知识点12 一元二次方程 2017(选择题)
专题12 一元二次方程(专题测试-基础)(解析版)
专题12 一元二次方程(专题测试-基础)学校:___________姓名:___________班级:___________考号:___________一、选择题(共12小题,每小题4分,共48分)1.(2018·湖北中考模拟)已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx-c(1-x2)=0的两根相等,则△ABC为()A.等腰三角形B.等边三角形C.直角三角形D.任意三角形【答案】C【解析】根据一元二次方程a(1+x2)+2bx-c(1-x2)=0的两根相等,即△= b2-4ac=(2b)2-4×(a+c)×(a-c)=4b2+4c2-4a2=0,结合勾股定理的逆定理,由b2+c2=a2,所以得到△ABC是直角三角形.故选:C.2.(2018·江苏中考模拟)若实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,则1111b aa b--+--的值是()A.﹣20B.2C.2或﹣20D.1 2【答案】C【详解】①当a=b时,原式=2;②当a≠b时,根据实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,即可看成a、b是方程x2﹣8x+5=0的解,∴a+b=8,ab=5.则1111b aa b--+--=221111b aa b-+---()()()()=22221a b ab a bab a b+--++-++()()(),把a+b=8,ab=5代入得:=2810162 581--+-+=﹣20.综上可得:1111b aa b--+--的值为2或﹣20.故选C.3.(2019·云南中考模拟)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%【答案】C【解析】设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选C.4.(2019·新疆中考模拟)用配方法解下列方程,其中应在方程左右两边同时加上4的是()A.x2﹣2x=5B.x2+4x=5C.2x2﹣4x=5D.4x2+4x=5【答案】B【详解】A、因为本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;B、因为本方程的一次项系数是4,所以等式两边同时加上一次项系数一半的平方4;故本选项正确;C、将该方程的二次项系数化为x 2-2x= 52,所以本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;D、将该方程的二次项系数化为x 2 +x= 54,所以本方程的一次项系数是1,所以等式两边同时加上一次项系数一半的平方14;故本选项错误;故选B.5.(2018·山东中考模拟)已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是()A.x1+x2=1B.x1•x2=﹣1C.|x1|<|x2|D.x12+x1=1 2【答案】D【详解】根据题意得x1+x2=﹣22=﹣1,x1x2=﹣12,故A、B选项错误;∵x1+x2<0,x1x2<0,∴x 1、x 2异号,且负数的绝对值大,故C 选项错误;∵x 1为一元二次方程2x 2+2x ﹣1=0的根,∴2x 12+2x 1﹣1=0,∴x 12+x 1=12,故D 选项正确, 故选D .6.(2018·邵阳县白仓镇千秋中学中考模拟)方程x 2﹣x+1=0与方程x 2﹣5x ﹣1=0的所有实数根的和是( ) A .6 B .5 C .3 D .2【答案】B【详解】∵方程x 2﹣x+1=0中 △=(-1)2-4×1×1<0,∴方程x 2﹣x+1=0没有实数解,又∵方程x 2﹣5x ﹣1=0的两实数根的和为5,∴方程x 2﹣x+1=0与方程x 2﹣5x ﹣1=0的所有实数根的和是5,故选B .7.(2019·山东中考模拟)若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数 y kx b =+的图象可能是:A .B .C .D .【答案】B【详解】由方程2210x x kb -++=有两个不相等的实数根,可得()4410kb =-+V>, 解得0kb <,即a b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B.8.(2018·浙江中考模拟)用配方法解方程2210x x --=,变形结果正确的是( )A .213 ()24x -=B .213 ()44x -=C .2117 ()416x -=D .219 ()416x -= 【答案】D【详解】根据配方法的定义,将方程2210x x --=的二次项系数化为1, 得: 211022x x --=,配方得21111216216x x -+=+, 即:219 ()416x -=. 本题正确答案为D.9.(2019·新疆生产建设兵团第五师八十三团二中中考模拟)关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( )A .有两不相等实数根B .有两相等实数根C .无实数根D .不能确定【答案】A【详解】()2x k 3x k 0-++=, △=[-(k+3)]2-4k=k 2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.10.(2018·湖南中考模拟)如图,某小区有一块长为30m ,宽为24m 的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地的面积之和为480m 2,两块绿地之间及周边有宽度相等的人形通道,设人行道的宽度为x m ,根据题意,下面所列方程正确的是( )A .(303)(242)480x x --=B .(303)(24)480x x --=C .(302)(242)480x x --=D .(30)(242)480x x --=【答案】A【详解】由题意可得,()()303202480x x --=,故选:A .11.(2011·安徽中考模拟)已知x =2是一元二次方程x 2+mx +2=0的一个根,则m =()A .-3B .3C .0D .0或3【答案】A【详解】解:∵x =2是一元二次方程x 2+mx +2=0的一个解,∴4+2m +2=0,∴m =−3.故选A .12.(2018·河北中考模拟)如果2是方程230x x k -+=的一个根,则常数k 的值为( )A .1B .2C .1-D .2-【答案】B【详解】解:∵2是一元二次方程230x x k -+=的一个根,∴22-3×2+k =0,解得,k =2.故选:B .二、 填空题(共5小题,每小题4分,共20分)13.(2019·山东中考模拟)已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.【答案】2【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,∴m 2﹣2m=0且m≠0,解得,m=2,故答案是:2.14.(2019·云南中考模拟)一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.【答案】16【解析】∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.15.(2019·四川中考模拟)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为_____. 【答案】12x (x ﹣1)=21 【详解】有x 个队,每个队都要赛(x ﹣1)场,但两队之间只有一场比赛,由题意得:12x (x ﹣1)=21, 故答案为:12x (x ﹣1)=21. 16.(2018·河南中考模拟)方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于______. 【答案】3.【详解】 解:根据题意得1232x x +=-,1212x x =-,所以1211x x +=1212x x x x +=3212--=3. 故答案为:3.17.(2019·云南中考模拟)关于x 的一元二次方程kx 2+2x ﹣1=0有两个不相等的实数根,则k 的取值范围是_____.【答案】k>-1且k≠0【详解】∵一元二次方程kx²+2x−1=0有两个不相等的实数根,∴△=b²−4ac=4+4k>0,且k≠0,解得:k>−1且k≠0.故答案为k>−1且k≠0.三、 解答题(共4小题,每小题8分,共32分)18.(2018·湖北中考真题)已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根. (1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.【答案】(1)k≤58;(2)k=﹣1. 【详解】(1)∵关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根,∴△≥0,即[﹣(2k ﹣1)]2﹣4×1×(k 2+k ﹣1)=﹣8k+5≥0,解得k≤58; (2)由根与系数的关系可得x 1+x 2=2k ﹣1,x 1x 2=k 2+k ﹣1,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=(2k ﹣1)2﹣2(k 2+k ﹣1)=2k 2﹣6k+3,∵x 12+x 22=11,∴2k 2﹣6k+3=11,解得k=4,或k=﹣1,∵k≤58, ∴k=4(舍去),∴k=﹣1.19.(2019·山东中考模拟)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.20.(2019·山东中考模拟)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?【答案】(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.【解析】(1)若降价3元,则平均每天销售数量为20+2×3=26件.(2)设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20应舍去,∴x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.21.(2019·湖北中考模拟)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【答案】10,8.【解析】设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为8m.。
2017中考真题分类-一元二次方程及应用
2017中考真题分类——一元二次方程一、选择题(每题只有一个最佳答案,请将其填在括号内!)1. (2017·山东泰安·7)一元二次方程2660x x --=配方后化为( )A .2(3)15x -= B .2(3)3x -= C. 2(3)15x += D .2(3)3x +=2. (2017·浙江舟山·8)用配方法解方程0122=-+x x 时,配方结果正确的是( )A .2)2(2=+xB .2)1(2=+x C. 3)2(2=+x D .3)1(2=+x3. (2017·江苏苏州·4)关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为( )A .1B .1- C.2 D .2-4. (2017·江苏扬州·3)一元二次方程2720x x --=的实数根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定5. (2017·四川宜宾·4)一元二次方程 的根的情况是( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 B. 没有实数根 D.无法判断6. (2017·广东广州·5)关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是( )A .16q <B .16q > C. 4q ≤ D .4q ≥7. (2017·甘肃兰州·6)如果一元二次方程2230x x m 有两个相等的实数根,那么是实数m 的取值为( ) A.98mB.89mC.98mD.89m8. (2017·山东滨州·2)一元二次方程x 2-2x =0根的判别式的值为A .4B .2C .0D .-49. (2017·安徽·8)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( )A .16(12)25x +=B .25(12)16x -= C.216(1)25x += D .225(1)16x -=214204x x -+=10. (2017·浙江杭州·7)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次,设参观人次的平均年增长率为x ,则( ) A .10.8(1+x )=16.8 B .16.8(1-x )=10.8C .10.8(1+x )2=16.8 D .10.8[(1+x )+(1+x )²]=16.811. (2017·江苏无锡·7)商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( ) A .20% B .25% C.50% D .62.5%12. (2017·湖南衡阳·9)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2015年年收入200美元,预计2017年年收入将达到1000美元,设2015年到2017年该地区居民年人均收入平均增长率为x ,可列方程为:( ) A .()200121000x += B .()220011000x += C.()220011000x +=D .20021000x +=13. (2017·甘肃庆阳·9)如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m ,若设道路的宽为m x ,则下面所列方程正确的是( ) A.32220570x xB.32203220570x xC.32203220570x xD.2322202570x x x14. (2017·江苏南京·5)若方程()2519x -=的两根为a 和b ,且a b >,则下列结论中正确的是 ( ) A .a 是19的算术平方根 B .b 是19的平方根 C.5a -是19的算术平方根D .5b +是19的平方根15. (2017·浙江温州·8)我们知道方程2230x x +-=的解是11x =,23x =-,现给出另一个方程2(23)2(23)30x x +++-=,它的解是( )A .11x =,23x =B .11x =,23x =-C .11x =- ,23x = D .11x =-,23x =- 16. (2017·江西·5)已知一元二次方程22510x x -+=的两个根为12,x x ,下列结论正确的是( ) A . 1252x x +=-B .121x x = C. 12,x x 都是有理数 D .12,x x 都是正数17. (2017·湖南益阳·6)关于x 的一元二次方程20(0)ax bx c a ++=≠的两根为11x =,21x =-,那么下列结论一定成立的是( )A .240b ac ->B .240b ac -=C .240b ac -<D .240b ac -≤18. (2017·四川绵阳·7)关于x 的方程022=++n mx x 的两个根是2-和1,则mn 的值为( )A .8-B .8 C. 16 D .16-(2017遵义) 关于x 的一元二次方程x 2+3x+m=0有两个不相等的实数根,则m 的取值范围为( ) A .m≤ B .mC .m≤D .m(2017咸宁) 已知a 、b 、c 为常数,点P (a ,c )在第二象限,则关于x 的方程ax 2+bx+c=0根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断(2017通辽) 若关于x 的一元二次方程02)1(2)1(2=-++++k x k x k 有实数根,则k 的取值范围在数轴上表示正确的是( A ) ABCD(2017天门) 已知关于x 的一元二次方程x 2﹣(m+1)x+(m 2+1)=0有实数根,则m 的值等于 1 。
