC 是⊙O 的直径,∴∠BDC =90° 在Rt △ADC 中,∵AE =E C , ∴DE =E C ,∴∠EDC =∠ECD∵DE 是⊙O 的切线,∴∠EDC =∠B =∠ECD ∵∠B +∠DC B=90°,∴AC 是⊙O 的切线 (2)设每一份为k ,∴AD =3k ,DB =2k ,AB =5k . ∵AC 是⊙O 的切线,AD B 是割线 ∴AC 2=AD ×AB 即3k ×5k =152. 解得k =15,∴AB =515. 在Rt △ACB 中,BC =6522537522=-=-AC AB .20.(1)连结OC ,∵P C 2=PE ×PO ,∴PCPOPE PC = 又∵∠P =∠P ,∴△PE C ∽△P C O , ∴△PE C ∽△P C O∵CD ⊥AB ,∴∠PE C=90°,∴∠P C O =90° ∴P C 是⊙O 的切线. (2)半径为36(3)sin PCA=6。

人教版初中数学九年级上册《24.2 点和圆、直线和圆的位置关系》同步练习卷(含答案解析

人教版初中数学九年级上册《24.2 点和圆、直线和圆的位置关系》同步练习卷(含答案解析

人教新版九年级上学期《24.2 点和圆、直线和圆的位置关系》同步练习卷一.选择题(共23小题)1.如图的矩形ABCD中,E为的中点,有一圆过C、D、E三点,且此圆分别与、相交于P、Q两点.甲、乙两人想找到此圆的圆心O,其作法如下:(甲)作∠DEC的角平分线L,作的中垂线,交L于O点,则O即为所求;(乙)连接、,两线段交于一点O,则O即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确2.如图,△ABC内接于⊙O,若∠A=40°,则∠BCO=()A.40°B.50°C.60°D.80°3.在平面直角坐标系中,点O为坐标原点.A(,0),B(3,0),C(0,5).点D在直角坐标系中,且∠ADB=60°,则线段CD的长的最大值为()A.2﹣2B.2+2C.4﹣2D.4+24.如图,设AD,BE,CF为三角形ABC的三条高,若AB=6,BC=5,EF=3,则线段BE的长为()A.B.4C.D.5.已知⊙O的半径为5,锐角△ABC内接于⊙O,AB=8,BD⊥AC于D,若CD=4,则BD的长为()A.4B.5C.D.6.已知⊙O的面积为9πcm2,若点O到直线l的距离为πcm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定7.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°8.如图,在平面直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P是直线y=﹣x+3上的一个动点,点P作⊙A的切线,切点为Q,则切线长PQ的最小值是()A.B.C.D.39.已知⊙O的半径为5,直线EF经过⊙O上一点P(点E,F在点P的两旁),下列条件能判定直线EF与⊙O相切的是()A.OP=5B.OE=OFC.O到直线EF的距离是4D.OP⊥EF10.已知:如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆与G、F两点,连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是()A.①②④B.③④C.①②③D.①②③④11.如图,BD为圆O的直径,直线ED为圆O的切线,A、C两点在圆上,AC 平分∠BAD且交BD于F点.若∠ADE=19°,则∠AFB的度数为何?()A.97°B.104°C.116°D.142°12.如图为△ABC和一圆的重迭情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70°,∠B=60°,则的度数为何()A.50°B.60°C.100°D.120°13.点P是⊙O外一点,PA、PB分别切⊙O于点A、B,∠P=70°,点C是⊙O上的点(不与点A、B重合),则∠ACB等于()A.70°B.55°C.70°或110°D.55°或125°14.如图,从⊙O外一点P引圆的两条切线PA、PB,切点为A、B,点C是劣弧AB上一点,过C的切线交PA、PB分别于M、N,若⊙O的半径为2,∠P=60°,则△PMN的周长为()A.4B.6C.D.15.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB于点C,D,若PA=4,则△PCD的周长为()A.5B.7C.8D.1016.如图,两圆相交于C、D,AB是两圆的一条外公切线,A、B为切点,CD的延长线交AB于M,若CD=9,MD=3,则AB的长为()A.18B.12C.13.5D.6√317.如图,点O为△ABC的外心,点I为△ABC的内心,若∠BOC=140°,则∠BIC 的度数为()A.110°B.125°C.130°D.140°18.若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是()A.B.C.D.19.已知一个三角形的三边长分别是6、7、8,则其内切圆直径为()A.B.C.D.220.如果两圆的半径分别为4和3,它们的一条公切线长为7,那么这两圆的位置关系是()A.内切B.相交C.外切D.外离21.如图,两个等圆⊙O1和⊙O2相交于A、B两点,且⊙O1经过⊙O2的圆心,则∠O1AB的度数为()A.60°B.45°C.30°D.15°22.如图,已知一次函数y=﹣x+2的图象与坐标轴分别交于A、B两点,⊙O 的半径为1,P是线段AB上的一个点,过点P作⊙O的切线PM,切点为M,则PM的最小值为()A.2B.C.D.23.已知点I是△ABC的内心,则∠BIC与∠A的关系是()A.∠BIC=2∠A B.∠BIC=180°﹣∠AC.∠BIC=90°+∠A D.∠BIC=180°+∠A二.填空题(共9小题)24.如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为.25.在△ABC中,AB=15,AC=13,高AD=12,设能完全覆盖△ABC的圆的半径为R.则R的最小值是.26.如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切于点D,若∠BCD=120°,则∠APD的大小为.27.如图,点A、B、D在⊙O上,∠A=25°,OD的延长线交直线BC于点C,且∠OCB=40°,直线BC与⊙O的位置关系为.28.如图,点P为△ABC的内心,延长AP交△ABC的外接圆⊙O于D,过D作DE∥BC,交AC的延长线于E点.①则直线DE与⊙O的位置关系是;②若AB=4,AD=6,CE=3,则DE=.29.如图,割线PAB过圆心O,PD切⊙O于D,C是上一点,∠PDA=20°,则∠C的度数是度.30.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD 的周长为.31.如图,AC⊥BC于点C,BC=a,CA=b,AB=c,⊙O与直线AB、BC、CA都相切,则⊙O的半径等于.32.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线1的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线的距离等于1的点,即m=4,由此可知,当d=3时,m=.三.解答题(共14小题)33.已知直角三角形ABC和ADC有公共斜边AC,M、N分别是AC,BD中点,且M、N不重合.(1)线段MN与BD是否垂直?请说明理由;(2)若∠BAC=30°,∠CAD=45°,AC=4,求MN的长.34.如图,平面直角坐标系中有一个△ABC.(1)△ABC的外接圆的圆心坐标是;(2)该圆圆心到弦AC的距离.35.已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=60°,求证:AH=AO.(初二)36.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,求BC的长.37.如图,AB为⊙O直径,AC为⊙O的弦,过⊙O外的点D作DE⊥OA于点E,交AC于点F,连接DC并延长交AB的延长线于点P,且∠D=2∠A,作CH⊥AB于点H.(1)判断直线DC与⊙O的位置关系,并说明理由;(2)若HB=2,cosD=,请求出AC的长.38.设⊙O的半径为2,圆心O到直线l的距离OP=m,且m使得关于x的方程有实数根,试判断直线l与⊙O的位置关系.39.如图,已知AB是⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG 是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC.(2)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若cos∠P=,CF=10,求BE的长.40.如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.41.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5,∠CDF=30°,求⊙O的半径.42.已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠CAD=30°.(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长.43.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O 作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF 的面积.44.如图,⊙O是梯形ABCD的内切圆,AB∥DC,E、M、F、N分别是边AB、BC、CD、DA上的切点.(1)求证:AB+CD=AD+BC;(2)求∠AOD的度数.45.如图,在△ABC中,∠A=30°,AC=BC,以BC为直径的⊙O与边AB交于点D,过D作DE⊥AC于E.(1)证明:DE为⊙O的切线.(2)若⊙O的半径为2,求AD的长.46.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段.(2)在线段AC上确定一点P,使损矩形的四个顶点都在以P为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由.友情提醒:“尺规作图”不要求写作法,但要保留作图痕迹.(3)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.若此时AB=3,BD=,求BC的长.人教新版九年级上学期《24.2 点和圆、直线和圆的位置关系》同步练习卷参考答案与试题解析一.选择题(共23小题)1.如图的矩形ABCD中,E为的中点,有一圆过C、D、E三点,且此圆分别与、相交于P、Q两点.甲、乙两人想找到此圆的圆心O,其作法如下:(甲)作∠DEC的角平分线L,作的中垂线,交L于O点,则O即为所求;(乙)连接、,两线段交于一点O,则O即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】根据线段垂直平分线的性质判断甲,根据90°的圆周角所对的弦是直径判断乙.【解答】解:甲,∵=,∴△DEC为等腰三角形,∴L为之中垂线,∴O为两中垂线之交点,即O为△CDE的外心,∴O为此圆圆心.