苏教版数学八年级上册 压轴题 期末复习试卷测试与练习(word解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版数学八年级上册 压轴题 期末复习试卷测试与练习(word 解析版)
一、压轴题
1.如图,在△ABC 中,AB =AC =18cm ,BC =10cm ,AD =2BD .
(1)如果点P 在线段BC 上以2cm /s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.
①若点Q 的运动速度与点P 的运动速度相等,经过2s 后,△BPD 与△CQP 是否全等,请说明理由;
②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?
(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?
2.直角三角形ABC 中,∠ACB =90°,直线l 过点C .
(1)当AC =BC 时,如图①,分别过点A 、B 作AD ⊥l 于点D ,BE ⊥l 于点E .求证:△ACD ≌△CBE .
(2)当AC =8,BC =6时,如图②,点B 与点F 关于直线l 对称,连接BF ,CF ,动点M 从点A 出发,以每秒1个单位长度的速度沿AC 边向终点C 运动,同时动点N 从点F 出发,以每秒3个单位的速度沿F →C →B →C →F 向终点F 运动,点M 、N 到达相应的终点时停止运动,过点M 作MD ⊥l 于点D ,过点N 作NE ⊥l 于点E ,设运动时间为t 秒.
①CM = ,当N 在F →C 路径上时,CN = .(用含t 的代数式表示) ②直接写出当△MDC 与△CEN 全等时t 的值.
3.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .
(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;
(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;
(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC
的值.
4.如图,在平面直角坐标系中,直线334
y x =-+分别交,x y 轴于A B ,两点,C 为线段AB 的中点,(,0)D t 是线段OA 上一动点(不与A 点重合),射线//BF x 轴,延长DC 交BF 于点E .
(1)求证:AD BE =;
(2)连接BD ,记BDE 的面积为S ,求S 关于t 的函数关系式;
(3)是否存在t 的值,使得BDE 是以BD 为腰的等腰三角形?若存在,求出所有符合条件的t 的值;若不存在,请说明理由.
5.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.
(1)点A 的坐标为________;点C 的坐标为________.
(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t
秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.
(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分
∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).
6.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.
(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.
①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”;
②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:
点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .
①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值;
②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.
7.如图,A ,B 是直线y =x +4与坐标轴的交点,直线y =-2x +b 过点B ,与x 轴交于点C .
(1)求A ,B ,C 三点的坐标;
(2)点D 是折线A —B —C 上一动点.
①当点D 是AB 的中点时,在x 轴上找一点E ,使ED +EB 的和最小,用直尺和圆规画出点E 的位置(保留作图痕迹,不要求写作法和证明),并求E 点的坐标.
②是否存在点D ,使△ACD 为直角三角形,若存在,直接写出D 点的坐标;若不存在,请说明理由
8.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;
(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;
(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.
9.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .
(1)求OAB ∠的度数;
(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.
10.如图,以ABC 的边AB 和AC ,向外作等腰直角三角形ABE △和ACF ,连接 EF ,AD 是ABC 的高,延长DA 交EF 于点G ,过点F 作DG 的垂线交DG 于点H .
(1)求证:FHA ADC ≌△△;
(2)求证:点G 是EF 的中点.
11.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.
(1)如图1,已知A (3,2),B (4,0),请在x 轴上找一个C ,使得△OAB 与△OAC 是偏差三角形.你找到的C 点的坐标是______,直接写出∠OBA 和∠OCA 的数量关系______.
(2)如图2,在四边形ABCD 中,AC 平分∠BAD ,∠D+∠B=180°,问△ABC 与△ACD 是偏差三角形吗?请说明理由.
(3)如图3,在四边形ABCD 中,AB=DC ,AC 与BD 交于点P ,BD+AC=9,
∠BAC+∠BDC=180°,其中∠BDC <90°,且点C 到直线BD 的距离是3,求△ABC 与△BCD 的面积之和.
12.在△ABC 中,∠BAC =45°,CD ⊥AB ,垂足为点D ,M 为线段DB 上一动点(不包括端
点),点
N 在直线AC 左上方且∠NCM =135°,CN =CM ,如图①.
(1)求证:∠ACN =∠AMC ;
(2)记△ANC 得面积为5,记△ABC 得面积为5.求证:12S AC S AB
=; (3)延长线段AB 到点P ,使BP =BM ,如图②.探究线段AC 与线段DB 满足什么数量关系时对于满足条件的任意点M ,AN =CP 始终成立?(写出探究过程)
【参考答案】***试卷处理标记,请不要删除
一、压轴题
1.(1)①△BPD 与△CQP 全等,理由见解析;②当点Q 的运动速度为125
cm /s 时,能够使△BPD 与△CQP 全等;(2)经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.
【解析】
【分析】
(1)①由“SAS”可证△BPD ≌△CQP ;
②由全等三角形的性质可得BP=PC=
12
BC=5cm ,BD=CQ=6cm ,可求解; (2)设经过x 秒,点P 与点Q 第一次相遇,列出方程可求解.
【详解】 解:(1)①△BPD 与△CQP 全等,
理由如下:∵AB =AC =18cm ,AD =2BD ,
∴AD =12cm ,BD =6cm ,∠B =∠C ,
∵经过2s 后,BP =4cm ,CQ =4cm ,
∴BP =CQ ,CP =6cm =BD ,
在△BPD 和△CQP 中,
BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩

∴△BPD ≌△CQP (SAS ),
②∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,
∵△BPD与△CQP全等,∠B=∠C,
∴BP=PC=1
2
BC=5cm,BD=CQ=6cm,
∴t=5
2

∴点Q的运动速度=612
55
2
=
cm/s,
∴当点Q的运动速度为12
5
cm/s时,能够使△BPD与△CQP全等;
(2)设经过x秒,点P与点Q第一次相遇,
由题意可得:12
5
x﹣2x=36,
解得:x=90,
点P沿△ABC跑一圈需要181810
23
2
++
=(s)
∴90﹣23×3=21(s),
∴经过90s点P与点Q第一次相遇在线段AB上相遇.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,一元一次方程的应用,掌握全等三角形的判定是本题的关键.
2.(1)证明见解析;(2)①CM=8t-,CN=63t
-;②t=3.5或5或6.5.
【解析】
【分析】
(1)根据垂直的定义得到∠DAC=∠ECB,利用AAS定理证明△ACD≌△CBE;
(2)①由折叠的性质可得出答案;
②动点N沿F→C路径运动,点N沿C→B路径运动,点N沿B→C路径运动,点N沿C→F 路径运动四种情况,根据全等三角形的判定定理列式计算.
【详解】
(1)∵AD⊥直线l,BE⊥直线l,
∴∠DAC+∠ACD=90°,
∵∠ACB=90°,
∴∠BCE+∠ACD=90°,
∴∠DAC=∠ECB,
在△ACD和△CBE中,
ADC CEB DAC ECB CA CB ∠∠⎧⎪∠∠⎨⎪⎩
===,
∴△ACD ≌△CBE (AAS );
(2)①由题意得,AM=t ,FN=3t ,
则CM=8-t ,
由折叠的性质可知,CF=CB=6,
∴CN=6-3t ;
故答案为:8-t ;6-3t ;
②由折叠的性质可知,∠BCE=∠FCE ,
∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,
∴∠NCE=∠CMD ,
∴当CM=CN 时,△MDC 与△CEN 全等,
当点N 沿F→C 路径运动时,8-t=6-3t ,
解得,t=-1(不合题意),
当点N 沿C→B 路径运动时,CN=3t-6,
则8-t=3t-6,
解得,t=3.5,
当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,
解得,t=5,
当点N 沿C→F 路径运动时,由题意得,8-t=3t-18,
解得,t=6.5,
综上所述,当t=3.5秒或5秒或6.5秒时,△MDC 与△CEN 全等.
【点睛】
本题考查了折叠的性质,全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.
3.(1)见详解,(2)2BD CF =,证明见详解,(3)
23. 【解析】
【分析】
(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;
(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;
【详解】
(1)证明:如图1中,
BE AD ⊥于E ,
90AEF BCF ∴∠=∠=︒,
AFE CFB ∠=∠,
DAC CBF ∴∠=∠,
BC AC =,
BCF ACD ∴∆≅∆(AAS ),
BF AD ∴=.