一元二次方程复习题(含答案)
一元二次方程测试题一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5B.x1=0,x2=5C.x1=2,x2=0D.x1=0,x2=﹣52.下列方程是一元二次方程的是()A.ax2+bx+c=0B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0D.(x﹣1)2+1=0 3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1B.1C.1或﹣1D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17B.17(1﹣x)=12C.12(1+x)2=17D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q 移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210B.x(x﹣12)=210C.2x+2(x+12)=210D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1B.或﹣1C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7B.11C.12D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=.17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为米.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△0(填:“>”或“=”或“<”).三.解答题(共8小题)21.(6分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)22.(6分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.23.(6分)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.(6分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?28.(10分)已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.2018年02月28日刘笑天的初中数学组卷参考答案与试题解析一.选择题(共12小题)1.方程x(x﹣2)=3x的解为()A.x=5B.x1=0,x2=5C.x1=2,x2=0D.x1=0,x2=﹣5【解答】解:x(x﹣2)=3x,x(x﹣2)﹣3x=0,x(x﹣2﹣3)=0,x=0,x﹣2﹣3=0,x1=0,x2=5,故选B.2.下列方程是一元二次方程的是()A.ax2+bx+c=0B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0D.(x﹣1)2+1=0【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项错误;B、由原方程得到2x﹣6=0,未知数的最高次数是1,不是一元二次方程,故本选项错误;C、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确;故选D.3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1B.1C.1或﹣1D.3【解答】解:∵关于x的一元二次方程x2+a2﹣1=0的一个根是0,∴02+a2﹣1=0,解得,a=±1,故选C.4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程1中正确的是()A.12(1+x)=17B.17(1﹣x)=12C.12(1+x)2=17D.12+12(1+x)+12(1+x)2=17【解答】解:设游客人数的年平均增长率为x,则2016的游客人数为:12×(1+x),2017的游客人数为:12×(1+x)2.那么可得方程:12(1+x)2=17.故选:C.5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q 移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的)面积为15cm2的是(A.2秒钟B.3秒钟C.4秒钟D.5秒钟【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm ,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).答:动点P,Q运动3秒时,能使△PBQ的面积为15cm2.6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210B.x(x﹣12)=210C.2x+2(x+12)=210D.2x+2(x ﹣12)=210【解答】解:设场地的长为x米,则宽为(x﹣12)米,根据题意得:x(x﹣12)=210,故选:B.27.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大【解答】解:x2+bx﹣2=0,△=b2﹣4×1×(﹣2)=b2+8,即方程有两个不相等的实数根,设方程x2+bx﹣2=0的两个根为c、d,则c+d=﹣b,cd=﹣2,由cd=﹣2得出方程的两个根一正一负,由c+d=﹣b和b<0得出方程的两个根中,正数的绝对值大于负数的绝对值,故选B.8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1B .或﹣1C .D .﹣或1【解答】解:根据根与系数的关系,得x1+x2=﹣1,x1x2=k.又x12+x1x2+x22=2k2,则(x1+x2)2﹣x1x2=2k2,即1﹣k=2k2,解得k=﹣1或.当k=时,△=1﹣2<0,方程没有实数根,应舍去.∴取k=﹣1.故本题选A.9.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大3D.有一正根一负根且负根绝对值大【解答】解:∵a>0,b<0,c<0,∴△=b2﹣4ac>0,<0,﹣>0,∴一元二次方程ax2+bx+c=0有两个不相等的实数根,且两根异号,正根的绝对值较大.故选:C.10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M 的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1【解答】解:A、在方程ax2+bx+c=0中△=b2﹣4ac,在方程cx2+bx+a=0中△=b2﹣4ac,∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;B、∵“和符号相同,和符号也相同,∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;C、∵5是方程M的一个根,∴25a+5b+c=0,∴a +b +c=0,∴是方程N的一个根,正确;D、M﹣N得:(a﹣c)x2+c﹣a=0,即(a﹣c)x2=a﹣c,∵a﹣c≠1,∴x2=1,解得:x=±1,错误.故选D.11.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则4(m+2)(n+2)的最小值是()A.7B.11C.12D.16【解答】解:∵m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,∴m+n=2t,mn=t2﹣2t+4,∴(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7.∵方程有两个实数根,∴△=(﹣2t)2﹣4(t2﹣2t+4)=8t﹣16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.故选D.12.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.【解答】解:方法1、∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a<,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a>﹣,∴﹣<a<0,故选D.二.填空题(共8小题)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是﹣3.【解答】解:∵x1,x2是关于x的方程x2﹣2x﹣5=0的两根,∴x12﹣2x1=5,x1+x2=2,∴x12﹣3x1﹣x2﹣6=(x12﹣2x1)﹣(x1+x2)﹣6=5﹣2﹣6=﹣3.故答案为:﹣3.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故答案为:.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=±4.【解答】解:由题意可得|m|﹣2=2,解得,m=±4.故答案为:±4.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=8.【解答】解:x2+6x+9=8,(x+3)2=8.所以q=8.故答案为8.17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是4.【解答】解:∵关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,∴m﹣1≠0且△=(﹣3)2﹣4(m﹣1)>0,解得m<且m≠1,,∵解不等式组得,而此不等式组的解集是x<﹣1,∴m≥﹣1,∴﹣1≤m<且m≠1,∴符合条件的整数m为﹣1、0、2、3.故答案为4.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为2.【解答】解:由已知得:△=b2﹣4ac=22﹣4(m﹣2)≥0,即12﹣4m≥0,解得:m≤3,∴偶数m的最大值为2.故答案为:2.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为1米.【解答】解:设人行道的宽度为x米(0<x<3),根据题意得:(18﹣3x)(6﹣2x)=60,整理得,(x﹣1)(x﹣8)=0.解得:x1=1,x2=8(不合题意,舍去).即:人行通道的宽度是1米.故答案是:1.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△>0(填:“>”或“=”或“<”).【解答】解:∵次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴△=(﹣2)2﹣4(kb+1)=﹣4kb>0.故答案为>.三.解答题(共8小题)21.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.【解答】解:(1)x2﹣14x+49=57,(x﹣7)2=57,x﹣7=±,所以x1=7+,x2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121,x=,所以x1=9,x2=﹣2;(3)(2x+3)2﹣4(2x+3)=0,(2x+3)(2x+3﹣4)=0,2x+3=0或2x+3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.22.关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.【解答】解:(1)将x=﹣1代入原方程得m﹣1+1﹣2=0,解得:m=2.当m=2时,原方程为x2﹣x﹣2=0,即(x+1)(x﹣2)=0,∴x1=﹣1,x2=2,∴方程的另一个根为2.(2)∵方程(m﹣1)x2﹣x﹣2=0有两个不同的实数根,∴,解得:m>且m≠1,∴当m>且m≠1时,方程有两个不同的实数根.23.关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.【解答】解:(1)根据题意△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,解得a≤且a≠6,所以a的最大整数值为7;(2)①当a=7时,原方程变形为x2﹣8x+9=0,△=64﹣4×9=28,∴x=,∴x1=4+,x2=4﹣;②∵x2﹣8x+9=0,∴x2﹣8x=﹣9,所以原式=2x2﹣=2x2﹣16x+=2(x2﹣8x)+=2×(﹣9)+=﹣.24.