乙,∵∠ADC=90°,∠DCB=90°,∴、为此圆直径,∴与的交点O为此圆圆心,因此甲、乙两人皆正确.故选:A.【点评】本题考查的是确定圆的条件,掌握线段垂直平分线的性质、圆周角定理是解题的关键.2.如图,△ABC内接于⊙O,若∠A=40°,则∠BCO=()A.40°B.50°C.60°D.80°【分析】根据圆周角定理求出∠BOC,根据三角形内角和定理计算即可.【解答】解:由圆周角定理得,∠BOC=2∠A=80°,∵OB=OC,∴∠BCO=∠CBO=50°,故选:B.【点评】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.3.在平面直角坐标系中,点O为坐标原点.A(,0),B(3,0),C(0,5).点D在直角坐标系中,且∠ADB=60°,则线段CD的长的最大值为()A.2﹣2B.2+2C.4﹣2D.4+2【分析】作圆,使∠ADB=60°,设圆心为P,连结PA、PB、PC,PE⊥AB于E,如图所示,只有点D在线段CP的延长线上时,CD的值最大;【解答】解:作圆,使∠ADB=60°,设圆心为P,连结PA、PB、PC,PE⊥AB于E,如图所示:∵A(,0)、B(3,0),∴E(2,0),又∠ADB=60°,∴∠APB=120°,∴PE=1,PA=2PE=2,∴P(2,﹣1),∵C(0,5),∴PC==4,又∵PD=PA=2,只有点D在线段CP的延长线上时,CD的值最大,∴CD最大值为:4+2.故选:D.【点评】本题主要考查坐标与图形的性质,圆周角定理及勾股定理,解决本题的关键是判出点D只有点D在线段CP的延长线上时,CD的值最大;4.如图,设AD,BE,CF为三角形ABC的三条高,若AB=6,BC=5,EF=3,则线段BE的长为()A.B.4C.D.【分析】此题考查了直角三角形的性质和三角函数的性质.【解答】解:∵AD,BE,CF为△ABC的三条高,易知B,C,E,F四点共圆∴△AEF∽△ABC∴,即cos∠BAC=∴sin∠BAC=∴在Rt△ABE中,BE=ABsin∠BAC=6=.故选:D.【点评】本题是一道根据直角三角形的性质结合角的三角函数求解的综合题,要注意圆的性质应用;要注意数形结合思想的应用.5.已知⊙O的半径为5,锐角△ABC内接于⊙O,AB=8,BD⊥AC于D,若CD=4,则BD的长为()A.4B.5C.D.【分析】延长BO交⊙O于H,连接AH,根据勾股定理求出AH,证明△HAB∽△CDB,根据相似三角形的性质列式计算即可.【解答】解:延长BO交⊙O于H,连接AH,∵BH是⊙O的直径,∴∠HAB=90°,∴AH==6,∵∠HAB=∠CDB=90°,∠H=∠C,∴△HAB∽△CDB,∴=,即=,解得,BD=,故选:D.【点评】本题考查的是三角形的外接圆与外心、相似三角形的判定和性质,掌握圆周角定理、勾股定理是解题的关键.6.已知⊙O的面积为9πcm2,若点O到直线l的距离为πcm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定【分析】设圆O的半径是r,根据圆的面积公式求出半径,再和点0到直线l的距离π比较即可.【解答】解:设圆O的半径是r,则πr2=9π,∴r=3,∵点0到直线l的距离为π,∵3<π,即:r<d,∴直线l与⊙O的位置关系是相离,故选:C.【点评】本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当r<d时相离;当r=d时相切;当r>d时相交.7.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.8.如图,在平面直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P是直线y=﹣x+3上的一个动点,点P作⊙A的切线,切点为Q,则切线长PQ的最小值是()A.B.C.D.3【分析】连接AP,PQ,当AP最小时,PQ最小,当AP⊥直线y=﹣x+3时,PQ 最小,根据相似三角形的性质得到AP,根据勾股定理即可得到结论.【解答】解:如图,作AP⊥直线y=﹣x+3,垂足为P,作⊙A的切线PQ,切点为Q,当AP⊥BC时,此时切线长PQ最小,∵A的坐标为(﹣1,0),设直线与x轴,y轴分别交于B,C,∴B(0,3),C(3,0),∴OB=3,AC=4,∴BC=3,在△APC与△BOC中,∵∠APC=∠BOC=90°,∠ACP=∠OCB,∴△APC∽△OBC,∴,∴AP=2,∴PQ==,故选:C.【点评】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.9.已知⊙O的半径为5,直线EF经过⊙O上一点P(点E,F在点P的两旁),下列条件能判定直线EF与⊙O相切的是()A.OP=5B.OE=OFC.O到直线EF的距离是4D.OP⊥EF【分析】根据切线的判定定理可求得需要满足和条件,即可求得答案.【解答】解:∵点P在⊙O上,∴只需要OP⊥EF即可,故选:D.【点评】本题主要考查切线的判定,熟练掌握切线的判定定理是解题的关键.10.已知:如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆与G、F两点,连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是()A.①②④B.③④C.①②③D.①②③④【分析】连接BD、OC、AG,过O作OQ⊥CF于Q,OZ⊥BG于Z,求出∠ABC=∠ABD,求出弧AC=弧AD,根据垂径定理求出即可;求出∠P+∠PCD=90°和∠P=∠DCO即可求出PC是圆的切线;采用反证法求出∠B=30°,但已知没有给出此条件,即可判断③;求出CF=AG,推出CQ=OZ,证△OCQ≌△BOZ,推出OQ=BZ,即可判断④.【解答】解:连接BD、OC、AG,过O作OQ⊥CF于Q,OZ⊥BG于Z,∵OD=OB,∴∠ABD=∠ODB,∵∠AOD=∠OBD+∠ODB=2∠OBD,∵∠AOD=2∠ABC,∴∠ABC=∠ABD,∴弧AC=弧AD,∵AB是直径,∴CD⊥AB,∴①正确;∵CD⊥AB,∴∠P+∠PCD=90°,∵OD=OC,∴∠OCD=∠ODC=∠P,∴∠PCD+∠OCD=90°,∴∠PCO=90°,∴PC是切线,∴②正确;假设OD∥GF,则∠AOD=∠FEB=2∠ABC,∴3∠ABC=90°,∴∠ABC=30°,已知没有给出∠B=30°,∴③错误;∵AB是直径,∴∠ACB=90°,∵EF⊥BC,∴AC∥EF,∴弧CF=弧AG,∴AG=CF,∵OQ⊥CF,OZ⊥BG,∴CQ=AG,OZ=AG,BZ=BG,∴OZ=CQ,∵OC=OB,∠OQC=∠OZB=90°,∴△OCQ≌△BOZ,∴OQ=BZ=BG,∴④正确.故选:A.【点评】本题考查了切线的判定、全等三角形的性质和判定、圆周角定理、垂径定理等知识点的运用,主要考查学生运用定理进行推理的能力,题目比较好,但有一定的难度.11.如图,BD为圆O的直径,直线ED为圆O的切线,A、C两点在圆上,AC 平分∠BAD且交BD于F点.若∠ADE=19°,则∠AFB的度数为何?()A.97°B.104°C.116°D.142°【分析】先根据直径所对的圆周角为直角得出角BAD的度数,根据角平分线的定义得出角BAF的度数,再根据弦切角等于它所夹弧对的圆周角,得出角ABD 的度数,最后利用三角形内角和定理即可求出角AFB的度数.【解答】解:∵BD是圆O的直径,∴∠BAD=90°,又∵AC平分∠BAD,∴∠BAF=∠DAF=45°,∵直线ED为圆O的切线,∴∠ADE=∠ABD=19°,∴∠AFB=180°﹣∠BAF﹣∠ABD=180°﹣45°﹣19°=116°.故选:C.【点评】此题考查圆周角定理以及弦切角定理的灵活运用,是一道在圆中求角度数的综合题.12.如图为△ABC和一圆的重迭情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70°,∠B=60°,则的度数为何()A.50°B.60°C.100°D.120°【分析】本题首先根据三角形的内角和定理求得∠C的度数,再根据弦切角的度数等于它所夹的弧的度数的一半进行求解.【解答】解:∵∠A=70°,∠B=60°,∴∠C=50°.∵此圆与直线BC相切于C点,∴的度数=2∠C=100°.故选:C.【点评】此题综合考查了弦切角定理和三角形的内角和定理.13.点P是⊙O外一点,PA、PB分别切⊙O于点A、B,∠P=70°,点C是⊙O上的点(不与点A、B重合),则∠ACB等于()A.70°B.55°C.70°或110°D.55°或125°【分析】分两种情况讨论:点C在劣弧AB上;点C在优弧AMB上;再根据弦切角定理和切线的性质求得∠ACB.【解答】解:如图,∵PA、PB分别切⊙O于点A、B,∴∠OAP=∠OBP=90°,∵∠P=70°,∴∠AOB=110°,∴∠ACB=55°,当点C在劣弧AB上,∵∠AOB=110°,∴弧ACB的度数为250°,∴∠ACB=125°.故选:D.【点评】本题考查了弦切角定理和和切线的性质,是基础知识要熟练掌握.14.如图,从⊙O外一点P引圆的两条切线PA、PB,切点为A、B,点C是劣弧AB上一点,过C的切线交PA、PB分别于M、N,若⊙O的半径为2,∠P=60°,则△PMN的周长为()A.4B.6C.D.【分析】连接OP,由圆外一点P作圆的两条切线PA与PB,根据切线长定理得到PA=PB,且PO为角平分线,由∠APB=60°,得到∠APO=30°,再由切线的性质得到OA与AP垂直,在直角三角形APO中,根据30°角所对的直角边等于斜边的一半,由半径OA的长求出斜边OP的长,再利用勾股定理求出AP的长,由MA与MC为圆O的切线,根据切线长定理得到MA=MC,同理可得NB=NC,然后把三角形PMN的三边相加表示出三角形PMN的周长,等量代换后得到其周长为2PA,把PA的长代入即可求出三角形PMN的周长.【解答】解:连接OP,∵PA,PB为圆O的切线,∴PA=PB,PO平分∠APB,OA⊥AP,又∠APB=60°,∴∠APO=30°,在直角三角形APO中,OA=2,∴OP=2OA=4,根据勾股定理得:PA==2,∵MA,MC为圆O的两条切线,∴MA=MC,又NB,NC为圆O的切线,∴NC=NB,∴△PMN的周长=PM+PN+MN=PM+PN+MC+NC=PM+PN+MA+NB=PA+PB=2PA=4.故选:C.【点评】此题考查了切线长定理,切线的性质,勾股定理,含30°角直角三角形的性质,利用了转化的思想,熟练掌握切线长定理是解本题的关键.15.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB于点C,D,若PA=4,则△PCD的周长为()A.5B.7C.8D.10【分析】根据切线长定理得到PB=PA、CA=CE,DE=DB,根据三角形的周长公式计算即可.【解答】解:∵PA、PB分别切⊙O于点A、B,∴PB=PA=4,∵CD切⊙O于点E且分别交PA、PB于点C,D,∴CA=CE,DE=DB,∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=PA+PB=8,故选:C.【点评】本题考查的是切线长定理的应用,切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.16.如图,两圆相交于C、D,AB是两圆的一条外公切线,A、B为切点,CD的延长线交AB于M,若CD=9,MD=3,则AB的长为()A.18B.12C.13.5D.6√3【分析】根据切割线定理得MA2=MD•MC,再代入求得MA的值,同理求得MB,即可得出答案.