(2)结论:2BD CF =.
理由:如图2中,作EH AC ⊥于H .
90AHE ACD DAE ∠=∠=∠=︒,
90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,
ADC EAH ∴∠=∠,AD AE =,
ACD EHA ∴∆≅∆,
CD AH ∴=,EH AC BC ==,
CB CA =,
BD CH ∴=,
90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,
EHF BCF ∴∆≅∆,
FH FC ∴=,
2BD CH CF ∴==.
(3)如图3中,作EH AC ⊥于交AC 延长线于H .
90AHE ACD DAE ∠=∠=∠=︒,
90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,
ADC EAH ∴∠=∠,
AD AE =,
ACD EHA ∴∆≅∆,
CD AH ∴=,EH AC BC ==,
CB CA =,
BD CH ∴=,
90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,
EHM BCM ∴∆≅∆,
MH MC ∴=,
2BD CH CM ∴==.
3AC CM =,设CM a =,则3AC CB a ==,2BD a =,
∴2233
DB a BC a ==.
【点睛】
本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.
4.(1)详见解析;(2)36(04)2BDE t t S
-+≤<=;(3)存在,当78t =或43
时,使得BDE 是以BD 为腰的等腰三角形.
【解析】
【分析】 (1)先判断出EBC DAC ∠=∠,CEB CDA ∠=∠,再判断出BC AC =,进而判断出△BCE ≌△ACD ,即可得出结论;
(2)先确定出点A ,B 坐标,再表示出AD ,即可得出结论;
(3)分两种情况:当BD BE =时,利用勾股定理建立方程2223(4)t t +=-,即可得出结论;当BD DE =时,先判断出Rt △OBD ≌Rt △MED ,得出DM OD t ==,再用OM BE =建立方程求解即可得出结论.
【详解】
解:(1)证明:
射线//BF x 轴, EBC DAC ∴∠=∠,CEB CDA ∠=∠, 又C 为线段AB 的中点,
BC AC ∴=,
在△BCE 和△ACD 中,
CEB CDA
EBC DAC
BC AC
∠=∠


∠=∠

⎪=


∴△BCE≌△ACD(AAS),
BE AD
∴=;
(2)解:在直线
3
3
4
y x
=-+中,
令0
x=,则3
y=,
令0
y=,则4
x=,
A
∴点坐标为(4,0),B点坐标为(0,3),
D点坐标为(,0)
t,
4
AD t BE
∴=-=,
113
(4)36(04)
222
BDE ABD B
S S AD y t t t
∴==⋅=-⨯=-+<;(3)当BD BE
=时,
在Rt OBD
∆中,90
BOD
∠=︒,
由勾股定理得:222
OB OD DB
+=,
即222
3(4)
t t
+=-
解得:
7
8
t=;
当BD DE
=时,
过点E作EM x
⊥轴于M,
90
BOD EMD
∴∠=∠=︒,
//
BF OA,
OB ME
∴=
在Rt△OBD和Rt△MED中,
=
=
BD DE
OB ME