关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.【解答】解:(1)∵原方程有两个不相等的实数根,∴△=[﹣(2k﹣3)]2﹣4(k2+1)=4k2﹣12k+9﹣4k2﹣4=﹣12k+5>0,解得:k<;(2)∵k<,∴x1+x2=2k﹣3<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=﹣2k+3,∵x1x2+|x1|+|x2|=7,∴k2+1﹣2k+3=7,即k2﹣2k﹣3=0,∴k1=﹣1,k2=2,又∵k<,∴k=﹣1.25.某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.【解答】解:(1)设一次函数解析式为y=kx+b,把(90,100),(100,80)代入y=kx+b得,,解得,,y与销售单价x之间的函数关系式为y=﹣2x+280.(2)根据题意得:w=(x﹣80)(﹣2x+280)=﹣2x2+440x﹣22400=1350;解得(x﹣110)2=225,解得x1=95,x2=125.答:销售单价为95元或125元.26.如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.【解答】解:(1)设通道的宽度为x米.由题意(60﹣2x)(40﹣2x)=1500,解得x=5或45(舍弃),答:通道的宽度为5米.(2)设种植“四季青”的面积为y平方米.由题意:y(30﹣)=2000,解得y=100,答:种植“四季青”的面积为100平方米.27.某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?【解答】22.(1)假设甲种商品的进货单价为x元、乙种商品的进货单价为y元,根据题意可得:,解得:.答:甲、乙零售单价分别为2元和3元.(2)根据题意得出:(1﹣m)(500+×100)+500=1000即2m2﹣m=0,解得m=0.5或m=0(舍去),答:当m定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1000元.28.已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别为x1,x2.(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.【解答】解(1)∵△=(m+6)2﹣4(3m+9)=m2≥0∴该一元二次方程总有两个实数根(2)动点P(m,n)所形成的函数图象经过点A(1,16),∵n=4(x1+x2)﹣x1x2=4(m+6)﹣(3m+9)=m+15∴P(m,n)为P(m,m+15).∴A(1,16)在动点P(m,n)所形成的函数图象上.。
2017年中考数学复习 一元二次方程专练 公式法解一元二次方程专项练习106题
公式法解一元二次方程1.2x2﹣7x+3=0(公式法)2.2t2﹣t﹣3=0,3.2x2﹣7x+4=0.4.2x2+2x=15.5y+2=3y2.6.x2+3x﹣4=0 7. 2x2﹣4x﹣1=08.2x2﹣x﹣2=0.9.2x2﹣5x+1=0.10.x2﹣1=4x.11.x2+3x﹣3=0 12.3x2﹣4x﹣2=0.13.x2+x﹣4=0.14.2x2﹣6x+3=0.15.2x2﹣3x﹣1=0.16.2x2﹣2x﹣1=0 17.3x2﹣4x﹣1=0.18.2x2﹣x﹣4=019.2x2+x﹣2=020.3x2+6x﹣4=021.x2﹣x﹣3=0.22.3x2+4x﹣4=0,23.(3x﹣1)(x+2)=11x﹣4.24.2x2﹣5x﹣1=0.25..26.3x2+4x+5=0.28.x2﹣x﹣4=0.29..30.2x2﹣2x﹣1=031.3x2+7x+10=1﹣8x.32.5x2﹣3x+2=0.33. 5x2﹣3x=x+1134.x2+3x+1=0,236.5x2﹣3x=x+1.37.3x2+7x+4=038.2x2﹣3x﹣1=0(用公式法)39.3x2+5x+1=0;40.x2﹣4x+1=041. x2﹣4x+5=042. x2+5x+3=0 44.3x2+4x+1=045.x2﹣4x﹣8=046.2x2﹣x﹣2=047.3x2+2(x﹣1)=0.48.x2﹣4x﹣7=049.y2﹣2y﹣4=050.x2﹣3x=2352.x 2x+1=0 53.2x2﹣9x+8=0;54. x2﹣6x+1=0;55. x2+x﹣1=0;56. 2x2﹣6x+3=0;57.2x(x+4)=1 58.3x2+5(2x+1)=0.60.3x2﹣6x﹣4=061.x2+2x﹣5=062.x2﹣4x﹣3=063.4x2﹣3x﹣1=063. x2+2x﹣2=0;64. y2﹣3y+1=0;65. x2+3=2x.466.x2﹣4x=﹣367. 3x2﹣2x﹣1=0;68.;69. 2x2﹣7x+5=0;70. 2x2﹣7x﹣18=0.71. (x+1)(x+3)=6x+4;73. x2﹣(2m+1)x+m=0.74. x(x+8)=16,75. x2﹣4x=4;76. 2x2﹣2x+1=0,77. 5x2+2x﹣1=078. 6y2+13y+6=079. 3•x2+6x+9=780. 2x2﹣3x+1=0;81. 2y(y﹣1)+3=(y+1)2.82. x2=3x+1;583. (t+1)(t﹣3)=﹣t(3﹣3t).84.x2﹣2ax﹣b2+a2=0.85. 3x2=2﹣5x;86. y2﹣4y=1;87. (x+1)(x﹣1)=2x.88.(2x﹣1)2﹣7=3(x+1);89.x2﹣6x+11=090 . 5x2﹣8x+2=0.91.x2﹣3x+1=0.92.x2=5﹣12x93. x2+x﹣1=094.3x2﹣4x﹣1=095.3x2+2(x﹣1)=0,96.97.3x2﹣4x﹣1=098.699. .101.2x2+5x﹣1=0.102.2x2﹣x﹣1=0.103..104.3x2+5x﹣1=0.105.5x2﹣8x+2=0,106.3x2+7x+10=1﹣8x,7公式法解一元二次方程106题参考答案:1.2x2﹣7x+3=0(公式法)a=2,b=﹣7,c=3,∴b2﹣4ac=(﹣7)2﹣4×2×3=49﹣24=25>0,方程有两个不相等的实数根,即:,x1=3,2.2t2﹣t﹣3=0,∵a=2,b=﹣1,c=﹣3,∴x===,3.2x2﹣7x+4=0.∵a=2,b=﹣7,c=4,b2﹣4ac=49﹣32=17,∴x==,∴,∴x1=,x2=4.2x2+2x=1由原方程,得2x2+2x﹣1=0,∴该方程的二次项系数a=2,一次项系数b=2,常数项c=﹣1;∴x===,∴x1=,x2=5.5y+2=3y2.移项,3y2﹣5y﹣2=0,a=3,b=﹣5,c=﹣2,b2﹣4ac=(﹣5)2﹣4×3×(﹣2)=49>0,∴x=,∴x1=2,x2=﹣;6.x2+3x﹣4=0a=1,b=3,c=﹣4,△=9+4×1×4=25>0,∴x==,∴x1=﹣4,x2=1.7. 2x2﹣4x﹣1=0a=2,b=﹣4,c=﹣1,△=16+4×2=24>0,∴x==1±,∴x1=1+,x2=1﹣8.2x2﹣x﹣2=0.∵a=2,b=﹣1,c=﹣2,∴b2﹣4ac=17>0∴x=.即x1=,x2=9.2x2﹣5x+1=0.∵a=2,b=﹣5,c=1,∴b2﹣4ac=17,∴x=,∴x1=,x2=10.x2﹣1=4x.原方程化为一般式:x2﹣4x﹣1=0.∵a=1,b=﹣4,c=﹣1,∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣1)=20,∴x===2±,∴x1=2+,x2=2﹣11.x2+3x﹣3=0a=1,b=3,c=﹣3;∵b2﹣4ac=9+12=21>0∴=∴,12.3x2﹣4x﹣2=0.a=3,b=﹣4,c=﹣2,△=b2﹣4ac=(﹣4)2﹣4×3×(﹣2)=40>0,8x==,x1=,x2=13.x2+x﹣4=0.∴x==,∵x1=﹣2,x2=.14.2x2﹣6x+3=0.∵a=2,b=﹣6,c=3∴x=∴x1=,x2=;15.2x2﹣3x﹣1=0.a=2,b=﹣3,c=﹣1,∴△=9+8=17,∴x=,x1=,x2=16.2x2﹣2x﹣1=0a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=17.3x2﹣4x﹣1=0.∵一元二次方程3x2﹣4x﹣1=0的二次项系数a=3,一次项系数b=﹣4,常数项c=﹣1,∴x===,∴x1=,x2=18.2x2﹣x﹣4=0∵2x2﹣x﹣4=0,∴=,∴x1=,19.2x2+x﹣2=0∵a=2,b=1,c=﹣2(1分)∵b2﹣4ac=12﹣4×2×(﹣2)=17>0(2分)∴(4分)∴,20.3x2+6x﹣4=0∵a=3,b=6,c=﹣4,∴b2﹣4ac=62﹣4×3×(﹣4)=84,∴x==,即x1=,x2=﹣21.x2﹣x﹣3=0.∵a=1,b=﹣1,c=﹣3,∴△=(﹣1)2﹣4×1×(﹣3)=13>0,∴x==,∴x1=,x2=.22.3x2+4x﹣4=0,这里a=3,b=4,c=﹣4,b2﹣4ac=42﹣4×3×(﹣4)=64,x=,x1=,x2=﹣223.(3x﹣1)(x+2)=11x﹣4.3x2+6x﹣x﹣2=11x﹣4,整理得3x2﹣6x+2=0,∵△=(﹣6)2﹣4×3×2=12,∴x==∴x1=,x2=24.2x2﹣5x﹣1=0.2x2﹣5x﹣1=0,∵b2﹣4ac=(﹣5)2﹣4×2×(﹣1)=33,∴x=,即x1=,x2=25..∵a=1,b=,c=﹣20,b2﹣4ac=()2﹣4×1×(﹣20)=100>0,∴x=,910x=,解得x 1=﹣+5,x 2=﹣﹣5.26.3x 2+4x+5=0.∵△=42﹣4×3×5=﹣44<0, ∴方程没有实数根.27.x 2﹣4x ﹣2=0.∵a=1,b=﹣4,c=﹣2,∴△=(﹣4)2﹣4×1×(﹣2)=4×6, ∴x===2±,∴x 1=2+,x 2=2﹣.28.x 2﹣x ﹣4=0. a=1,b=﹣1,c=﹣4. b 2﹣4ac=1+16=17>0. ∴=∴x 1=,x 2=29.. 由原方程,得 t 2+2t ﹣2=0,这里a=1,b=2,c=2. 则t===﹣,即t 1=t 2=﹣30.2x 2﹣2x ﹣1=0∵a=2,b=﹣2,c=﹣1, ∴b 2﹣4ac=(﹣2)2﹣4×2×(﹣1)=12, ∴x===,∴x 1=,x 2=31.3x 2+7x+10=1﹣8x .原方程可化为x 2+5x+3=0,解得:32.5x 2﹣3x+2=0. ∵b 2﹣4ac=(﹣3)2﹣4×5×2<0, ∴此方程无解33. 5x 2﹣3x=x+11(公式法) 5x 2﹣3x=x+11,整理得:5x 2﹣4x ﹣11=0, 这里a=5,b=﹣4,c=﹣11,∵△=16+220=236, ∴x==, 则x 1=,x 2=34.x 2+3x+1=0,这里a=1,b=3,c=1,∵△=b 2﹣4ac=9﹣4=5, ∴x=, 则x 1=,x 2=35.4x 2=2x+1移项得:4x 2﹣2x ﹣1=0,∵b 2﹣4ac=(﹣2)2﹣4×4×(﹣1)=20, ∴x==, ∴x 1=,x 2=36.5x 2﹣3x=x+1.方程化简为:5x 2﹣4x ﹣1=0, 这里a=5,b=﹣4,c=﹣1,∵△=b 2﹣4ac=(﹣4)2﹣4×5×(﹣1)=36>0, ∴x==,∴x 1=1,x 2=﹣. 37.3x 2+7x+4=0 3x 2+7x+4=0,∵a=3,b=7,c=4,∴b 2﹣4ac=49﹣48=1>0, ∴x=,∴x 1=﹣1,x 2=﹣.38.2x 2﹣3x ﹣1=0(用公式法) ∵a=2,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×2×(﹣1)=17, ∴x==,所以x 1=,x 2=39.3x 2+5x+1=0;∵原方程的二次项系数a=3,一次项系数b=5,常数项c=1,∴原方程的根是: x==,即x=;40.x2﹣4x+1=0a=1,b=﹣4,c=1,∴x====2±;41. x2﹣4x+5=0a=1,b=﹣4,c=5,∵△=b2﹣4ac=16﹣20=﹣4<0,∴次方程无解.42. x2+5x+3=0a=1,b=5,c=3,∴x===43.2x2﹣3x﹣6=0.这里a=2,b=﹣3,c=﹣6,∵△=b2﹣4ac=9+48=57,∴x=,则x1=,x2=44.3x2+4x+1=0(用公式法)∵二次项系数a=3,一次项系数b=4,常数项c=1,∴△=b2﹣4ac=42﹣4×3×1=4>0∴x==∴x1=﹣1 x2=﹣;45.x2﹣4x﹣8=0(公式法)∵方程x2﹣4x﹣8=0的二次项系数a=1、一次项系数b=﹣4、常数项c=﹣8,∴x===2±2,∴x1=2+2,x2=2﹣2;46.2x2﹣x﹣2=0a=2,b=﹣1,c=﹣2,∵b2﹣4ac=(﹣1)2﹣4×2×(﹣2)=1+16=17>0,∴x==,∴x1=,x2=47.3x2+2(x﹣1)=0.整理得,3x2+2x﹣2=0,∵a=3,b=2,c=﹣2,△=b2﹣4ac=4+24=28,x==,解得x1=,x2=48.x2﹣4x﹣7=0∵x2﹣4x﹣7=0的二次项系数是a=1、一次项系数是b=﹣4、常数项是c=﹣7,∴x===2±,∴x1=2+,x2=2﹣49.y2﹣2y﹣4=0(公式法)由原方程知,二次项系数a=1,一次项系数b=﹣2,常数项c=﹣4,∴x==,∴,∴x1=1+,x2=1﹣;50.x2﹣3x=2x2﹣3x﹣2=0,∵a=1,b=﹣3,c=﹣2,∴x===,∴x1=,x2=51.2x2+x ﹣=0.∵关于x的一元二次方程2x2+x ﹣=0的二次项系数a=2,一次项系数b=1,常数项c=﹣,∴原方程的根是:=,即x=52.x 2x+1=0这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣153.2x2﹣9x+8=0;∵a=2,b=﹣9,c=8∴x=,x1=,x2=;54. x2﹣6x+1=0;∵a=1,b=﹣6,c=1∴x=,∴x1=3+2,x2=3﹣2;55. x2+x﹣1=0;∵a=1,b=1,c=﹣1,∴x==;56. 2x2﹣6x+3=0;∵a=2,b=﹣6,c=3,∴x===;57.2x(x+4)=12x2+8x﹣1=0,∵a=2,b=8,c=﹣1,△=b2﹣4ac=64+8=72,∴x===.即x1=,x2=58.3x2+5(2x+1)=0.3x2+5(2x+1)=0,整理得:3x2+10x+5=0,∵a=3,b=10,c=5,∴b2﹣4ac=100﹣60=40>0,∴x==,则原方程的解为x1=,x2=59.2x2﹣4x﹣1=0(公式法)解:这里a=2,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×2×(﹣1)=24,∴x==,∴x1=,x2=60.3x2﹣6x﹣4=0(公式法)3x2﹣6x﹣4=0,这里a=3,b=﹣6,c=﹣4,∵b2﹣4ac=36+48=84>0,∴x==,则x1=,x2=61.x2+2x﹣5=0∵a=1,b=2,c=﹣5,b2﹣4ac=24,∴x==﹣1,即x1=,x2=﹣1.62.x2﹣4x﹣3=0由题意得:a=1,b=﹣4,c=﹣3,∴x====2±63.4x2﹣3x﹣1=0a=4,b=﹣3,c=﹣1,△=9+16=25x==∴x1=1,x2=﹣.63. x2+2x﹣2=0;这里a=1,b=2,c=﹣2,∵b2﹣4ac=22﹣4×1×(﹣2)=12>0,∴x==﹣1,∴x1=﹣1+,x2=﹣1﹣;64. y2﹣3y+1=0;这里a=1,b=﹣3,c=1.