【解答】解:∵AB是两圆的一条外公切线,∴MA2=MD•MC,MB2=MD•MC,∵CD=9,MD=3,∴MA=MB=6,∴AB=12,故选:B.【点评】本题考查了切割线定理,从圆外一点作圆的一条切线和圆的一条割线,切线长的平方等于圆外这点到圆上两点间线段的乘积.17.如图,点O为△ABC的外心,点I为△ABC的内心,若∠BOC=140°,则∠BIC 的度数为()A.110°B.125°C.130°D.140°【分析】根据圆周角定理得到∠A=∠BOC=70°,根据三角形的内心的性质得到BI平分∠ABC,CI平分∠ACB,根据三角形内角和定理计算即可.【解答】解:∵点O为△ABC的外心,∴∠A=∠BOC=70°,∴∠ABC+∠ACB=180°﹣70°=110°,∵点I为△ABC的内心,∴BI平分∠ABC,CI平分∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB)=55°,∴∠BIC=180°﹣55°=125°,故选:B.【点评】本题考查的是三角形的内切圆与内心、外接圆与外心,掌握圆周角定理、三角形的内心的概念和性质是解题的关键.18.若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是()A.B.C.D.【分析】连接内心和直角三角形的各个顶点,设直角三角形的两条直角边是a,b.则直角三角形的面积是;又直角三角形内切圆的半径r=,则a+b=2r+c,所以直角三角形的面积是r(r+c);因为内切圆的面积是πr2,则它们的比是.【解答】解:设直角三角形的两条直角边是a,b,则有:S=,又∵r=,∴a+b=2r+c,将a+b=2r+c代入S=得:S=r=r(r+c).又∵内切圆的面积是πr2,∴它们的比是.故选:B.【点评】此题要熟悉直角三角形的内切圆半径等于两条直角边的和与斜边的差的一半,能够把直角三角形的面积分割成三部分,用内切圆的半径进行表示,是解题的关键.19.已知一个三角形的三边长分别是6、7、8,则其内切圆直径为()A.B.C.D.2【分析】作AD⊥BC于D,设BD=x,则CD=6﹣x.由AD2=AB2﹣BD2=AC2﹣CD2,求出x,根据勾股定理求出AD,根据•BC•AD=(AB+BC+AC)•r计算即可.【解答】解:AB=7,BC=6,AC=8,内切圆的半径为r,切点为G、E、F,作AD ⊥BC于D,设BD=x,则CD=6﹣x,在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(6﹣x)2,解得,x=,则AD==,×AD×BC=×AB×r+×AC×r+×CB×r,解得,r=,∴其内切圆直径为,故选:C.【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,利用面积法求内切圆的半径是解题的关键.20.如果两圆的半径分别为4和3,它们的一条公切线长为7,那么这两圆的位置关系是()A.内切B.相交C.外切D.外离【分析】先求两圆圆心距,然后根据圆心距与半径之间的数量关系可知两圆的位置关系.【解答】解:∵公切线长7,构造直角三角形可知圆心距为==5,∴4+3=7<5,∴两圆的位置关系是外离.故选:D.【点评】本题考查了由数量关系来判断两圆位置关系的方法和利用切线性质构造直角三角形的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P,则外离:P>R+r;外切:P=R+r;相交:R﹣r<P<R+r;内切:P=R﹣r;内含:P<R﹣r.21.如图,两个等圆⊙O1和⊙O2相交于A、B两点,且⊙O1经过⊙O2的圆心,则∠O1AB的度数为()A.60°B.45°C.30°D.15°【分析】连接O1O2,AO2,可得△AO2O1是等边三角形,再根据圆周角定理即可解答.【解答】解:连接O1O2,AO2,∵⊙O1和⊙O2是等圆,∴AO1=O1O2=AO2,∴△AO2O1是等边三角形,∴∠AO2O1=60°,∴∠O1AB=∠AO2O1=30°(圆周角定理).故选:C.【点评】此题主要考查了相交两圆的性质以及等边三角形的判定与性质,得出△AO2O1是等边三角形是解题关键.22.如图,已知一次函数y=﹣x+2的图象与坐标轴分别交于A、B两点,⊙O的半径为1,P是线段AB上的一个点,过点P作⊙O的切线PM,切点为M,则PM的最小值为()A.2B.C.D.【分析】连结OM、OP,作OH⊥AB于H,如图,先利用坐标轴上点的坐标特征求出A点和B点坐标,则可判断△OAB为等腰直角三角形,从而得到OH= AB=2,再根据切线的性质得OM⊥PM,利用勾股定理得到PM=,则可判断OP的长最小时,PM的长最小,然后利用垂线段最短得到OP的最小值,再计算PM的最小值.【解答】解:连结OM、OP,作OH⊥AB于H,如图,当x=0时,y=﹣x+2=2,则A(0,2),当y=0时,﹣x+2=0,解得x=2,则B(2,0),所以△OAB为等腰直角三角形,则AB=OA=4,OH=AB=2,因为PM为切线,所以OM⊥PM,所以PM==,当OP的长最小时,PM的长最小,而OP=OH=2时,OP的长最小,所以PM的最小值为=.故选:D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.解决本题的关键是用OP、OM表示PM,利用OP的最小值计算PM的最小值.23.已知点I是△ABC的内心,则∠BIC与∠A的关系是()A.∠BIC=2∠A B.∠BIC=180°﹣∠AC.∠BIC=90°+∠A D.∠BIC=180°+∠A【分析】根据三角形内角和定理即可求得∠IBC+∠ICB的度数,然后根据内心的定义即可求得∠IBC+∠ICB,然后根据三角形内角和定理即可求解.【解答】解:∵∠ABC+∠ACB+∠A=180°,∴∠ABC+∠ACB=180°﹣∠A,∵点I是△ABC的内心,∴∠1=∠ABC,∠2=∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB)=(180°﹣∠A),∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣(180°﹣∠A)=90°+∠A.故选:C.【点评】本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.二.填空题(共9小题)24.如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为.【分析】先根据勾股定理计算点A与其它格点的距离,根据点和圆的位置关系确定半径的取值.【解答】解:分别连接A与其它各格点,由勾股定理得:AB===4,AC===3,AD==,AE===2,AF==5,AG==,AH==,AP==5,当r=3时,有三个点在圆内:D、E、G,当r=时,点E在圆内,点D和G在圆上,则r的取值范围为:<r≤3.故答案为:<r≤3.【点评】本题考查了点和圆的位置关系,点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.当点与圆心的距离小于半径时,该点在圆内.25.在△ABC中,AB=15,AC=13,高AD=12,设能完全覆盖△ABC的圆的半径为R.则R的最小值是或7.5.【分析】分两种情况:①如果△ABC是锐角三角形,那么能完全覆盖△ABC的最小圆必然是△ABC的外接圆.因而求外接圆的半径即可,为此,作过B点作△ABC的外接圆直径BE,连接AE.在△BAE与△ADC中,根据同弧所对的圆周角相等可知∠ACB=∠AEB,因而可证得△BAE∽△ADC.根据相似三角形的性质,求得直径BE的长,那么半径R即可知;②如果△ABC是钝角三角形,那么能完全覆盖△ABC的最小圆为最长边AB的一半.【解答】解:分两种情况:①如果△ABC是锐角三角形,那么能完全覆盖△ABC的最小圆必然是△ABC的外接圆,连接BO,并延长交△ABC的外接圆O于点E,并连接AE,则∠ACB=∠AEB,∵∠BAE=∠ADC=90°,∴△BAE∽△ADC,∴,即==,又∵BE是⊙O的直径,∴BO=BE=;②如果△ABC是钝角三角形,那么能完全覆盖△ABC的最小圆为最长边AB的一半,故R==7.5.故答案为:7.5或.【点评】能够熟练运用正弦定理求得任意三角形外接圆的半径.26.如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切于点D,若∠BCD=120°,则∠APD的大小为30°.【分析】连接OD,由圆内接四边形的性质易得∠DAB,可得△ADO为等边三角形,由切线的性质可得∠PDO=90°,最后,在Rt△PDO中,依据直角三角形两锐角互余求解即可.【解答】解:连接DO,∵∠BCD=120°,∴∠DAB=180°﹣120°=60°,∴△ADO为等边三角形,∴∠DOA=60°,∵PD与⊙O相切,∴∠PDO=90°,∴∠APD=90°﹣∠DOP=90°﹣60°=30°.故答案为:30°.【点评】本题主要考查了切线的性质,作出恰当的辅助线(见切点,连圆心)是解答此题的关键.27.如图,点A、B、D在⊙O上,∠A=25°,OD的延长线交直线BC于点C,且∠OCB=40°,直线BC与⊙O的位置关系为相切.【分析】先利用同弧所对的圆周角与圆心角的关系求出∠BOC=2∠A=50°,再求,∠OBC=180°﹣50°﹣40°=90°,可得结论.【解答】解:∵∠BOC=2∠A=50°,∠OCB=40°,∴在△OBC中,∠OBC=180°﹣50°﹣40°=90度.∴直线BC与⊙O相切.【点评】此题主要考查同弧所对的圆周角与圆心角的关系,及圆的切线的判定.28.如图,点P为△ABC的内心,延长AP交△ABC的外接圆⊙O于D,过D作DE∥BC,交AC的延长线于E点.①则直线DE与⊙O的位置关系是相切;②若AB=4,AD=6,CE=3,则DE=3.【分析】①连OD,根据内心的性质得到∠BAD=∠DAE,再根据圆周角的推论得到弧DB=弧DC,利用垂径定理得到OD⊥BC,而DE∥BC,即可得到OD⊥DE;②连BD,DC,由BC∥DE,得到∠E=∠ACB,∠BCD=∠CDE,根据同弧所对的圆周角相等得到∠ACB=∠ADB,∠BCD=∠BAD,因此∠E=∠ADB,∠CDE=∠BAD,得到△CDE∽△BAD,则==,而AB=4,AD=6,CE=3,BD=DC,先计算出CD,再计算出DE.【解答】解:①连OD,如图,∵点P为△ABC的内心,∴∠BAD=∠DAE,∵同弧或等弧所对的圆周角相等,∴弧DB=弧DC,∴OD⊥BC,而DE∥BC,∴OD⊥DE,∴DE是⊙O的切线;②连BD,DC,如图,则BD=DC,∵BC∥DE,∴∠E=∠ACB,∠BCD=∠CDE,而∠ACB=∠ADB,∠BCD=∠BAD,∴∠E=∠ADB,∠CDE=∠BAD,∴△CDE∽△BAD,∴==,而AB=4,AD=6,CE=3,BD=DC,∴==,∴DC=2,则DE=3.故答案为:相切;3.【点评】本题考查了圆的切线的判定方法:过半径的外端点与半径垂直的直线是圆的切线.也考查了平行线的性质和圆周角定理的推论以及三角形相似的判定与性质.29.如图,割线PAB过圆心O,PD切⊙O于D,C是上一点,∠PDA=20°,则∠C的度数是110度.【分析】根据圆内接四边形的性质可知,欲求∠C的度数,需求出∠ABD的度数;连接BD,在构建的直角三角形中,根据弦切角定理可求出∠DBA的度数,由于∠DBA和∠DAB互余,即可求出∠DAB的度数,由此得解.【解答】解:连接BD,则∠BDA=90°,∵PD切⊙O于点D,∴∠ABD=∠PDA=20°,∴∠DAB=90°﹣∠ABD=90°﹣20°=70°;又∵四边形ADCB是圆内接四边形,∴∠C=180°﹣∠DAB=180°﹣70°=110°.。