∴Rt△OBD≌Rt△MED(HL),
OD DM t
∴==,
由OM BE
=得:24
t t
=-解得:
4
3
t=,
综上所述,当78t =或43
时,使得△BDE 是以BD 为腰的等腰三角形.
【点睛】
本题是一次函数综合题,主要考查了平行线的性质,全等三角形的判定和性质,勾股定理,用方程的思想解决问题是解本题的关键.
5.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由见解析.
【解析】
【分析】
(1)根据算术平方根的非负性,绝对值的非负性即可求解;
(2)根据运动速度得到OQ=t ,OP=8-2t ,根据△ODP 与△ODQ 的面积相等列方程求解即可;
(3)由∠AOC=90°,y 轴平分∠GOD 证得OG ∥AC ,过点H 作HF ∥OG 交x 轴于F ,得到∠FHC=∠ACE ,∠FHO=∠GOD ,从而∠GOD+∠ACE=∠FHO+∠FHC ,即可证得2∠GOA+∠ACE=∠OHC.
【详解】
(1280a b b -+-=,
∴a-b+2=0,b-8=0,
∴a=6,b=8,
∴A (0,6),C (8,0);
故答案为:(0,6),(8,0);
(2)由(1)知,A (0,6),C (8,0),
∴OA=6,OB=8,
由运动知,OQ=t ,PC=2t ,
∴OP=8-2t ,
∵D (4,3),
∴114222ODQ D S OQ x t t =⨯=⨯=△, 1182312322
ODP D S OP y t t =⨯=-⨯=-△(), ∵△ODP 与△ODQ 的面积相等,
∴2t=12-3t ,
∴t=2.4,
∴存在t=2.4时,使得△ODP 与△ODQ 的面积相等;
(3)2∠GOA+∠ACE=∠OHC ,理由如下:
∵x 轴⊥y 轴,
∴∠AOC=∠DOC+∠AOD=90°,
∴∠OAC+∠ACO=90°.
又∵∠DOC=∠DCO ,
∴∠OAC=∠AOD.
∵x 轴平分∠GOD ,
∴∠GOA=∠AOD.
∴∠GOA=∠OAC.
∴OG ∥AC ,
如图,过点H 作HF ∥OG 交x 轴于F ,
∴HF ∥AC ,
∴∠FHC=∠ACE.
∵OG ∥FH ,
∴∠GOD=∠FHO ,
∴∠GOD+∠ACE=∠FHO+∠FHC ,
即∠GOD+∠ACE=∠OHC ,
∴2∠GOA+∠ACE=∠OHC .
【点睛】
此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.
6.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334
k -≤<-
【解析】
【分析】
(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;
②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);
(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明
△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;
②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.
【详解】
解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,
故答案为点P ;
②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)
(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得
∠BFC=∠AOB=90°.
∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,
∴点B 的坐标为3(0,3),(,0)B A k
-在x 轴的正半轴上, ∵点A 关于点B 的“正矩点”为点(,)C C C x y ,
∴∠ABC=90°,BC=BA ,
∴∠1+∠2=90°,
∵∠AOB=90°,
∴∠2+∠3=90°,
∴∠1=∠3.
∴△BFC ≌△AOB ,
∴3FC OB ==,
可得OE =3.
∵点A 在x 轴的正半轴上且3OA <,
0C x ∴<,
∴点C 的横坐标C x 的值为-3.
②因为△BFC ≌△AOB ,3(,0)A k
-,A 在x 轴正半轴上, 所以BF =OA ,所以OF =OB-OF =33k +
点3(3,3)C k -+,如图2, -1<C y ≤2,
即:-1<33k
+ ≤2, 则334k -≤<-