∵b2﹣4ac=(﹣3)2﹣4×1×1=5>0,y=,∴y1=,y2=;65. x2+3=2x.移项,得x2﹣2x+3=0,这里a=1,b=﹣2,c=3∵b2﹣4ac=(﹣2)2﹣4×1×3=﹣4<0.∴原方程没有实数根66.x2﹣4x=﹣3移项,得x2﹣4x+3=0.∵a=1,b=﹣4,c=3,∴b2﹣4ac=(﹣4)2﹣4×1×3=4>0,∴x==,∴x1=1,x2=367. 3x2﹣2x﹣1=0;∵a=3,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×3×(﹣1)=16,∴x===,∴x1=1,x2=﹣.68.;∵a=2,b=﹣1,c=﹣,∴b2﹣4ac=(﹣1)2﹣4×2×(﹣)=5,∴x==,∴x1=,x2=.69. 2x2﹣7x+5=0;∵a=2,b=﹣7,c=5,∴b2﹣4ac=(﹣7)2﹣4×2×5=9,∴x==,∴x1=,x2=1.70. 2x2﹣7x﹣18=0.∵a=2,b=﹣7,c=﹣18,∴b2﹣4ac=(﹣7)2﹣4×2×(﹣18)=193,∴x==,∴x1=,x2=71. (x+1)(x+3)=6x+4;去括号,移项方程化为一般式为:x2﹣2x﹣1=0,∵a=1,b=﹣2,=﹣1,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8∴x===1±,∴x1=1+,x2=1﹣;72. x2+2(+1)x+2=0;∵a=1,b=2(+1),c=2,∴b2﹣4ac=[2(+1)]2﹣4×1×2=16,∴x===﹣(+1)±2,∴x1=﹣﹣3,x2=﹣+1;73. x2﹣(2m+1)x+m=0.∵a=1,b=﹣(2m+1),c=m,∴b2﹣4ac=[﹣(2m+1)]2﹣4×1×m=4m2+1,∴x=,∴x1=,x2=74. x(x+8)=16,x2+8x﹣16=0,a=1,b=8,c=﹣16,b2﹣4ac=82﹣4×1×(﹣16)=128>0,x=,x1=﹣4+4,x2=﹣4﹣4;75. x2﹣4x=4;x2﹣4x﹣4=0;a=,b=﹣4,c=﹣4,b2﹣4ac=(﹣4)2﹣4××(﹣4)=48>0,x==±,x1=+,x2=﹣;76. 2x2﹣2x+1=0,a=2,b=﹣2,c=1,b2﹣4ac=(﹣2)2﹣4×2×1=0,x1=x2=.77. 5x2+2x﹣1=0∵a=5,b=2,c=﹣1,∴△=b2﹣4ac=4+4×5×1=24>0∴x1•x2=∴x1=.78. 6y2+13y+6=0∵a=6,b=13,c=6,∴△=b2﹣4ac=169﹣4×6×6=25>0∴x=∴x1=﹣,x2=﹣.79. 3•x2+6x+9=7整理,得:x2+6x+2=0∴a=1,b=6,c=2∴△=b2﹣4ac=36﹣4×1×2=28>0∴x1•2==﹣3±∴x1=﹣3+,x2=﹣3﹣.80. 2x2﹣3x+1=0;根据原方程,得a=2,b=﹣3,c=1,∵b2﹣4ac=9﹣4×2×1=1>0,∴x=,x==.∴x1=1,x2=;81. 2y(y﹣1)+3=(y+1)2.由原方程,得2y2﹣2y+3=y2+2y+1,即y2﹣4y+2=0,∴a=1,b=﹣4,c=2.b2﹣4ac=(﹣4)2﹣4×1×2=8>0.∴x=x==∴x1=2+,x2=2﹣.82. x2=3x+1;方程化为x2﹣3x﹣1=0,∴a=1,b=﹣3,c=﹣1,b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13.∴x1=.83. (t+1)(t﹣3)=﹣t(3﹣3t).方程化为2t2﹣t+3=0,a=2,b=﹣1,c=3b2﹣4ac=1﹣4×2×3=﹣23<0,∴原方程无实数根84.x2﹣2ax﹣b2+a2=0.∵a=1,b=﹣2a,c=﹣b2+a2∴b2﹣4ac=4a2+4b2﹣4a2=4b2∴x==a±|b|.85. 3x2=2﹣5x;a=3,b=5,c=﹣2b2﹣4ac=52﹣4×3×(﹣2)=25+24=49>0.x==.所以x1=﹣2,x2=.86. y2﹣4y=1;原方程变形为:3y2﹣8y﹣2=0.a=3,b=﹣8,c=﹣2.b2﹣4ac=(﹣8)2﹣4×3×(﹣2)=64+24=88.x==.所以x1=,x2=.87. (x+1)(x﹣1)=2x.原方程变形x2﹣2x﹣1=0.a=1,b=﹣2,c=﹣1.b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8+4=12>0.所以x==.故x1=+,x2=﹣.88.(2x﹣1)2﹣7=3(x+1);整理,得4x2﹣7x﹣9=0,因为a=4,b=﹣7,c=﹣9.所以x=89.x2﹣6x+11=0由原方程,知a=,b=﹣6,c=11将其代入求根公式x=,得x=,∴原方程的根是:x1=4,x2=90 . 5x2﹣8x+2=0.这里a=5,b=﹣8,c=2,∵b2﹣4ac=64﹣40=24>0,∴x==,则x1=,x2=.91.x2﹣3x+1=0.x2﹣3x+1=0,这里a=1,b=﹣3,c=1,∵b2﹣4ac=(﹣3)2﹣4×1×1=9﹣4=5>0,∴x==,则x1=,x2=92.x2=5﹣12x方程化为一般形式为:x2+12x﹣5=0,∴a=1,b=12,c=﹣5,∴△=122﹣4×1×(﹣5)=4×41>0,∴x===﹣6±,所以x1=﹣6+,x2=﹣6﹣.93. x2+x﹣1=0解:x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,∴x1=,x2=.94.3x2﹣4x﹣1=0解:3x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴原方程的解是:x1=,x2=,这里a=2,b=﹣2,c=1,∴b2﹣4ac=﹣4×2×1=4,∴x==,∴x1=,x2=,∴原方程的解是x1=,x2=95.3x2+2(x﹣1)=0,整理得:3x2+2x﹣2=0,这里a=3,b=2,c=﹣2,∵△=b2﹣4ac=4+24=28,∴x==,则x1=,x2=96.方程整理得:x2﹣2x+1=0,这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣1.97.3x2﹣4x﹣1=03x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=16+12=28>0,∴x==,则x1=,x2=98.2x2﹣x+1=0a=2,b=﹣,c=1△=10﹣8=2x=∴x1=,x2=99. .解:整理得:x2﹣2x﹣1=0,∴b2﹣4ac=﹣4×1×(﹣1)=12,∴x==±,∴x1=+,x2=﹣100.3x2﹣4x﹣1=0.3x2﹣4x﹣1=0,a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴x1=,x2=101.2x2+5x﹣1=0.∵a=2,b=5,c=﹣1,△=b2﹣4ac=25+8=33,∴x===.即x1=,x2=102.2x2﹣x﹣1=0.∵原方程的二次项系数a=2,一次项系数b=﹣1,常数项c=﹣1,∴x===,∴x1=1,x2=﹣.103..∵a=2,b=﹣,c=﹣,∴△=(﹣)2﹣4×2×(﹣)=6>0,x==.104.3x2+5x﹣1=0.∵一元二次方程3x2+5x﹣1=0的二次项系数a=3,一次项系数b=5,常数项c=﹣1,∴x===,∴x1=,x2=.105.5x2﹣8x+2=0,a=5,b=﹣8,c=2,b2﹣4ac=(﹣8)2﹣4×5×2=24>0,x==,x1=,x2=.106.3x2+7x+10=1﹣8x,整理得:x2+5x+3=0,解得:x==,即:x1=,x2=;。
中考数学备考培优专题卷:《一元二次方程》(解析版)
培优专题卷:《一元二次方程》一.选择题1.一元二次方程x2=x的实数根是()A.0或1 B.0 C.1 D.±1 2.关于一元二次方程x2﹣2x+1﹣a=0无实根,则a的取值范围是()A.a<0 B.a>0 C.a<D.a>3.若x1和x2为一元二次方程x2+2x﹣1=0的两个根.则x12x2+x1x22值为()A.4B.2 C.4 D.34.已知当x>0时,反比例函数y=的函数值随自变量的增大而减小,此时关于x的方程x2﹣2(k+1)x+k2﹣1=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定5.已知一元二次方程x2+kx﹣5=0有一个根为1,k的值为()A.﹣2 B.2 C.﹣4 D.46.菱形ABCD的一条对角线长为6cm,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD 的周长等于()A.10cm B.12 cm C.16cm D.12cm或16cm 7.九江某快递公司随着网络的发展,业务增长迅速,完成快递件数从六月份的10万件增长到八月份的12.1万件.假定每月增长率相同,设为x.则可列方程为()A.10x+x2=12.1 B.10(x+1)=12.1C.10(1+x)2=12.1 D.10+10(1+x)=12.18.一件商品标价100元,连续两次降价后的价格为81元,则两次平均降价的百分率是()A.10% B.15% C.18% D.20%9.某校准备修建一个面积为200平方米的矩形活动场地,它的长比宽多12米,设场地的宽为x米,根据题意可列方程为()A.x(x﹣12)=200 B.2x+2(x﹣12)=200C.x(x+12)=200 D.2x+2(x+12)=20010.如图所示,在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图.如果要使整幅挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .x 2+130x ﹣1400=0B .x 2+65x ﹣350=0C .x 2﹣130x ﹣1400=0D .x 2﹣65x ﹣350=0二.填空题11.已知一个一元二次方程x 2﹣7x +1=0,设方程的两个根为x 1,x 2,则x 1﹣x 2= . 12.已知关于x 的方程(x ﹣2)2﹣4|x ﹣2|﹣k =0有四个根,则k 的范围为 . 13.若a ,b 是关于x 的方程(x +c )(x +d )=1的两根,则(a +c )(b +c )= . 14.方程x 2﹣4x +3a 2﹣1=0在区间[﹣1,1]上有实根,则实数a 的取值范围为 . 15.工人师傅童威准备在一块长为60,宽为48的长方形花圃内修建四条宽度相等,且与各边垂直的小路.四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的8倍.若四条小路所占面积为160.设小路的宽度为x ,依题意列方程,化为一般形式为 .16.已知a 是方程2x 2﹣x ﹣4=0的一个根,则代数式4a 2﹣2a +1的值为 . 17.某种药原来每瓶售价为40元,经过两次降价,现在每瓶售价为25.6元,若设平均每次降低的百分率为x ,根据题意列出方程为 .18.2018﹣2019赛季中国男子篮球职业联赛(CBA ),继续采用双循环制(每两队之间都进行两场比赛),总比赛场数为380场.求有多少支队伍参加比赛?设参赛队伍有x 支,则可列方程为 .三.解答题19.用适当的方法解下列方程:(1)x2﹣6x﹣6=0(2)2x2﹣x﹣15=020.已知关于x的方程x2﹣4x+m+2=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为满足条件的最大整数,求方程的根.21.先仔细阅读材料,再尝试解决问题:我们在求代数式x2﹣2x+3的最大或最小值时,通过利用公式a2±2ab+b2=(a±b)2对式子作如下变形:x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2,因为(x﹣1)2≥0,所以(x﹣1)2+2≥2,因此(x﹣1)2+2有最小值2,所以,当x=1时,(x﹣1)2+2=2,x2﹣2x+3的最小值为2.同理,可以求出﹣x2﹣4x+3的最大值为7.通过上面阅读,解决下列问题:(1)填空:代数式x2+4x+5的最小值为;代数式﹣2x2+2x+7的最大值为;(2)求代数式的最大或最小值,并写出对应的x的取值;(3)求代数式x2+mx+m2﹣x﹣2m的最大或最小值,并写出对应的x、m的值.22.某农场今年第一季度的产值为50万元,第二季度由于改进了生产方法,产值提高了20%;但在今年第三、第四季度时该农场因管理不善.导致其第四季度的产值与第二季度的产值相比下降了11.4万元.(1)求该农场在第二季度的产值;(2)求该农场在第三、第四季度产值的平均下降的百分率.23.某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元.(1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款;(2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.参考答案一.选择题1.解:方程整理得:x 2﹣x =0, 分解因式得:x (x ﹣1)=0, 解得:x =0或x =1, 故选:A .2.解:∵一元二次方程x 2﹣2x +1﹣a =0无实根, ∴△=(﹣2)2﹣4×1×(1﹣a )<0, 解得,a <0, 故选:A .3.解:∵x 1,x 2是一元二次方程x 2+2x ﹣1=0的两个根, ∴x 1+x 2=﹣2,x 1x 2=﹣1,x 12x 2+x 1x 22=x 1x 2(x 1+x 2)=2.故选:B .4.解:∵当x >0时,反比例函数y =的函数值随自变量的增大而减小, ∴k >0,∵x 2﹣2(k +1)x +k 2﹣1=0,∴△=[﹣2(k +1)]2﹣4×1×(k 2﹣1)=8k +8>0,∴关于x 的方程x 2﹣2(k +1)x +k 2﹣1=0有两个不相等的实数根, 故选:C .5.解:把x =1代入方程得1+k ﹣5=0, 解得k =4. 故选:D .6.解:解方程x 2﹣7x +12=0得:x =3或4, 即AB =3或4, ∵四边形ABCD 是菱形, ∴AB =AD =DC =BC ,当AD =DC =3cm ,AC =6cm 时,3+3=6,不符合三角形三边关系定理,此时不行; 当AD =DC =4cm ,AC =6cm 时,符合三角形三边关系定理, 即此时菱形ABCD 的周长是4×4=16, 故选:C .7.