人教版九年级上册数学 24.2.2直线和圆的位置关系 同步测试(含解析)

人教版九年级上册数学 24.2.2直线和圆的位置关系 同步测试(含解析)

24.2.2直线和圆的位置关系同步测试一.选择题1.如图,在△ABC中,∠ACB=90°,AC=3,BC=4.以B为圆心作圆与AC相切,则该圆的半径等于()A.2.5B.3C.4D.52.平面内,⊙O的半径为2,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条3.如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点.若大圆半径为2,小圆半径为1,则AB的长为()A.2B.2C.D.24.如图,P A,PB切⊙O于点A,B,点C是⊙O上一点,且∠P=36°,则∠ACB=()A.54°B.72°C.108°D.144°5.已知△ABC中,∠C=90°,BC=a,CA=b,AB=c,⊙O与三角形的边相切,下列选项中,⊙O的半径为的是()A.B.C.D.6.已知⊙O1、⊙O2、⊙O3、⊙O4是四个半径为3的等圆,在这四个圆中,若某圆的圆心到直线l的距离为6,则这个圆可能是()A.⊙O1B.⊙O2C.⊙O3D.⊙O47.如图,P A是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B 的度数为()A.20°B.25°C.40°D.50°8.如图,AB为⊙O的直径,CD切⊙O于点C,交AB的延长线于点D,且CO=CD,则∠A的度数为()A.45°B.30°C.22.5°D.37.5°9.如图,AB切⊙O于点A,BO交⊙O于点C,点D在⊙O上,若∠ADC=32°,则∠ABO 的度数是()A.32⁰B.64⁰C.26⁰D.36⁰10.如图,点A,B,D在⊙O上,∠A=15°,BC是⊙O的切线,点B为切点,OD的延长线交BC于点C,若BC的长为2,则DC的长是()A.1B.4﹣2C.2D.4﹣4二.填空题11.已知:如图,CD是⊙O的直径,CD=8,点A在CD的延长线上,AB切⊙O于点B,若∠A=30°,则AB=.12.如图,是用一把直尺、含60°角的直角三角板和光盘摆放而成,点A为60°角与直尺交点,点B为光盘与直尺唯一交点,若AB=3,则光盘的直径是.13.⊙O的半径为4,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是.14.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=.15.如图,AB是⊙O的直径,CD与⊙O相切于点C,∠BCD=25°,∠ABC=°.三.解答题16.如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的切线交OP的延长线于点C.(1)求证:△PBC是等腰三角形;(2)若⊙O的半径为,OP=1,求BC的长.17.如图,AC切半圆O于点A,弦AD交OC于点P,CA=CP,连结OD (1)求证:OD⊥OC.(2)若OA=3,AC=4,求线段AP的长.参考答案1.解:∵∠ACB=90°,即BC⊥AC,∴当圆的半径等于BC=4时,以B为圆心作圆与AC相切,故选:C.2.解:∵⊙O的半径为2,点P到O的距离为2,∴点P在⊙O上,∴过点P可作⊙O的一条切线.故选:B.3.解:如图:连接OP,AO∵AB是⊙O切线∴OP⊥AB,∴AP=PB=AB在Rt△APO中,AP==∴AB=2故选:A.4.解:如图所示,连接OA、OB.∵P A、PB都为圆O的切线,∴∠P AO=∠PBO=90°.∵∠P=36°,∴∠AOB=144°.∴∠C=∠AOB=×144°=72°.故选:B.5.解:①∵⊙O是△ABC的内切圆,∴⊙O的半径=,∴A不正确;②∵⊙O与AB,BC相切,∴r2+(c﹣a)2=(b﹣r)2∴r=,∴B不正确;③∵⊙O与AC,BC相切,圆心在AB上,∴=,∴r=,∴C正确;④∵⊙O与AB,AC相切,圆心在BC上,∴(a﹣r)2=r2+(c﹣b)2,∴r=,∴D不正确.故选:C.6.解:∵⊙O1、⊙O2、⊙O3、⊙O4是四个半径为3的等圆,∴圆心到直线l的距离为6是⊙O2,故选:B.7.解:连接OA,如图,∵P A是⊙O的切线,∴OA⊥AP,∴∠P AO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=∠AOP=×50°=25°.故选:B.8.解:∵CD切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∵CO=CD,∴∠COD=∠D=45°,∵OA=CO,∴∠OAC=∠OCA,∵∠COD=∠OAC+∠OCA=45°,∴∠A=22.5°.故选:C.9.解:∵AB切⊙O于点A,∴OA⊥AB,∴∠OAB=90°,∵∠AOC=2∠ADC=64°,∴∠ABO=90°﹣∠AOC=90°﹣64°=26°.故选:C.10.解:∵BC是⊙O的切线,点B为切点,∴OB⊥BC,∵∠A=15°,∴∠BOC=2∠A=30°,∵BC=2,∴OC=2BC=4,OB=OD=2,∴DC=OC﹣OD=4﹣2.故选:B.11.解:连接OB,∵AB切⊙O于B,∴∠OBA=90°,∵CD=8,∴OB=4,∵∠A=30°,∴AB=OB=4,故答案为:4.12.解:如图,点C为光盘与直角三角板唯一的交点,连接OB,∴OB⊥AB,OA平分∠BAC,∵∠BAC=180°﹣60°=120°,∴∠OAB=60°,在Rt△OAB中,OB=AB=3,∴光盘的直径为6.故答案为6.13.解:∵圆心O到直线l的距离是2,小于⊙O的半径为4,∴直线l与⊙O相交.故答案为:相交.14.解:如图,连接BC,AF,OF,OF交CE于K.∵AB是直径,∠ACF=65°,∴∠ACB=90°,∠BCF=∠OAF=25°,∵OA=OF,∴∠OAF=∠OF A=25°,∴∠HOK=∠OAF+∠OF A=50°,∵CH=HE,∴OH⊥EC,∴∠OHK=90°,∴∠OKH=∠FKE=40°,∵EF是⊙O切线,∴OF⊥EF,∴∠KFE=90°,∴∠E=90°﹣∠FKE=50°.故答案为50°.15.解:连接OC,如图,∵CD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∴∠OCB=90°﹣∠BCD=90°﹣25°=65°,∵OB=OC,∴∠B=∠OCB=65°.故答案为:65.16.(1)证明:∵BC是⊙O的切线,∴∠OBA+∠ABC=90°.∵OP⊥OA,∴∠OP A+∠A=90°.又∵OB=OA,∴∠A=∠OBA.∴∠ABC=∠OP A=∠CPB,∴CP=CB;∴△PBC是等腰三角形;(2)解:设BC=x,则PC=x,在Rt△OBC中,OB=,OC=CP+OP=x+1,∵OB2+BC2=OC2,∴()2+x2=(x+1)2,解得x=2,即BC的长为2.17.解:(1)∵AC切半圆O于点A,∴OA⊥AC,∵OA=OD,∴∠OAD=∠D,∵AC=CP,∴∠CAP=∠CP A=∠OPD,∵∠CAP+∠P AO=∠OPD+∠D=90°,∴∠POD=90°,即OD⊥OC.(2)如图,作OM⊥AD于M,∵AC=4,OA=3,∴OC=5,∵CA=CP=4,∴OP=1,∵OD=OA=3,∴DP=,∴OM=,∴AM=DM=,PM=,∴AP=AM﹣PM=.。