【点睛】
本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.
7.(1)A(-4,0) ;B(0,4);C(2,0);(2)①点E 的位置见解析,E (43-
,0);②D 点的坐标为(-1,3)或(
45
,125) 【解析】
【分析】
(1)先利用一次函数图象上点的坐标特点求得点A 、B 的坐标;然后把B 点坐标代入y=−2x +b 求出b 的值,确定此函数解析式,然后再求C 点坐标;
(2)①根据轴对称—最短路径问题画出点E 的位置,由待定系数法确定直线DB 1的解析式为y=−3x−4,易得点E 的坐标;
②分两种情况:当点D 在AB 上时,当点D 在BC 上时.当点D 在AB 上时,由等腰直角三角形的性质求得D 点的坐标为(−1,3);当点D 在BC 上时,设AD 交y 轴于点F ,证△AOF 与△BOC 全等,得OF=2,点F 的坐标为(0,2),求得直线AD 的解析式为122y x =
+,与y=−2x +4组成方程组,求得交点D 的坐标为(45
,125). 【详解】 (1)在y=x +4中,
令x =0,得y=4,
令y =0,得x=-4,
∴A(-4,0) ,B(0,4)
把B(0,4)代入y=-2x+b ,得b =4,
∴直线BC 为:y=-2x+4
在y=-2x +4中,
令y =0,得x=2,
∴C 点的坐标为(2,0);
(2)①如图
∵点D是AB的中点
∴D(-2,2)
点B关于x轴的对称点B1的坐标为(0,-4),设直线DB1的解析式为y kx b
=+,
把D(-2,2),B1(0,-4)代入,得
22
4
k b
b
-+=


=-


解得k=-3,b=-4,
∴该直线为:y=-3x-4,
令y=0,得x=
4
3 -,
∴E点的坐标为(
4
3
-,0).
②存在,D点的坐标为(-1,3)或(4
5

12
5
).
当点D在AB上时,
∵OA=OB=4,
∴∠BAC=45°,
∴△ACD是以∠ADC为直角的等腰直角三角形,
∴点D的横坐标为42
1 2

当x=-1时,y=x+4=3,
∴D点的坐标为(-1,3);
当点D在BC上时,如图,设AD交y轴于点F.
∵∠FAO+∠AFO=∠CBO+∠BFD,∠AFO=∠BFD,∴∠FAO=∠CBO,
又∵AO=BO,∠AOF=∠BOC,
∴△AOF≌△BOC(ASA)
∴OF=OC=2,
∴点F的坐标为(0,2),
设直线AD的解析式为y mx n
=+,
将A(-4,0)与F(0,2)代入得
40
2
m n
n
-+=


=


解得
1
,2
2
m n
==,

1
2
2
y x
=+,
联立
1
2
2
24
y x
y x

=+


⎪=-+

,解得:
4
5
12
5
x
y

=
⎪⎪

⎪=
⎪⎩

∴D的坐标为(4
5

12
5
).
综上所述:D点的坐标为(-1,3)或(4
5

12
5

【点睛】
本题是一次函数的综合题,难度适中,考查了利用待定系数法求一次函数的解析式、轴对称的最短路径问题、直角三角形问题,第(2)②题采用了分类讨论的思想,与三角形全等结合,解题的关键是灵活运用一次函数的图象与性质以及全等的知识.
8.(1)见解析;(2)见解析;(3)3
【解析】
【分析】
(1)根据等腰三角形的性质和外角的性质即可得到结论;
(2)过E作EF∥AC交AB于F,根据已知条件得到△ABC是等边三角形,推出△BEF是等边三角形,得到BE=EF,∠BFE=60°,根据全等三角形的性质即可得到结论;
(3)连接AF,证明△ABF≌△CBF,得AF=CF,再证明DH=AH=1
2
CF=3.
【详解】
解:(1)∵AB=AC,
∴∠ABC=∠ACB,
∵DE=DC,
∴∠E=∠DCE,
∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;
(2)∵△ABC是等边三角形,
∴∠B=60°,
∴△BEF是等边三角形,
∴BE=EF,∠BFE=60°,
∴∠DFE=120°,
∴∠DFE=∠CAD,
在△DEF与△CAD中,
EDF DCA
DFE CAD
DE CD
∠=∠