解:设每月增长率为x , 根据题意得:10(1+x )2=12.1. 故选:C .8.解:设平均每次降价的百分率为x ,根据题意列方程得: 100×(1﹣x )2=81,解得x 1=0.1=10%,x 2=1.9(不符合题意,舍去), 故选:A .9.解:设场地的宽为x 米,则长为(x +12)米, 根据题意得:x (x +12)=200, 故选:C .10.解:依题意,设金色纸边的宽为xcm , (80+2x )(50+2x )=5400, 整理,得x 2+65x ﹣350=0. 故选:B .二.填空题(共8小题)11.解:由题可知:x 1+x 2=7,x 1x 2=1, ∴(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2, ∴(x 1﹣x 2)2=49﹣4=45, ∴|x 1﹣x 2|=3, ∴x 1﹣x 2=±3, 故答案为:12.解:∵关于x 的方程(x ﹣2)2﹣4|x ﹣2|﹣k =0有四个根, (x ﹣2)2﹣4(x ﹣2)﹣k =0有两个不同根, ∴△=16+4k >0,即k >﹣4, 且两根的积为正数,即﹣k >0, ∴k <0,∴k 的范围为﹣4<k <0; 故答案为:﹣4<k <0. 13.解:∵(x +c )(x +d )=1, ∴x 2+(c +d )x +cd ﹣1=0,∴由根与系数的关系可知:a +b =﹣(c +d ),ab =cd ﹣1, ∴(a +c )(b +c )=ab +(a +b )c +c 2=cd ﹣1﹣(c +d )c +c 2=﹣1 故答案为:﹣114.解:设f (x )=x 2﹣4x +3a 2﹣1,∵方程x 2﹣4x +3a 2﹣1=0在区间[﹣1,1]上有实根, ∴f (﹣1)•f (1)=(3a 2+4)(3a 2﹣4)≤0, ∵3a 2+4>0, ∴3a 2﹣4≤0, ∴a 2≤,∴实数a 的取值范围是﹣≤a ≤;故答案为:﹣≤a ≤.15.解:设小路的宽度为x 米,则小正方形的边长为4x 米, 依题意得:(60+8x +48+8x )x =160整理得:4x2+27x﹣40=0,故答案为:4x2+27x﹣40=0.16.解:∵a是方程2x2=x+4的一个根,∴2a2﹣a=4,∴4a2﹣2a+1=2(2a2﹣a)+1=2×4+1=9.故答案为:9.17.解:设平均每次降低的百分率为x,根据题意得:40(1﹣x)2=25.6.故答案是:40(1﹣x)2=25.6.18.解:设参赛队伍有x支,则x(x﹣1)=380.故答案为:x(x﹣1)=380.三.解答题(共5小题)19.解:(1)∵a=1,b=﹣6,c=﹣6,∴△=(﹣6)2﹣4×1×(﹣6)=60>0,则x==3±;(2)∵2x2﹣x﹣15=0,∴(x﹣3)(2x+5)=0,则x﹣3=0或2x+5=0,解得x=3或x=﹣2.5.20.解:(1)∵关于x的方程x2﹣4x+m+2=0有两个不相等的实数根,∴b2﹣4ac=16﹣4(m+2)>0,解得:m<2;(2)∵m<2,∴m的最大整数值为:1,当m=1时,x2﹣4x+3=0,(x﹣1)(x﹣3)=0,解得:x1=1,x2=3.21.解:(1)x2+4x+5=(x+2)2+1,∴x2+4x+5的最小值为1;﹣2x2+2x+7=﹣2(x﹣)2+,∴﹣2x2+2x+7的最大值为;故答案为1,;(2)∵2x2+4x+5=2(x+1)2+3,当x=﹣1时,2x2+4x+5有最小值3,∴当x=﹣1时,有最大值;(3)x2+mx+m2﹣x﹣2m=x2+(m﹣1)x+m2﹣2m=(x+)2+,当x=时,最小值为,∵=,当m=1时有最小值为﹣1,∴当m=1时x2+mx+m2﹣x﹣2m的最小值为﹣1,∴m=1,x=0.22.(1)解:设该农场在第二季度的产值为m万元,根据题意得m=50×(1+20%)=60(万元)(2)解:设该农场在第三、第四季度产值的平均下降百分率为x,根据题意得:该农场第四季度的产值为60﹣11.4=48.6万元列方程,得:60(1﹣x)2=48.6即(1﹣x)2=0.811﹣x=±0.9解得:x1=0.1x2=1.9(不符题意,舍去)答:该农场在第三、第四季度产值的平均下降百分率为10%23.解:(1)∵50<60,∴120×50=6000元,答:这所学校需向园林公司支付的树苗款为6000元.(2)∵购买60棵树苗所需要支付的树苗款为120×60=7200元<8800元,∴该中学购买的树苗超过60棵,∴购买100棵树苗时每棵树苗的售价恰好将至100元,∵购买树苗超过100棵后,每棵树苗的售价为100元,此时所需支付的树苗款超过100000元,而100000>8800,∴该中学购买的树苗不过100棵,设购买了x(60<x≤100)棵,根据题意可知:x[120﹣0.5(x﹣60)]=8800,解得:x=220(舍去)或x=80,答:这所学校购买了80棵树苗。
知识点12 一元二次方程 2017(选择题)
一、选择题1. (2017山东滨州,2,3分)一元二次方程x 2-2x =0根的判别式的值为A .4B .2C .0D .-4答案:A ,解析:根的判别式可表示为b 2-4ac ,在这个方程中,a =1,b =-2,c =0,所以b 2-4ac =(-2)2-4×1×0=4.2. (2017山东威海,7,3分)若1- 3 是方程x 2-2x +c =0的一个根,则c 的值为( )A .-2B .4 3 -2C .3- 3D .1+ 3答案:A .解析:该方程两根之和是2,所以另一根为2-(1)=1c =(11)=-2. 3. (2017年四川绵阳,7,3分)关于x 的方程2x 2+mx +n =0的两根为-2和1,则n m 的值为A .-8B .8C .16D .-16答案:C 解析:利用根与系数的关系求解即可.4. (2017浙江舟山,8,3分)用配方法解方程0122=-+x x 时,配方结果正确的是( )A . 2)2(2=+xB .2)1(2=+xC .3)2(2=+xD .3)1(2=+x答案:B ,解析:根据完全平方式可配方,02122=-++x x ,整理的2)1(2=+x .5. (2017四川攀枝花,6,3分)关于x 的一元二次方程(m -1)x 2-2x -1=0有两个实数根,则实数m 的取值范围是( ) A .m≥0B . m >0C .m ≥0且m ≠1D .m >0且m ≠1答案:C解析:∵关于x 的一元二次方程(m -1)x 2-2x -1=0有两个实数根,∴m -1≠0且△≥0,即22-4×(m -1)×(-1)≥0,解得m ≥0,∴m 的取值范围是 m ≥0且m ≠1.故选C .6. (2017山东泰安,7,3分)一元二次方程x 2﹣6x ﹣6=0配方后化为( ) A .(x ﹣3)2=15 B .(x ﹣3)2=3C .(x +3)2=15D .(x +3)2=3答案:A ,解析:根据配方的步骤:第一步移项得662=-x x ;第二部配方,方程的左右两边都加上一次项系数一半的平方,96962+=+-x x ;第三步整理()1532=-x.7. 5.(2017四川德阳,5,3分)已知关于x 的方程0142=++-c x x 有两个相等的实数根,则常数C 的值为A .-1B .0C .1D .3答案:D ,解析:一元二次方程有两个相等实数根,则判别式为0,即Δ=0)1(4)4(2=+--c ,则可得C =3.8. 14.(2017江苏淮安,14,3分)若关于x 的一元二次方程21x x k -++=0有两个不相等的实数根,则k 的取值范围是________.答案:k <43-,解析:因为关于x 的一元二次方程21x x k -++=0有两个不相等的实数根,所以24b ac ->0,即2(1)4(1)k --+>0,解得k <43-.9. 8.(2017浙江温州,8,4分)我们知道方程的解是 x 1=1,x 2=-3,现给出另一个方程-3=0,它的解是A .x 1=1, x 2=3B .x 1=1, x 2=-3C .x 1=-1, x 2=3D .x 1=-1, x 2=-3答案:D ,解析:由题意可得:2x +1=1或-3,解得x 1=-1, x 2=-3.10. 4.(2017四川宜宾,4,3分)一元二次方程214204x x -+=的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断答案:B ,解析:根的判别式可表示为b 2-4ac ,在这个方程中a =4,b =﹣2,c =14,∴b 2-4ac =(﹣2)2-4×4×14=0,故此方程有两个相等的实数根.11. (2017山东滨州,3,3分)一元二次方程3x 2-4x +1=0的根的情况是( ) A . 没有实数根 B .只有一个实数根 C .两个相等的实数根 D .两个不相等的实数根答案:D ,解析:∵∆=(-4)2-4×3×1=4>0.∴方程有两个不相等的实数根,故选D.12. (2017江苏苏州,4,3分)关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为 A .1 B .—1 C .2 D .—2答案:A ,解析:根据一元二次方程有两个相等的实数根,即根的判别式=4401k k ∆-=⇒=.13. 3.(2017江苏扬州,,3分)一元二次方程2720x x --=的实数根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定 【答案】A【解析】用根的判别式就可判断一元二次方程根的情况,因为24b ac -=57>0, 所以方程有两个不相等的实数根.2 x11.11.21.31.4A.1B.1.1C.1.2D.1.3 【答案】C【解析】由表格中的数据可以看出0.04更接近于0,故方程的一个近似根是1.2,故选C 。
一元二次方程选择题
一元二次方程选择题1.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( )A .21185(1)580x -=B .2580(1)1185x +=C .21185(1)580x +=D .2580(1)1185x -=2.某厂1月份生产原料a 吨,以后每个月比前一个月增产x%,3月份生产原料的吨数是( )A .a (1+x )2B .a (1+x%)2C .a +a ·x%D .a +a ·(x%)23.一款手机连续两次降价,由原来的1299元降到688元,设平均每次降价的百分率为x,则列方程为A .688(1+x )2=1299B .1299(1+x )2=688C .688(1-x )2=1299D .1299(1-x )2=6884.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是( )(A )100(1+x )2=81 (B )100(1﹣x )2=81(C )100(1﹣x%)2=81 (D )100x 2=815.三角形的两边长分别为2和6,第三边是方程x 2-10x+21=0的解,则第三边的长为( )A .7B .3C .7或3D .无法确定6.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )A .%10B .%15C .20%D .%257.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为640m 2的矩形临时仓库,仓库一边靠墙,另三边用总长为80 m 的栅栏围成,若设栅栏AB 的长为xm ,则下列各方程中,符合题意的是( )A C 8,已知两次降价的百分率均为x ,则列出方程正确的是( )A .2)1(2=+x D .2)1(2=-x 9.今年以来,CPI (居民消费价格总水平)的不断上涨已成为热门话题.已知某种食品在9月份的售价为8.1元/kg ,11月的售价为10元/kg .求这种食品平均每月上涨的百分率是多少?设这食品平均每月上涨的百分率为x ,根据题意可列方程为( )A .8.1(1+2x )=10B .8.12(1)x =10C .10(1-2x )=8.1D .102(1)x =8.110.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是( )A .10%B .20%C .30 %D .40%11.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m ,求道路的宽.如果设小路宽为x ,根据题意,所列方程正确的是( )A .(20-x )(32-x )= 540B .(20-x )(32-x )=100C .(20+x )(32-x )=540D .(20+x )(32-x )= 54012.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是( )A 、2289(1-)=256xB 、2256(1-)=289xC 、289(1-2)=256xD 、256(1-2)=289x13.近几年我国物价一直上涨,已知原价为484元的新产品,经过连续两次涨价 a ﹪后,现售价为625元,则根据题意列方程,正确的是 ( )A 、484(1+ a ﹪)=625.B 、 484(1+ 2a ﹪)=625C 、484(1- a ﹪)=625.D 、484(1+ a ﹪)2 =62514.使用墙的一边,再用13m 的铁丝网围成三边,围成一个面积为20m 2的长方形,求这个长方形的两边长,设墙的对边长为x m ,可得方程( )A 、x (13-x ) =20B 、x ·=20C 、x (13- x ) =20D 、x ·=2015.在某次聚会上每两个人都握了一次手,所有人共握手28次,设有X 人参加这次聚会,则列出方程正确的是:( )A .(1)28x x -= BC .(1)28x x +=D 16.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4多植多少株?设每盆多植x 株,则可以列出的方程是 ( )A .(3+x )(4﹣0.5x )=15B .(x+3)(4+0.5x )=15C .(x+4)(3﹣0.5x )=15D .(x+1)(4﹣0.5x )=1517.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ).A .2144(1)100x -=B .2100(1)144x -=C .2144(1)100x +=D .2100(1)144x +=18.为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A .225003600x =B .22500(1)3600x += C .22500(1%)3600x +=D .22500(1)2500(1)3600x x +++= 19.某商品计划以每件600元的均价对外销售,后来为加快资金周转,对价格经过两次下调后,决定以每件486元的均价销售.则平均每次下调的百分率是( ).A .30%B .20%C .15%D .10%20.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为 ( )A .100×80﹣100x ﹣80x=7644B .(100﹣x )(80﹣x )+x 2=7644C .(100﹣x )(80﹣x )=7644D .100x+80x=35621.一件商品的标价为108元,经过两次降价后的销售价是72元,求平均每次降价的百分率。