人教版九年级上《24.2.2直线和圆的位置关系》同步练习(含答案)

人教版九年级上《24.2.2直线和圆的位置关系》同步练习(含答案)

2022-2023人教版数学九年级上册同步练习24.2.2 直线和圆的位置关系一.选择题(共12小题)1.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个2.在Rt△ABC中,∠C=90°,AC=8cm,AB=10cm,以C为圆心,以9cm长为直径的⊙C与直线AB的位置关系为()A.相交B.相离C.相切D.相离或相交3.如图,在Rt△ABC中,∠C=90°,CB=3cm,AB=4cm,若以点C为圆心,以2cm 为半径作⊙C,则AB与⊙C的位置关系是()A.相离B.相切C.相交D.相切或相交4.⊙O的半径为5,圆心O到直线l的距离为3,下列位置关系正确的是()A.B.C.D.5.已知圆的直径是13cm,如果圆心到某直线的距离是6.5cm,则此直线与这个圆的位置关系是()A.相交B.相切C.相离D.无法确定6.如图,⊙O与直线l1相离,圆心O到直线l1的距离OH=2,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=()A.1B.2C.3D.47.直线l上的一点到圆心的距离等于半径,则直线与圆的位置关系一定是()A.相离B.相切C.相交D.相切或相交8.已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是()A.0<x≤1B.1≤x<C.0<x≤D.x>9.如图,在△ABC中,∠C=90°,AC=3,BC=4,⊙B的半径为1,已知⊙A与直线BC相交,且与⊙B没有公共点,那么⊙A的半径可以是()A.4B.5C.6D.710.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能11.圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8cm时,直线与圆相交B.当d=4.5cm时,直线与圆相离C.当d=6.5cm时,直线与圆相切D.当d=13cm时,直线与圆相切12.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相切B.相交C.相离D.无法确定二.填空题(共5小题)13.在平面直角坐标系中,⊙C的圆心为C(a,0),半径长为2,若y轴与⊙C 相离,则a的取值范围为.14.已知在直角坐标系内,半径为2的圆的圆心坐标为(3,﹣4),当该圆向上平移m(m>0)个单位长度时,若要此圆与x轴没有交点,则m的取值范围是.15.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线1的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线的距离等于1的点,即m=4,由此可知,当d=3时,m=.16.在平面直角坐标系中,以点A(﹣2,3)为圆心、r为半径的圆与坐标轴恰好有三个公共点,那么r的值为.17.如图,已知Rt△ABC的斜边AB=8,AC=4.以点C为圆心作圆,当⊙C与边AB只有一个交点时,则⊙C的半径的取值范围是.三.解答题(共5小题)18.如图,已知∠APB=30°,OP=3cm,⊙O的半径为1cm,若圆心O沿着BP的方向在直线BP上移动.(1)当圆心O移动的距离为1cm时,则⊙O与直线PA的位置关系是什么?(2)若圆心O的移动距离是d,当⊙O与直线PA相交时,则d的取值范围是什么?19.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE的延长线于D点,直线CD与射线AB交于P点.(1)判断直线DP与⊙O的位置关系,并说明理由;(2)若DC=4,⊙O的半径为5,求PB的长.20.如图,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,以斜边AB为直径做⊙O.(1)判断PC与⊙O的位置关系并证明;(2)若AB=5,AC=4,AD=OA,求PC的长21.如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO 于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.22.如图,O是Rt△ABC的直角边BC上的点,以O为圆心,OC长为半径的圆的⊙O过斜边上点D,交BC于点F,DF∥AO.(1)判断直线AD与⊙O的位置关系,并说明理由;(2)若BD=4,BC=8,求DF的长.参考答案与试题解析一.选择题(共12小题)1.【解答】解:∵d=3<半径=4∴直线与圆相交∴直线m与⊙O公共点的个数为2个故选:C.2.【解答】解:∵AC=8cm,AB=10cm,∴BC==6,S△ABC=AC×BC=×6×8=24,∴AB上的高为:24×2÷10=4.8,即圆心到直线的距离是4.8,∵r=4.5,∴4.8>4.5∴⊙C与直线AB相离,故选:B.3.【解答】解:如图:过点C作CD⊥AB于点D∵∠C=90°,CB=3cm,AB=4cm,∴AC===×AC×BC=×AB×CD∵S△ABC∴CD=∵<2∴AB与⊙C相交故选:C.4.【解答】解:∵⊙O的半径为5,圆心O到直线l的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故选:B.5.【解答】解:∵圆的直径为13 cm,∴圆的半径为6.5 cm,∵圆心到直线的距离6.5cm,∴圆的半径=圆心到直线的距离,∴直线于圆相切,故选:B.6.【解答】解:在Rt△ABO中,sin∠OAB===,∴∠OAB=60°,∵直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=OA=2.故选:B.7.【解答】解:∵圆心到直线的距离等于或小于圆的半径,∴直线和圆相交或相切.故选:D.8.【解答】解:当⊙O与直线AC相切时,设切点为D,如图,∵∠A=45°,∠ODA=90°,OD=1,∴AD=OD=1,由勾股定理得:AO=,即此时x=,所以当半径为1的⊙O与射线AC有公共点,x的取值范围是0<x,故选:C.9.【解答】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB==5,∵⊙A、⊙B没有公共点,∴⊙A与⊙B外离或内含,∵⊙B的半径为1,∴若外离,则⊙A半径r的取值范围为:0<r<5﹣1=4,若内含,则⊙A半径r的取值范围为r>1+5=6,∴⊙A半径r的取值范围为:0<r<4或r>6.故选:D.10.【解答】解:∵点P的坐标为(﹣2,3),∴点P到x轴的距离是3,∵2<3,∴以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是相离,故选:A.11.【解答】解:已知圆的直径为13cm,则半径为6.5cm,当d=6.5cm时,直线与圆相切,d<6.5cm直线与圆相交,d>6.5cm直线与圆相离,故A、B、D错误,C正确,故选:C.12.【解答】解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM==,∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2,∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.故选:B.二.填空题(共5小题)13.【解答】解:∵若y轴与⊙C相离,∴d>r,∵C(a,0),r=2,∴a<﹣2或a>2,故答案为a<﹣2或a>2.14.【解答】解:不妨设圆A(3,﹣4),作AC⊥x轴于C,交⊙A于B.易知AB=2,AC=4,BC=2,∴当⊙A向上平移2个单位或6个单位,⊙A与x轴相切,∴若要此圆与x轴没有交点,则m的取值范围是0<m<2或m>6.故答案为0<m<2或m>6.15.【解答】解:当d=3时,MN=3﹣2=1,此时只有点N到直线l的距离为1,故答案为:1.16.【解答】解:∵点A坐标为(﹣2,3),∴点A到x轴的距离为3,到y轴的距离为2,当⊙A与x轴相切时,与y轴有2个交点,圆与坐标轴恰好有三个公共点,此时r=3;当⊙A经过原点时,圆与坐标轴恰好有三个公共点,此时r==,综上所述,r的值为3或.故答案为3或.17.【解答】解:作CD⊥AB于D,如图,在Rt△ABC中,BC==4,∵CD•AB=AC•BC,∴CD==2,当⊙C与AB相切时,r=2;当直线AB与⊙C相交,且边AB与⊙O只有一个交点时,4<r≤4,综上所述,当r=2或4<r≤4,⊙C与边AB只有一个公共点.故答案为r=2或4<r≤4.三.解答题(共5小题)18.【解答】解:(1)如图,当点O向左移动1cm时,PO′=PO﹣O′O=3﹣1=2cm,作O′C⊥PA于C,∵∠P=30度,∴O′C=PO′=1cm,∵圆的半径为1cm,∴⊙O与直线PA的位置关系是相切;(2)如图:当点O由O′向右继续移动时,PA与圆相交,当移动到C″时,相切,此时C″P=PO′=2,∵OP=3,∴OO'=1,OC''=OP+C''P=3+2=5∴点O移动的距离d的范围满足1cm<d<5cm时相交,故答案为:1cm<d<5cm.19.【解答】解:(1)直线DP与⊙O相切.理由如下:连接OC,如图,∵AC是∠EAB的平分线,∴∠EAC=∠OAC∵OA=OC,∴∠ACO=∠OAC,∴∠ACO=∠DAC,∴OC∥AD,∵CD⊥AE,∴OC⊥CD,∴DP是⊙O的切线;(2)作CH⊥AB于H,如图,∵AC是∠EAB的平分线,CD⊥AD,CH⊥AB,∴CH=CD=4,∴OH==3,∵OC⊥CP,∴∠OCP=∠CHO=90°,而∠COP=∠POC,∴△OCH∽△OPC,∴OC:OP=OH:OC,∴OP==,∴PB=OP﹣OB=﹣5=.20.【解答】解:(1)PC是⊙O的切线,证明:如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵OA=OC∴∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线.(2)∵AB是⊙O的直径,AB=5,∴AO=,∴AD=OA=,∵∠A=∠A,∠ADE=∠ACB=90°,∴△ADE∽△ACB,∴,∴,∴AE=,∴CE=4﹣=,过P作PG⊥CE于G,∵∠ECP=∠PEC,∴PE=PC,∴EG=CG=CE=,同理得△CGP∽△BCA,∴,∴,∴PC=.21.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.22.【解答】解:(1)直线AD与⊙O的位置关系是相切,理由是:连接OD,∵OD=OF,∴∠ODF=∠OFD,∵DF∥AO,∴∠ODF=∠AOD,∠OFD=∠AOC,∴∠AOD=∠AOC,在△ACO和△ADO中∴△ACO≌△ADO,∴∠ADO=∠ACO,∵∠ACO=90°,∴∠ADO=90°,∵OD为半径,∴直线AD与⊙O的位置关系是相切;(2)设⊙O的半径是R,∵BC=8,∴BO=8﹣R,在Rt△ODB中,由勾股定理得:OD2+BD2=OB2,即R2+42=(8﹣R)2,解得:R=3,即OD=3,BO=8﹣3=5,过D作DM⊥OB于M,=×OD×BD=,则S△ODB3×4=5×DM,解得:DM=2.4,在Rt△DMO中,由勾股定理得:OM===1.8,∴MF=3﹣1.8=1.2,在Rt△DMF中,由勾股定理得:DF===1.2.。