∠=∠

⎪=


∴△DEF≌△CAD(AAS),∴EF=AD,
∴AD=BE;
(3)连接AF,如图3所示:∵DE=DC,∠EDC=30°,
∴∠DEC=∠DCE=75°,
∴∠ACF=75°-60°=15°,
∵BF平分∠ABC,
∴∠ABF=∠CBF,
在△ABF和△CBF中,
AB BC
ABF CBF
BF BF
=


∠=∠

⎪=


△ABF≌△CBF(SAS),
∴AF=CF,
∴∠FAC=∠ACF=15°,
∴∠AFH=15°+15°=30°,
∵AH⊥CD,
∴AH=
1
2
AF=
1
2
CF=3,
∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,
∴∠ADH=15°+30°=45°,
∴∠DAH=∠ADH=45°,
∴DH=AH=3.
【点睛】
本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.
9.(1)45°;(2)PE 的值不变,PE=4,理由见详解;(3)D(828 ,0).
【解析】
【分析】
(1)根据(42,0)A ,(0,2)B ,得△AOB 为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB 的度数;
(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC ⊥AB ,再证明
△POC ≌△DPE ,根据全等三角形的性质得到OC=PE ,即可得到答案;
(3)证明△POB ≌△DPA ,得到PA=OB=2,DA=PB ,进而得OD 的值,即可求出点D 的坐标.
【详解】
(1)(42,0)A ,(0,42)B ,
∴OA=OB=2
∵∠AOB=90°,
∴△AOB 为等腰直角三角形,
∴∠OAB=45°;
(2)PE 的值不变,理由如下:
∵△AOB 为等腰直角三角形,C 为AB 的中点,
∴∠AOC=∠BOC=45°,OC ⊥AB ,
∵PO=PD ,
∴∠POD=∠PDO ,
∵D 是线段OA 上一点,
∴点P 在线段BC 上,
∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,
∴∠POC=∠DPE ,
在△POC 和△DPE 中,
90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩

∴△POC ≅△DPE(AAS),
∴OC=PE ,
∵OC=12AB=12
×
×=4, ∴PE=4;
(3)∵OP=PD ,
∴∠POD=∠PDO=(180°−45°)÷2=67.5°,
∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,
∴∠APD=∠BOP ,
在△POB 和△DPA 中,
OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴△POB ≌△DPA(AAS),

PA=OB=DA=PB ,

DA=PB=
-


OD=OA−DA=
8-,
∴点D 的坐标为
(8,0).
【点睛】
本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.
10.(1)证明见解析;(2)证明见解析.
【解析】
【分析】
(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC =,利用AAS 得到AFH CAD ∆≅∆;
(2)由(1)利用全等三角形对应边相等得到FH AD =,再EK AD ⊥,交DG 延长线于点K ,同理可得到AD EK =,等量代换得到FK EH =,再由一对直角相等且对顶角相等,利用AAS 得到FHG EKG ≅△△,利用全等三角形对应边相等即可得证.
【详解】
证明:(1) ∵FH AG ⊥,
90AEH EAH ∴∠+∠=︒,
90FAC ∠=︒,
90
FAH CAD
∴∠+∠=︒,
AFH CAD
∴∠=∠,
在AFH
∆和CAD
∆中,
90
AHF ADC
AFH CAD
AF AC
∠=∠=︒


∠=∠

⎪=


()
AFH CAD AAS
∴∆≅∆,
(2)由(1)得AFH CAD
∆≅∆,
FH AD
∴=,
作FK AG
⊥,交AG延长线于点K,如图;
同理得到AEK ABD
∆≅∆,
EK AD
∴=,
FH EK
∴=,
在EKG
∆和FHG
∆中,
90
EKG FHG
EGK FGH
EK FH
∠=∠=︒