一元二次方程经典复习题(含答案)
(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.
A.2秒钟B.3秒钟C.4秒钟D.5秒钟
6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为( )
A.x(x+12)=210B.x(x﹣12)=210
C.2x+2(x+12)=210D.2x+2(x﹣12)=210
7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是( )
一元二次方程测试题
考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育
题号
一
二
三
总分
得分
第Ⅰ卷(选择题)
评卷人
得分
一.选择题(共12小题,每题3分,共36分)
1.方程x(x﹣2)=3x的解为( )
A.x=5B.x1=0,x2=5C.x1=2,x2=0D.x1=0,x2=﹣5
2.下列方程是一元二次方程的是( )
A.ax2+bx+c=0B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0D.(x﹣1)2+1=0
3.关于x的一元二次方程x2+a2﹣1=0的一个D.3
4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是( )
一元二次方程经典复习题(含答案)
一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5ﻩB.x1=0,x2=5ﻩC.x1=2,x2=0ﻩD.x1=0,x2=﹣52.下列方程是一元二次方程的是()A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)ﻩC.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1B.1ﻩC.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是( )A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是() A.2秒钟ﻩB.3秒钟C.4秒钟 D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210ﻩC.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是( )A.有两个正根 B.有一正根一负根且正根的绝对值大C.有两个负根 D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1ﻩB.或﹣1ﻩC.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c ≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是( )A.7ﻩB.11ﻩC.12ﻩD.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1 ,那么实数a的取值范围是()<1<x2A. B. C. D.第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m=.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q= .17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为米.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△0(填:“>”或“=”或“<”).评卷人得分三.解答题(共8小题)21.(6分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)22.(6分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.23.(6分)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.(6分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?28.(10分)已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实,x2.数根分别为x1(1)求证:该一元二次方程总有两个实数根;(2)若n=4(x1+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经过点A(1,16),并说明理由.ﻬ2018年02月28日刘笑天的初中数学组卷参考答案与试题解析一.选择题(共12小题)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0ﻩD.x1=0,x2=﹣5【解答】解:x(x﹣2)=3x,x(x﹣2)﹣3x=0,x(x﹣2﹣3)=0,x=0,x﹣2﹣3=0,x1=0,x2=5,故选B.2.下列方程是一元二次方程的是()A.ax2+bx+c=0ﻩB.3x2﹣2x=3(x2﹣2) C.x3﹣2x﹣4=0 D.(x﹣1)2+1=0【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项错误;B、由原方程得到2x﹣6=0,未知数的最高次数是1,不是一元二次方程,故本选项错误;C、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确;故选D.3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1ﻩB.1ﻩC.1或﹣1ﻩD.3【解答】解:∵关于x的一元二次方程x2+a2﹣1=0的一个根是0,∴02+a2﹣1=0,解得,a=±1,故选C.4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17ﻩD.12+12(1+x)+12(1+x)2=17【解答】解:设游客人数的年平均增长率为x,则2016的游客人数为:12×(1+x),2017的游客人数为:12×(1+x)2.那么可得方程:12(1+x)2=17.故选:C.5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B 同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟ﻩB.3秒钟ﻩC.4秒钟D.5秒钟【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).答:动点P,Q运动3秒时,能使△PBQ的面积为15cm2.6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210ﻩB.x(x﹣12)=210 C.2x+2(x+12)=210D.2x+2(x﹣12)=210【解答】解:设场地的长为x米,则宽为(x﹣12)米,根据题意得:x(x﹣12)=210,故选:B.7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根B.有一正根一负根且正根的绝对值大C.有两个负根D.有一正根一负根且负根的绝对值大【解答】解:x2+bx﹣2=0,△=b2﹣4×1×(﹣2)=b2+8,即方程有两个不相等的实数根,设方程x2+bx﹣2=0的两个根为c、d,则c+d=﹣b,cd=﹣2,由cd=﹣2得出方程的两个根一正一负,由c+d=﹣b和b<0得出方程的两个根中,正数的绝对值大于负数的绝对值,故选B.8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k 的值为()A.﹣1ﻩB.或﹣1ﻩC.D.﹣或1+x2=﹣1,x1x2=k.【解答】解:根据根与系数的关系,得x12+x1x2+x22=2k2,又x1则(x1+x2)2﹣x1x2=2k2,即1﹣k=2k2,解得k=﹣1或.当k=时,△=1﹣2<0,方程没有实数根,应舍去.∴取k=﹣1.故本题选A.9.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是( )A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大【解答】解:∵a>0,b<0,c<0,∴△=b2﹣4ac>0,<0,﹣>0,∴一元二次方程ax2+bx+c=0有两个不相等的实数根,且两根异号,正根的绝对值较大.故选:C.10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是( )A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1【解答】解:A、在方程ax2+bx+c=0中△=b2﹣4ac,在方程cx2+bx+a=0中△=b2﹣4ac,∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;B、∵“和符号相同,和符号也相同,∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;C、∵5是方程M的一个根,∴25a+5b+c=0,∴a+b+c=0,∴是方程N的一个根,正确;D、M﹣N得:(a﹣c)x2+c﹣a=0,即(a﹣c)x2=a﹣c,∵a﹣c≠1,∴x2=1,解得:x=±1,错误.故选D.11.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7B.11 C.12ﻩD.16【解答】解:∵m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,∴m+n=2t,mn=t2﹣2t+4,∴(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7.∵方程有两个实数根,∴△=(﹣2t)2﹣4(t2﹣2t+4)=8t﹣16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.故选D.12.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.ﻩC. D.【解答】解:方法1、∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a<,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a>﹣,∴﹣<a<0,故选D.二.填空题(共8小题)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是﹣3.【解答】解:∵x1,x2是关于x的方程x2﹣2x﹣5=0的两根,∴x12﹣2x1=5,x1+x2=2,∴x12﹣3x1﹣x2﹣6=(x12﹣2x1)﹣(x1+x2)﹣6=5﹣2﹣6=﹣3.故答案为:﹣3.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则ba的值是.,x2是关于x的方程x2+ax﹣2b=0的两实数根,【解答】解:∵x1∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴ba=(﹣)2=.故答案为:.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m= ±4 .【解答】解:由题意可得|m|﹣2=2,解得,m=±4.故答案为:±4.16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=8 .【解答】解:x2+6x+9=8,(x+3)2=8.所以q=8.故答案为8.17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是4.【解答】解:∵关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,∴m﹣1≠0且△=(﹣3)2﹣4(m﹣1)>0,解得m<且m≠1,,∵解不等式组得,而此不等式组的解集是x<﹣1,∴m≥﹣1,∴﹣1≤m<且m≠1,∴符合条件的整数m为﹣1、0、2、3.故答案为4.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为2.【解答】解:由已知得:△=b2﹣4ac=22﹣4(m﹣2)≥0,即12﹣4m≥0,解得:m≤3,∴偶数m的最大值为2.故答案为:2.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为 1 米.【解答】解:设人行道的宽度为x米(0<x<3),根据题意得:(18﹣3x)(6﹣2x)=60,整理得,(x﹣1)(x﹣8)=0.解得:x1=1,x2=8(不合题意,舍去).即:人行通道的宽度是1米.故答案是:1.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△>0(填:“>”或“=”或“<”).【解答】解:∵次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴△=(﹣2)2﹣4(kb+1)=﹣4kb>0.故答案为>.三.解答题(共8小题)21.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.【解答】解:(1)x2﹣14x+49=57,(x﹣7)2=57,x﹣7=±,所以x1=7+,x2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121,x=,所以x1=9,x2=﹣2;(3)(2x+3)2﹣4(2x+3)=0,(2x+3)(2x+3﹣4)=0,2x+3=0或2x+3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.22.