人教版九年级数学上册 24.2 点和圆、直线和圆的位置关系 同步测试题(有答案)

人教版九年级数学上册  24.2  点和圆、直线和圆的位置关系  同步测试题(有答案)

24.2 点和圆、直线和圆的位置关系同步测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号一二三总分得分一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 在Rt△ABC中,∠C=90∘,AC=6cm,BC=8cm,则它的外心与顶点C的距离为()A.5cmB.6cmC.7cmD.8cm2. 已知⊙O的半径为5,点A与点O的距离为3,则点A与⊙O的位置关系是()A.点A在⊙O外B.点A在⊙O上C.点A在⊙O内D.不能确定3. 如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP 的最大值是()A.30∘B.45∘C.60∘D.90∘4. 下列条件中,能确定唯一一个圆的是()A.以点O为圆心B.以2cm长为半径C.以点O为圆心,5cm长为半径D.经过已知点A5. 要说明命题:“一组对边平行且对角线相等的四边形是矩形”是假命题,可以举的反例是()A.等腰梯形B.矩形C.菱形D.直角梯形6. ⊙O的半径为6cm,圆心O到直线l的距离为7cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.不能确定7. 已知PA、PB是⊙O的两条切线,切点为A、B,如果OP=4,PA=2√3,那么∠OAB 等于()A.30∘B.60∘C.90∘D.120∘8. 用反证法证明命题“三角形中至少有一个内角小于或等于60∘”时,首先应该假设这个三角形中()A.每一个内角都大于60∘B.每一个内角都小于60∘C.有一个内角大于60∘D.有一个内角小于60∘9. OA平分∠BOC,P是OA上任一点(O除外),若以P为圆心的⊙P与OC相离,那么⊙P 与OB的位置关系是()A.相离B.相切C.相交D.相交或相切10. 如图,在⊙O中,AB为直径,点M为AB延长线上的一点,MC与⊙O相切于点C,圆周上有另一点D与点C分居直径AB两侧,且使得MC=MD=AC,连接AD,现有下列结论:①MD与⊙O相切;②四边形ACMD是菱形;③AB=MO;④∠ADM=120∘,其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________.12. 直角三角形两直角边长分别为3和4,那么它的外接圆面积比内切圆面积大________.13. 如图,PA、PB、EF分别切⊙O于A、B、D,若PA=10cm,则△PEF的周长是________cm,若∠P=35∘,则∠AOB=________(度),∠EOF=________(度).14. 若Rt△ABC的内切圆半径为1,斜边长是6,则此三角形的周长为________.15. △ABC的三边长为6cm,8cm,10cm,则它的内心与外心之间的距离为________.16. 如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135∘,则AB=_________.17. 已知两圆的半径分别为5和12.当它们相切时,圆心距为________;当圆心距等于13时,公共弦长为________.18. 如图,△ABC中,∠A=50∘,若O为△ABC的内心,则∠BOC的度数为________度.19. 如图,为便于运输,工人师傅用一根绳子捆扎3根外径都是1m的水泥管,则该绳子的长度最短为________m(不考虑接头处的长度,结果保留π)20. 一位小朋友在不打滑的平面轨道上滚动一个半径为5cm的圆环,当滚到与坡面BC开始相切时停止.其AB=40cm,BC与水平面的夹角为60∘.其圆心所经过的路线长是________cm(结果保留根号).三、解答题(本题共计5 小题,共计60分,)21. 如图,⊙O1与⊙O2相交于A、B两点,连接AO1并延长交⊙O1于点C,连接CB并延长交⊙O2于点D,若O1O2=2,求CD的长.22. 如图,Rt△ABC的两条直角边BC=3,AC=4,斜边AB上的高为CD.若以C为圆心,分别以r1=2cm,r2=2.4cm,r3=3cm为半径作圆,试判断D点与这三个圆的位置关系.23. 已知在Rt△ABC中,∠ACB=90∘,AC=6,BC=8,以点C为圆心,r为半径作圆.(1)要使点A在⊙C内,点B在⊙C外,求半径r的取值范围;(2)要使⊙C与AB相切,求半径r.24. 如图,一半径为1的圆内切于一个圆心角为60∘的扇形,求扇形的周长.25. 如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5√3,∠CDF=30∘,求⊙O的半径.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A2.【答案】C3.【答案】A4.【答案】C5.【答案】A6.【答案】C7.【答案】D8.【答案】A9.【答案】A10.【答案】D二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】∠ABC=90∘12.【答案】21π413.【答案】20,145,72.514.【答案】1415.【答案】√516.【答案】2√217.【答案】7或17,1201318.【答案】11519.【答案】3+π20.【答案】5√340−三、解答题(本题共计5 小题,每题10 分,共计50分)21.【答案】解:如图,连接AB、AD;∵ AC为⊙O1的直径,∵ ∠ABC=90∘,∠ABD=180∘−90∘=90∘,∵ AD为⊙O2的直径,∵ 点O2在直径AD上;∵ O1A=O1C,O2A=O2D,∵ O1O2为△ACD的中位线,∵ CD=2O1O2=4.22.【答案】解:作CD⊥AB于D.在直角三角形ABC中,根据勾股定理得AB=5,则CD=AC⋅BCAB=2.4;①当r1=2cm,2.4>2,点D在圆外;②当r2=2.4cm=d,点D在圆上;③当r3=3cm时,2.4<3,点D在圆内.23.【答案】解:(1)由点A在⊙C内,点B在⊙C外,得6<r<8;(2)由勾股定理,得AB=10,C到AB的距离为6×810=245,r=245时,⊙C与AB相切.24.【答案】解:作PD⊥OA于D,如图,则PD=1,∵ OC、OA与⊙P相切,∵ ∠AOB=12∠AOC=12×60∘=30∘,在Rt△POD中,OP=2PD=2,∵ OB=OP+PB=3,=π,∵ BC弧的长度=60⋅π⋅3180∵ 扇形的周长=3+3+π=6+π.25.【答案】。