∠=∠

⎪=


()
EKG FHG AAS
∴∆≅∆,
EG FG
∴=.即点G是EF的中点.
【点睛】
此题考查了全等三角形的判定与性质,熟练掌握K字形全等进行证明是解本题的关键.11.(1)(2,0),∠OBA+∠OCA=180°;(2)△ABC与△ACD是偏差三角形,理由见解析;(3)
27
2
【解析】
【分析】
(1)根据偏差三角形的定义,即可得到C的坐标,根据等腰三角形的性质和平角的定义,即可得到结论;
(2)在AD上取一点H,使得AH=AB,易证△CAH≌△CAB,进而可得∠D=∠CHD,根据偏
差三角形的定义,即可得到结论;
(3)延长CA至点E,使AE=BD,连接BE,由SAS可证∆BDC≅∆EAB,得EA=BD,点B到直线EA的距离是3,根据三角形的面积公式,即可求解.
【详解】
(1)∵当AC=AB时,△OAB与△OAC是偏差三角形,A(3,2),B(4,0),
∴点C的坐标为(2,0),如图1,
∵AC=AB,
∴∠ACB=∠ABC,
∵∠OCA+∠ACB=180°,
∴∠OBA+∠OCA=180°,
故答案为:(2,0),∠OBA+∠OCA=180°;
(2)△ABC与△ACD是偏差三角形,理由如下:
如图2中,在AD上取一点H,使得AH=AB.
∵AC平分∠BAD,
∴∠CAH=∠CAB,
又∵ AC=AC,
∴△CAH≌△CAB(SAS),
∴CH=CB,∠B=∠AHC,
∵∠B+∠D=180°,∠AHC+∠CHD=180°,
∴∠D=∠CHD,
∴CH=CD,
∴CB=CD,
∵△ACD和△ABC中,AC=AC,∠CAD=∠CAB,BC=CD,△ADC与△ABC不全等,
∴△ABC与△ACD是偏差三角形;
(3)如图3中,延长CA至点E,使AE=BD,连接BE,
∵∠BAC+∠BDC=180°,∠BAC+∠BAE=180°,
∴∠BDC=∠BAE,
又∵AB=CD,
∴∆BDC≅∆EAB(SAS),
∴EA=BD,
∵点C到直线BD的距离是3,
∴点B到直线EA的距离是3,
∴S△ABC+S△BCD=S△ABC+S△EAB= S△BCE=1
2
∙(AC+EA)×3 =
1
2
∙(AC+BD)×3 =
1
2
×9×3=
27
2

【点睛】
本题主要考查等腰三角形的性质,三角形全等的判定和性质,添加辅助线,构造全等三角形,是解题的关键.
12.(1)证明见解析;(2)证明见解析;(3)当AC =2BD 时,对于满足条件的任意点N ,AN =CP 始终成立,证明见解析.
【解析】
【分析】
(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM ;
(2)过点N 作NE ⊥AC 于E ,由“AAS ”可证△NEC ≌△CDM ,可得NE=CD ,由三角形面积公式可求解;
(3)过点N 作NE ⊥AC 于E ,由“SAS ”可证△NEA ≌△CDP ,可得AN=CP .
【详解】
(1)∵∠BAC=45°,
∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM .
∵∠NCM=135°,
∴∠ACN=135°﹣∠ACM ,∴∠ACN=∠AMC ;
(2)过点N 作NE ⊥AC 于
E ,
∵∠CEN=∠CDM=90°,∠ACN=∠AMC ,CM=CN ,
∴△NEC ≌△CDM (AAS ),
∴NE=CD ,CE=DM ;
∵S 112=AC•NE ,S 212
=AB•CD , ∴12S AC S AB
=; (3)当AC=2BD 时,对于满足条件的任意点N ,AN=CP 始终成立,
理由如下:过点N 作NE ⊥AC 于E ,
由(2)可得NE=CD,CE=DM.
∵AC=2BD,BP=BM,CE=DM,
∴AC﹣CE=BD+BD﹣DM,
∴AE=BD+BP=DP.
∵NE=CD,∠NEA=∠CDP=90°,AE=DP,
∴△NEA≌△CDP(SAS),
∴AN=PC.
【点睛】
本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.。

相关文档
最新文档