关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根. (2)当m为何值时方程有两个不同的实数根.【解答】解:(1)将x=﹣1代入原方程得m﹣1+1﹣2=0,解得:m=2.当m=2时,原方程为x2﹣x﹣2=0,即(x+1)(x﹣2)=0,∴x1=﹣1,x2=2,∴方程的另一个根为2.(2)∵方程(m﹣1)x2﹣x﹣2=0有两个不同的实数根,∴,解得:m>且m≠1,∴当m>且m≠1时,方程有两个不同的实数根.23.关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.【解答】解:(1)根据题意△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,解得a≤且a≠6,所以a的最大整数值为7;(2)①当a=7时,原方程变形为x2﹣8x+9=0,△=64﹣4×9=28,∴x=,∴x1=4+,x2=4﹣;②∵x2﹣8x+9=0,∴x2﹣8x=﹣9,所以原式=2x2﹣=2x2﹣16x+=2(x2﹣8x)+=2×(﹣9)+=﹣.24.关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.【解答】解:(1)∵原方程有两个不相等的实数根,∴△=[﹣(2k﹣3)]2﹣4(k2+1)=4k2﹣12k+9﹣4k2﹣4=﹣12k+5>0,解得:k<;(2)∵k<,∴x1+x2=2k﹣3<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=﹣2k+3,∵x1x2+|x1|+|x2|=7,∴k2+1﹣2k+3=7,即k2﹣2k﹣3=0,∴k1=﹣1,k2=2,又∵k<,∴k=﹣1.25.某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.【解答】解:(1)设一次函数解析式为y=kx+b,把(90,100),(100,80)代入y=kx+b得,,解得,,y与销售单价x之间的函数关系式为y=﹣2x+280.(2)根据题意得:w=(x﹣80)(﹣2x+280)=﹣2x2+440x﹣22400=1350;解得(x﹣110)2=225,解得x1=95,x2=125.答:销售单价为95元或125元.26.如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青”的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.【解答】解:(1)设通道的宽度为x米.由题意(60﹣2x)(40﹣2x)=1500,解得x=5或45(舍弃),答:通道的宽度为5米.(2)设种植“四季青”的面积为y平方米.由题意:y(30﹣)=2000,解得y=100,答:种植“四季青”的面积为100平方米.27.某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1000元?【解答】22.(1)假设甲种商品的进货单价为x元、乙种商品的进货单价为y元,根据题意可得:,解得:.答:甲、乙零售单价分别为2元和3元.(2)根据题意得出:(1﹣m)(500+×100)+500=1000即2m2﹣m=0,解得m=0.5或m=0(舍去),答:当m定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1000元.28.已知关于x的一元二次方程x2﹣(m+6)x+3m+9=0的两个实数根分别,x2.为x1(1)求证:该一元二次方程总有两个实数根;+x2)﹣x1x2,判断动点P(m,n)所形成的函数图象是否经(2)若n=4(x1过点A(1,16),并说明理由.【解答】解(1)∵△=(m+6)2﹣4(3m+9)=m2≥0∴该一元二次方程总有两个实数根(2)动点P(m,n)所形成的函数图象经过点A(1,16),+x2)﹣x1x2=4(m+6)﹣(3m+9)=m+15∵n=4(x1∴P(m,n)为P(m,m+15).∴A(1,16)在动点P(m,n)所形成的函数图象上.。
一元二次方程知识点总结与易错题及答案
一元二次方程知识点总结考点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次 多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
考点二、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c 。
4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式5、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和等于-a b ,二根之积等于a c ,也可以表示为x 1+x 2=-a b ,x 1 x 2=ac 。
17.1 一元二次方程的该概念 同步练习
17.1一元二次方程的该概念 同步练习一、选择题(本大题共8小题)1.下列方程是一元二次方程的是( )A..x-2=0 B .x 2-4x-1=0 C .x 2-2x-3 D .xy+1=02.把一元二次方程4)3()1(2+-=-x x x 化成一般式之后,其二次项系数与一次项分别是( )A..2,-3 B .-2,-3 C .2,-3x D .-2,-3x3.若关于x 的一元二次方程x 2+5x+m 2-1=0的常数项为0,则m 等于( ) A..1 B .2 C .1或-1 D .04.一元二次方程22(1)(1)1x a x x x -+=--化成一般式后,二次项系数为1,一次项系数为1-,则a 的值为( ).A..-1B. 1C.2D.-2 5.下列一元二次方程中常数项是0的是( )A.. 042=-x xB. 8122=xC. 12=-x xD. 642+=x x 6.把方程2(x 2+1)=5x 化成一般形式A.x 2+bx+c=0后,A.+b+c 的值是( ) A..8 B .9 C .-2 D .-17.若关于x 的一元二次方程中02=++c bx ax 有一个根是-1,则下列结论正确的是( ) A.. 1=++c b a B. 0=+-c b a C. 0=++c b a D. 1-=+-c b a8.若关于x 的一元二次方程为A.x 2+bx+5=0(A.≠0)的解是x=1,则2013-A.-b 的值是( ) A..2018 B .2008 C .2014 D .2012 二、填空题(本大题共6小题)9.当m= 时,关于x 的方程5)3(72=---x xm m 是一元二次方程;10.方程3x 2=5x+2的二次项系数为 ,一次项系数为 .11.若关于x 的一元二次方程(m-2)x 2+x+m 2-4=0的一个根为0,则m 值是 . 12.根据题意列一元二次方程:有10个边长均为x 的正方形,它们的面积之和是200,则有14.已知关于x 的一元二次方程 A.x 2+bx+c=0(A.≠0)有一个根为1,一个根为-1,则A.+b+c= ,A.-b+c= . 三、计算题(本大题共4小题) 15.若(m+1)x |m|+1+6-2=0是关于x 的一元二次方程,求m 的值.16.关于x 的方程(m 2-8m+19)x 2-2mx-13=0是否一定是一元二次方程?请证明你的结论.17.一元二次方程0)1()1(2=++++c x b x a 化为一般式后为01232=-+x x ,试求222a b c +-的值的算术平方根.18.根据下列问题,列出关于x 的方程,并将其化为一元二次方程的一般形式: (1)两连续偶数的积是120,求这两个数中较小的数.(2)绿苑小区住宅设计中,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多11米,那么绿地的长为多少?(3)某种产品原来成本价是25元,后经过技术改进,连续二次降低成本,现在这种产品的成本价仅16元,试问平均每次降低成本的百分率为多少?17.2一元二次方程的解法(1)同步练习一、选择题1. 已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( ). A .-3 B .3 C .0 D .0或32.若2530ax ax -+=是一元二次方程,则不等式360a +>的解集应是( ). A .12a >B .a <-2C .a >-2D .a >-2且a ≠0 3.若1x =-是关于x 的一元二次方程20(0)ax bx c a ++=≠的一个根,则代数式1006(2)a b c -++的值为( ).A .2010B .2011C .2012D .2013 4.对于方程(x ﹣1)(x ﹣2)=x ﹣2,下面给出的说法不正确的是( ) A .与方程x 2+4=4x 的解相同B .两边都除以x ﹣2,得x ﹣1=1,可以解得x=2C .方程有两个相等的实数根D .移项分解因式(x ﹣2)2=0,可以解得x 1=x 2=2. 5.若代数式(2)(1)||1x x x ---的值为零,则x 的取值是( ).A .x =2或x =1B .x =2且x =1C .x =2D .x =-16.已知3是关于x 的方程()2120x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ). A .7 B .10 C .11 D .10或11 二、填空题7.如果关于x 的一元二次方程x 2+px+q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是 .8.关于x 的方程是一元二次方程,则m .9.△ABC 的两边长分别为2和3,第三边的长是方程x 2﹣8x+15=0的根,则△ABC 的周长是 .10.若方程(2012x)2-2011×2013x-1=0的较大根为a ,方程x 2-2012x-2013=0的较小根为b ,则2013()a b +=________.11.已知a 是方程2104x x +-=的根,则354321a a a a a-+--的值为 .12.已知a 是关于x 的一元二次方程2201210x x -+=的一个根,则22201220111a a a -++的值为 .三、解答题13. 已知m 、n 都是方程2201020110x x +-=的根,试求代数式(m 2+2010m-2010)(n 2+2010n+1)的值.14.用适当的方法解下列方程.2(1)24)0x x +-= 2(2)0x -+-=(3) 23270x -=; (4)2(23)16y -=.15.已知222450x x y y ++-+=,求2yx x y -+的值.17.2 一元二次方程的解法(2) 同步练习一、选择题1.已知关于x 的一元二次方程220x x m --=,用配方法解此方程,配方后的方程是( )A .2(1)1x m -=+ B .2(1)1x m +=+ C .22(1)1x m -=+ D .22(1)1x m +=+ 2.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -= B .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭C .2890x x ++=化为2(4)25x += D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭3.若231M a a =--,232N a a =-+-,则M 与N 的大小关系为( ) A .M N =B .M N ≤C .M N ≥D .无法确定4.不论x 、y 为何实数,代数式22247x y x y ++-+的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题7.(1)x 2-43x+ =( )2; (2)x 2+px+ =( )2.8.已知223730216b a a b -+-+=,则a -的值为 . 9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.已知实数,m n ,满足21m n -=,则代数式22268m n m +++的最小值等于 . 11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.a 2+b 2﹣4a+2b+5=0,则b a的值为 .三、解答题13. 用配方法解方程.(1) 3x2-4x-2=0;(2)x2-4x+6=0.14. 用公式法解下列方程:2ab x a x b x a b+=+>.(1)()x a x--=;(2)22222(1)21015.用配方法证明:二次三项式﹣8x2+12x﹣5的值一定小于0.16.已知在⊿ABC中,三边长a、b、c ,满足等式a2-16b2-c2+6ab+10bc=0,求证:a+c=2b17.3 一元二次方程根的判别式 同步练习一、选择题:1.一元二次方程x 2-4x +5=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根 D .没有实数根2.下列一元二次方程有两个相等实数根的是( ) A .x 2+3=0B .x 2+2x =0C .(x +1)2=0D .(x +3)(x -1)=03.一元二次方程4x 2+1=4x 的根的情况是( ) A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根4.方程2x 2-x -1=0的根的判别式的值为________.5.一元二次方程12x 2=2x -1的根的情况是__________________.6.不解方程,判别下列方程根的情况. (1)x 2+2x -3=0; (2)5x 2=-2(x -10);(3)8x 2+(m +1)x +m -7=0.7.若关于x 的一元二次方程x 2-3x +m =0有两个不相等的实数根,则实数m 的取值范围为( )A .m>94B .m<94C .m =94D .m<-948.若关于x 的一元二次方程4x 2-4x +c =0有两个相等的实数根,则c 的值是( )A .-1B .1C .-4D .4 二、解答题9.已知关于x 的一元二次方程x 2+4x +m =0.(1)当m 的值为17时,请利用根的判别式判断此方程的解的情况;(2)请你为m 选取一个合适的整数,使得到的方程有两个不相等的实数根,并说明你的理由.10.已知关于x的方程x2-2(m+1)x+m2=0.(1)当m取何值时,方程有两个实数根?(2)请你为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.11.