人教版九年级数学上册24.2.2 第1课时 直线与圆的位置关系同步测试题答案【精】

人教版九年级数学上册24.2.2 第1课时 直线与圆的位置关系同步测试题答案【精】

24.2.2 直线与圆的位置关系第1课时直线与圆的位置关系1.填表:直线与圆的位置关系图形公共点个数公共点名称圆心到直线的距离d与圆的半径r的关系直线的名称相交相切相离2.3.在△ABC中,已知∠ACB=90°,BC=AC=10,以C为圆心,分别以5,52,8为半径作图,那么直线AB与圆的位置关系分别是______,_______,_______.4.⊙O的半径是6,点O到直线a的距离为5,则直线a与⊙O的位置关系为()A.相离 B.相切 C.相交 D.内含5.下列判断正确的是()①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,•则直线与圆相交.A.①②③ B.①② C.②③ D.③6.OA平分∠BOC,P是OA上任一点(O除外),若以P为圆心的⊙P与OC相离,•那么⊙P与OB的位置关系是()A.相离 B.相切 C.相交 D.相交或相切7.如图所示,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C与AB相切?8.如图,⊙O的半径为3cm,弦AC=42cm,AB=4cm,若以O为圆心,•再作一个圆与AC相切,则这个圆的半径为多少?这个圆与AB的位置关系如何?9.如图所示,在直角坐标系中,⊙M的圆心坐标为(m,0),半径为2,•如果⊙M与y轴所在直线相切,那么m=______,如果⊙M与y轴所在直线相交,那么m•的取值范围是_______.10.如图,△ABC中,AB=AC=5cm,BC=8cm,以A为圆心,3cm•长为半径的圆与直线BC的位置关系是_______.11.如图,正方形ABCD的边长为2,AC和BD相交于点O,过O作EF∥AB,交BC于E,交AD于F,则以点B为圆心,2长为半径的圆与直线AC,EF,CD的位置关系分别是什么?12.已知⊙O的半径为5cm,点O到直线L的距离OP为7cm,如图所示.(1)怎样平移直线L,才能使L与⊙O相切?(2)要使直线L与⊙O相交,应把直线L向上平移多少cm?13.如图,Rt△ABC中,∠C=90°,AC=3,AB=5,若以C为圆心,r为半径作圆,•那么: (1)当直线AB与⊙C相切时,求r的取值范围;(2)当直线AB与⊙C相离时,求r的取值范围;(3)当直线AB与⊙C相交时,求r的取值范围.14.在南部沿海某气象站A测得一热带风暴从A的南偏东30•°的方向迎着气象站袭来,已知该风暴速度为每小时20千米,风暴周围50千米范围内将受到影响,•若该风暴不改变速度与方向,问气象站正南方60千米处的沿海城市B是否会受这次风暴的影响?若不受影响,请说明理由;若受影响,请求出受影响的时间.答案:1.略 2.10 3.相离,相切,相交 4.C 5.C 6.A 7.r=24 58.r=1cm,•这个圆与AB相离 9.±2,-2<m<2 10.相切 11.相切,相交,相离12.(1)直线L向上平移2cm或12cm (2)大于2cm且小于12cm13.(1)r=2.4 (2)r<2.4 (3)r>2.4 14.B•市受影响,影响时间为4时15.(1)2 (2)8(3)①0<r<2时,没有;②r=2时,一个;③2<•r<8时,2个;④r=8时,3个;⑤r>8时,4个。

人教版九年级数学上册24.2 点和圆直线和圆的位置关系同步练习含答案【优】

人教版九年级数学上册24.2 点和圆直线和圆的位置关系同步练习含答案【优】

24.2《点和圆,直线和圆的位置关系》同步练习及答案 (2)一、选择题1.已知⊙O 的半径为5 cm ,A 为线段OP 的中点,当OP=6 cm 时,点A 与⊙O 的位置关系是( )A .点A 在⊙O 内B .点A 在⊙O 上C .点A 在⊙O 外D .不能确定2.两个圆的圆心都是O ,半径分别为r 1、r 2,且r 1<OA <r 2,那么点A 在 ( )A .⊙r 1内B .⊙r 2外C .⊙r 1外,⊙r 2内D .⊙r 1内,⊙r 2外3.如图,⊙O 中,点A ,O ,D 以及点B ,O ,C 分别在一直线上,图中弦的条数为( )A .2B .3C .4D .54.如图已知等边三角形ABC 的边长为23cm ,下列以A 为圆心的各圆中,半径是3cm 的圆是( )5.直线l 与半径r 的⊙O 相交,且点O 到直线l 的距离为5,则r 的值是( )A .r >5B .r =5C .r <5D .r ≤56.下列四边形中一定有内切圆的是()A .矩形B .等腰梯形C .平行四边形D .菱形7.如图,在⊙O 中,AB 是弦,AC 是⊙O 切线,过B 点作BD ⊥AC 于D ,BD 交⊙O 于E 点,若AE 平分∠BAD ,则∠ABD 的度数是()A .30°B .45°C .50°D .60°8.如图△ABC 中,∠C=90°,⊙O 分别切AC 、BD 于M ,N ,圆心O 在AB 上,⊙O 的半径为12cm ,BO=20cm ,则AO 的长是( )A .10cmB .8cmC .12cmD .15cm9.△ABC 内接于圆O ,AD ⊥BC 于D 交⊙O 于E ,若BD=8cm ,CD=4cm ,DE=2cm ,则△ABC 的面积等于( )A .248cmB .296cm C .2108cm D .232cm 10. 相内含的两圆的圆心距为2 cm ,可作两圆半径的是( )A. 4 cm和1 cmB. 5 cm和3 cmC. 6 cm和5cmD. 4 cm和2 cm11.已知⊙O1和⊙O2外切于M,AB是⊙O1和⊙O2的外公切线,A、B为切点,若MA=4 cm,MB=3 cm,则M到AB的距离是()A. 52cm B.125cm C. 3cm D.4825cm12. 半径都是R的⊙O1和⊙O2的圆心距O1O2=4R,则半径为2R,且与⊙O1和⊙O2都相切的圆共有()A. 5个B. 4个C. 3个D. 2个13 若两圆的半径分别为5和9,圆心距为3,那么这两圆的位置关系是()A. 外离B. 相切C. 相交D. 内含二填空题1.已知⊙O的直径为8cm,点A,B,C与圆心O的距离分别为4cm,3cm,5cm,则点A在上,点B在,点C在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.2.2 直线和圆的位置关系一.选择题(共12小题)1.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个2.在Rt△ABC中,∠C=90°,AC=8cm,AB=10cm,以C为圆心,以9cm长为直径的⊙C与直线AB的位置关系为()A.相交B.相离C.相切D.相离或相交3.如图,在Rt△ABC中,∠C=90°,CB=3cm,AB=4cm,若以点C为圆心,以2cm 为半径作⊙C,则AB与⊙C的位置关系是()A.相离B.相切C.相交D.相切或相交4.⊙O的半径为5,圆心O到直线l的距离为3,下列位置关系正确的是()A.B.C.D.5.已知圆的直径是13cm,如果圆心到某直线的距离是6.5cm,则此直线与这个圆的位置关系是()A.相交B.相切C.相离D.无法确定6.如图,⊙O与直线l1相离,圆心O到直线l1的距离OH=2,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=()A.1B.2C.3D.47.直线l上的一点到圆心的距离等于半径,则直线与圆的位置关系一定是()A.相离B.相切C.相交D.相切或相交8.已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是()A.0<x≤1B.1≤x<C.0<x≤D.x>9.如图,在△ABC中,∠C=90°,AC=3,BC=4,⊙B的半径为1,已知⊙A与直线BC相交,且与⊙B没有公共点,那么⊙A的半径可以是()A.4B.5C.6D.710.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能11.圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8cm时,直线与圆相交B.当d=4.5cm时,直线与圆相离C.当d=6.5cm时,直线与圆相切D.当d=13cm时,直线与圆相切12.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相切B.相交C.相离D.无法确定二.填空题(共5小题)13.在平面直角坐标系中,⊙C的圆心为C(a,0),半径长为2,若y轴与⊙C 相离,则a的取值范围为.14.已知在直角坐标系内,半径为2的圆的圆心坐标为(3,﹣4),当该圆向上平移m(m>0)个单位长度时,若要此圆与x轴没有交点,则m的取值范围是.15.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线1的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线的距离等于1的点,即m=4,由此可知,当d=3时,m=.16.在平面直角坐标系中,以点A(﹣2,3)为圆心、r为半径的圆与坐标轴恰好有三个公共点,那么r的值为.17.如图,已知Rt△ABC的斜边AB=8,AC=4.以点C为圆心作圆,当⊙C与边AB只有一个交点时,则⊙C的半径的取值范围是.三.解答题(共5小题)18.如图,已知∠APB=30°,OP=3cm,⊙O的半径为1cm,若圆心O沿着BP的方向在直线BP上移动.(1)当圆心O移动的距离为1cm时,则⊙O与直线PA的位置关系是什么?(2)若圆心O的移动距离是d,当⊙O与直线PA相交时,则d的取值范围是什么?19.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE的延长线于D点,直线CD与射线AB交于P点.(1)判断直线DP与⊙O的位置关系,并说明理由;(2)若DC=4,⊙O的半径为5,求PB的长.20.如图,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,以斜边AB为直径做⊙O.(1)判断PC与⊙O的位置关系并证明;(2)若AB=5,AC=4,AD=OA,求PC的长21.如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO 于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.22.如图,O是Rt△ABC的直角边BC上的点,以O为圆心,OC长为半径的圆的⊙O过斜边上点D,交BC于点F,DF∥AO.(1)判断直线AD与⊙O的位置关系,并说明理由;(2)若BD=4,BC=8,求DF的长.参考答案与试题解析一.选择题(共12小题)1.【解答】解:∵d=3<半径=4∴直线与圆相交∴直线m与⊙O公共点的个数为2个故选:C.2.【解答】解:∵AC=8cm,AB=10cm,∴BC==6,S△ABC=AC×BC=×6×8=24,∴AB上的高为:24×2÷10=4.8,即圆心到直线的距离是4.8,∵r=4.5,∴4.8>4.5∴⊙C与直线AB相离,故选:B.3.【解答】解:如图:过点C作CD⊥AB于点D∵∠C=90°,CB=3cm,AB=4cm,∴AC===×AC×BC=×AB×CD∵S△ABC∴CD=∵<2∴AB与⊙C相交故选:C.4.【解答】解:∵⊙O的半径为5,圆心O到直线l的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故选:B.5.【解答】解:∵圆的直径为13 cm,∴圆的半径为6.5 cm,∵圆心到直线的距离6.5cm,∴圆的半径=圆心到直线的距离,∴直线于圆相切,故选:B.6.【解答】解:在Rt△ABO中,sin∠OAB===,∴∠OAB=60°,∵直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=OA=2.故选:B.7.【解答】解:∵圆心到直线的距离等于或小于圆的半径,∴直线和圆相交或相切.故选:D.8.【解答】解:当⊙O与直线AC相切时,设切点为D,如图,∵∠A=45°,∠ODA=90°,OD=1,∴AD=OD=1,由勾股定理得:AO=,即此时x=,所以当半径为1的⊙O与射线AC有公共点,x的取值范围是0<x,故选:C.9.【解答】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB==5,∵⊙A、⊙B没有公共点,∴⊙A与⊙B外离或内含,∵⊙B的半径为1,∴若外离,则⊙A半径r的取值范围为:0<r<5﹣1=4,若内含,则⊙A半径r的取值范围为r>1+5=6,∴⊙A半径r的取值范围为:0<r<4或r>6.故选:D.10.【解答】解:∵点P的坐标为(﹣2,3),∴点P到x轴的距离是3,∵2<3,∴以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是相离,故选:A.11.【解答】解:已知圆的直径为13cm,则半径为6.5cm,当d=6.5cm时,直线与圆相切,d<6.5cm直线与圆相交,d>6.5cm直线与圆相离,故A、B、D错误,C正确,故选:C.12.【解答】解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM==,∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2,∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.故选:B.二.填空题(共5小题)13.【解答】解:∵若y轴与⊙C相离,∴d>r,∵C(a,0),r=2,∴a<﹣2或a>2,故答案为a<﹣2或a>2.14.【解答】解:不妨设圆A(3,﹣4),作AC⊥x轴于C,交⊙A于B.易知AB=2,AC=4,BC=2,∴当⊙A向上平移2个单位或6个单位,⊙A与x轴相切,∴若要此圆与x轴没有交点,则m的取值范围是0<m<2或m>6.故答案为0<m<2或m>6.15.【解答】解:当d=3时,MN=3﹣2=1,此时只有点N到直线l的距离为1,故答案为:1.16.【解答】解:∵点A坐标为(﹣2,3),∴点A到x轴的距离为3,到y轴的距离为2,当⊙A与x轴相切时,与y轴有2个交点,圆与坐标轴恰好有三个公共点,此时r=3;当⊙A经过原点时,圆与坐标轴恰好有三个公共点,此时r==,综上所述,r的值为3或.故答案为3或.17.【解答】解:作CD⊥AB于D,如图,在Rt△ABC中,BC==4,∵CD•AB=AC•BC,∴CD==2,当⊙C与AB相切时,r=2;当直线AB与⊙C相交,且边AB与⊙O只有一个交点时,4<r≤4,综上所述,当r=2或4<r≤4,⊙C与边AB只有一个公共点.故答案为r=2或4<r≤4.三.解答题(共5小题)18.【解答】解:(1)如图,当点O向左移动1cm时,PO′=PO﹣O′O=3﹣1=2cm,作O′C⊥PA于C,∵∠P=30度,∴O′C=PO′=1cm,∵圆的半径为1cm,∴⊙O与直线PA的位置关系是相切;(2)如图:当点O由O′向右继续移动时,PA与圆相交,当移动到C″时,相切,此时C″P=PO′=2,∵OP=3,∴OO'=1,OC''=OP+C''P=3+2=5∴点O移动的距离d的范围满足1cm<d<5cm时相交,故答案为:1cm<d<5cm.19.【解答】解:(1)直线DP与⊙O相切.理由如下:连接OC,如图,∵AC是∠EAB的平分线,∴∠EAC=∠OAC∵OA=OC,∴∠ACO=∠OAC,∴∠ACO=∠DAC,∴OC∥AD,∵CD⊥AE,∴OC⊥CD,∴DP是⊙O的切线;(2)作CH⊥AB于H,如图,∵AC是∠EAB的平分线,CD⊥AD,CH⊥AB,∴CH=CD=4,∴OH==3,∵OC⊥CP,∴∠OCP=∠CHO=90°,而∠COP=∠POC,∴△OCH∽△OPC,∴OC:OP=OH:OC,∴OP==,∴PB=OP﹣OB=﹣5=.20.【解答】解:(1)PC是⊙O的切线,证明:如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵OA=OC∴∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线.(2)∵AB是⊙O的直径,AB=5,∴AO=,∴AD=OA=,∵∠A=∠A,∠ADE=∠ACB=90°,∴△ADE∽△ACB,∴,∴,∴AE=,∴CE=4﹣=,过P作PG⊥CE于G,∵∠ECP=∠PEC,∴PE=PC,∴EG=CG=CE=,同理得△CGP∽△BCA,∴,∴,∴PC=.21.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.22.【解答】解:(1)直线AD与⊙O的位置关系是相切,理由是:连接OD,∵OD=OF,∴∠ODF=∠OFD,∵DF∥AO,∴∠ODF=∠AOD,∠OFD=∠AOC,∴∠AOD=∠AOC,在△ACO和△ADO中∴△ACO≌△ADO,∴∠ADO=∠ACO,∵∠ACO=90°,∴∠ADO=90°,∵OD为半径,∴直线AD与⊙O的位置关系是相切;(2)设⊙O的半径是R,∵BC=8,∴BO=8﹣R,在Rt△ODB中,由勾股定理得:OD2+BD2=OB2,即R2+42=(8﹣R)2,解得:R=3,即OD=3,BO=8﹣3=5,过D作DM⊥OB于M,=×OD×BD=,则S△ODB3×4=5×DM,解得:DM=2.4,在Rt△DMO中,由勾股定理得:OM===1.8,∴MF=3﹣1.8=1.2,在Rt△DMF中,由勾股定理得:DF===1.2.。

相关文档
最新文档