已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.12.已知关于x的一元二次方程mx2-(m+2)x+2=0.(1)求证:不论m为何值时,方程总有实数根;(2)当m为何整数时,方程有两个不相等的正整数根?17.4 一元二次方程的应用 同步练习一、填空题1.某药品原来每盒售价96元,由于两次降价,现在每盒54元,•则平均每次降价的百分数为_______.2.某农场的粮食产量,若两年内从25万公斤,增加到30.25万公斤,则平均每年的增长率为_______.3.某人在银行存了400元钱,两年后连本带息一共取款484元,设年利率为x ,则列方程为__________________,解得年利率是_________.4.某市2017年底人口为20万人,人均住房面积9m 2,计划2018年、2019年两年内平均每年增加人口为1万,为使到2004年底人均住房面积达到10m ,则该市两年内住房平均增长率必须达到_________.=3.317,精确到1%)5.某林场原有森林木材存量为a ,木材每年以25%的增长率生长,而每年冬天要砍伐的木材量为x ,•••则经过一年木材存量达到________,经过两个木材存量达到__________. 6.某商品连续两次降价10%后为m 元,则该商品原价为( ) A .1.12m 元 B .1.12m 元 C .0.81m 元 D .0.81m 元 7.某钢铁厂去年1月份某种钢的产量为5000吨,3月份上升到7200吨,设平均每月的增长率为x ,根据题意,得( )A .5000(1+x 2)=7200B .5000(1+x )+5000(1+x )2=7200C .5000(1+x )2=7200D .5000+5000(1+x )+5000(1+x )2=72008.某书城开展学生优惠购书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.•某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,•发现两次共节省了34元,则该学生第二次购书实际付款________元.二、解答题9.益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,•若每件商品售价a 元,则可卖出(350-10a )件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?10.恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,•商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.11.某果园有100棵桃树,一棵桃树平均结1000个桃子,•现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个,•如果要使产量增加15.2%,那么应多种多少棵桃树?12.乌鲁木齐农牧区校舍改造工程初见成效,农牧区最漂亮的房子是学校.2017年市政府对农牧区校舍改造的投入资金是5786万元,2019年校舍改造的投入资金是8058.9万元,若设这两年投入农牧区校舍改造资金的年平均增长率为x,则根据题意可列方程为.13.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2017年盈利1500万元,到2019年盈利2160万元,且从2017年到2019年,每年盈利的年增长率相同.(1)该公司2018年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2020年盈利多少万元?14.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?。
第17章一元二次方程(基础、常考、易错、压轴)分类专项训练(解析版)
第17章一元二次方程(基础、常考、易错、压轴)分类专项训练【基础】一、单选题1.(2022·上海·八年级期末)下列关于x 的方程一定有实数根的是( )A .0x a -=B .210ax -=C .10ax -=D .20x a -=【答案】A【分析】分别根据方程的解得定义,从a 的取值出发进行判断.【详解】解:A 、0x a -=有实数解x a =,故符合;B 、210ax -=,当a=0时,等式不成立,即方程无实数解,故不符合;C 、10ax -=,当a=0时,等式不成立,即方程无实数解,故不符合;D 、20x a -=,当a <0时,等式不成立,即方程无实数解,故不符合;故选A .【点睛】本题考查了方程的解,解题的关键是理解方程的解的定义,对a 值进行取值验证.2.(2022·上海松江·八年级期末)某果园今年栽种果树300棵,现计划扩大种植面积,使今后两年的栽种量都比前一年增长一个相同的百分数,这样三年(包括今年)的总栽种量为2100棵.若这个百分数为x ,则由题意可列方程为( )A .2300(1)2100x +=B .2300300(1)2100x ++=C .2300(1)300(1)2100x x +++-D .2300300(1)300(1)2100x x ++++=【答案】D【分析】先表示出各年栽种果树棵数,进而列出方程即可.【详解】解:设这个百分数为x ,今年栽种果树300棵,第二年栽种果树300(1+x )棵,第三年栽种果树300(1+x )2棵,根据题意列方程得,300+300(1+x )+300(1+x )2=2100,故选:D .【点睛】此题主要考查了一元二次方程的应用,分别表示出各年的栽种数量是解题关键.3.(2022·上海徐汇·八年级期末)下列方程中,没有实数根的是( )A .2310x x --=B .230x x -=C .2210x x -+=D .2230x x -+=【答案】D【分析】利用一元二次方程根的判别式,即可求解.【详解】解:A 、()()2341130D =--´-=> ,所以方程有两个不相等的实数根,故本选项不符合题意;B 、()234090D =--´=>,所以方程有两个不相等的实数根,故本选项不符合题意;C 、()22410D =--´=,所以方程有两个相等的实数根,故本选项不符合题意;D 、()224380D =--´=-<,所以方程没有的实数根,故本选项符合题意;故选:D【点睛】本题主要考查了一元二次方程根的判别式,熟练掌握二次函数()20y ax bx c a =++¹ ,当240b ac D =-> 时,方程有两个不相等的实数根;当240b ac D =-= 时,方程有两个相等的实数根;当240b ac D =-< 时,方程没有实数根是解题的关键.4.(2022·上海市刘行新华实验学校八年级阶段练习)关于x 的方程220x kx k -+-=,下列说法中正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定【答案】A【分析】计算出Δ=(-k )2-4×1×(k -2)=(k -2)2+4>0即可得出结论.【详解】解:Δ=(-k )2-4×1×(k -2)=(k -2)2+4>0,所以方程有两个不相等的实数根.故选:A .【点睛】本题主要考查根的判别式,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根.二、填空题5.(2022·上海市刘行新华实验学校八年级阶段练习)若方程3x 2-5x -2=0有一个根是a ,则6a 2-10a 的值为______【答案】4【分析】根据一元二次方程的解的定义,将x =a 代入方程3x 2-5x -2=0,列出关于a 的一元二次方程,通过变形求得3a 2-5a 的值后,将其整体代入所求的代数式并求值即可.【详解】解:∵方程3x2-5x-2=0的一个根是a,∴3a2-5a-2=0,∴3a2-5a=2,∴6a2-10a=2(3a2-5a)=2×2=4.故答案是:4.【点睛】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.6.(2022·上海·八年级期中)现代互联网技术的广泛应用,催生了快递行业的高速发展,某快递公司今年3月份和5月份完成投送的快递件数分别是20万件和24.2万件,假设该公司每月投送快递件数的增长率相等,那么该公司每月的增长率是_____.【答案】10%【分析】设该快递公司投递快递总件数的月平均增长率为x,根据今年3月份和5月份完成投递的快递总件数分别为20万件和24.2万件即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设该快递公司投递快递总件数的月平均增长率为x,由题意,得20(1+x)2=24.2,解得:x1=10%,x2=-210%(不合题意舍去).答:该快递公司投递快递总件数的月平均增长率为10%.故答案是:10%.【点睛】本题考查了一元二次方程的应用,解题的关键是:根据3月份与5月份完成投递的快递总件数之间的关系列出关于x的一元二次方程.7.(2022·上海市崇明区横沙中学八年级期末)方程22x x=的解是________.8.(2022·上海市罗星中学八年级期末)方程222x x x -=-的根是______.【答案】121,2x x ==【分析】根据因式分解法解一元二次方程即可求解.【详解】解:222x x x -=-,()()220x x x ---=,()()120x x --=,解得121,2x x ==.故答案为:121,2x x ==.【点睛】本题考查了因式分解法解一元二次方程,掌握解一元二次方程的方法是解题的关键.9.(2022·上海市罗南中学八年级阶段练习)用换元法解分式方程222232x x x x x x+=++时,如果设22x y x x=+,那么原方程化为关于y 的整式方程是_______________.10.(2022·上海市刘行新华实验学校八年级阶段练习)已知k 是方程2201810x x -+=的一个根,那么1kk +=______;2220182017k 1k k -++______.11.(2022·上海市崇明区横沙中学八年级期末)如果关于x的方程22(21)0x m x m--+=有两个不相等的实数根,那么m的取值范围是________.【答案】14m<##0.25m<12.(2022·上海市崇明区横沙中学八年级期末)如果m 是方程2340x x --=的一个根,那么代数式226m m -的值为________.【答案】8【分析】由方程的解的定义可知2340m m --=,即234m m -=.将226m m -变形为22(3)m m -,再整体代入求值即可.【详解】∵m 是方程2340x x --=的一个根,∴2340m m --=,∴234m m -=,∴22262(3)248m m m m -=-=´=.故答案为:8【点睛】本题考查一元二次方程的解的定义,代数式求值.利用整体代入的思想是解题关键.13.(2022·上海·八年级期末)疫情期间,某快递公司推出无接触配送服务,第一周的订单数是5万件,第三周的订单数比第一周增加2.8万件,如果设平均每周订单数的增长率为x ,那么符合题意的方程是 ___.【答案】5(1+x )2=5+2.8【分析】根据该快递公司第一周及第三周订单总件数,即可得出关于x 的一元二次方程,此题得解.【详解】解:设平均每周订单数的增长率为x ,根据题意得:5(1+x )2=5+2.8,故答案为:5(1+x )2=5+2.8.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,找到等量关系是正确列出一元二次方程的关键.三、解答题14.(2022·上海·八年级专题练习)自“双减”政策推行以来,基层教师的工作时间持续增加,已知第一周平均工作时长为40小时,到第三周时,教师周工作时间为48.4小时,若这几周工作时间的增长率相同,求这个增长率.【答案】这个增长率为10%【分析】设这几周工作时间的增长率为x ,根据题意列方程求解即可.【详解】解:设这几周工作时间的增长率为x ,由题意可得:240(1)48.4x +=解得10.1x =,2 2.1x =-(舍去)答:这个增长率为10%【点睛】此题考查了一元二次方程的应用,解题的关键是理解题意找到等量关系,列出方程.15.(2022·上海·八年级专题练习)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?【答案】销售单价为180元时,公司每天可获利32000元【分析】根据题意设降价后的销售单价为x 元,由题意得到1003005200[32000]x x -+-()()=,则可得到答案.【详解】解:设降价后的销售单价为x 元,则降价后每天可售出3005200[]x +-()个,依题意,得:1003005200[32000]x x -+-()()=,整理,得:2360324000x x +﹣=,解得:12180x x ==.180200<,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.【点睛】本题考查一元二次方程的实际应用,解题的关键是熟练掌握一元二次方程的实际应用.16.(2022·上海市罗南中学八年级阶段练习)已知2x =是关于x 的方程320x x ax --=的一个根,求a 的值并解此方程.【答案】1232021a x x x ====-,,,【分析】将2x =代入即可求出a 的值,再利用因式分解法求方程的解.【详解】解:将2x =代入320x x ax --=得:8420a --=,解得2a =,∴原方程为:3220x x x --=,∴(2)(1)0x x x -+=,∴123021x x x ===-,,.【点睛】本题考查方程的解,因式分解法解方程,熟练运用因式分解是解题的关键.17.(2022·上海市刘行新华实验学校八年级阶段练习)关于x 的一元二次方程()2104k kx k x +++=.(1)若该方程有两个不相等的实数根,求k 的取值范围;(2)若该方程有两个相等的实数根,求该方程的解.18.(2022·上海市刘行新华实验学校八年级阶段练习)解方程:2132-+=x x x 【答案】x 1=2,x 2=-0.5.【分析】先整理为一般式,再利用因式分解法求解可得.【详解】解:将方程整理为一般式为2x 2-3x -2=0,∵(x-2)(2x+1)=0,∴x-2=0或2x+1=0,解得x1=2,x2=-0.5.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.19.(2022·上海市崇明区横沙中学八年级期末)解方程:21320 32x x-++-=20.(2022·上海·八年级专题练习)去年某商店第一季度营业额为120万元,第二季度的营业额比第一季度增长了25%,第三、第四季度营业额的增长率相同,且第四季度的营业额为216万元.求:(1)该店第二季度的营业额;(2)该店第三、第四季度营业额的增长率.(2)设该店第三、第四季度营业额的增长率为x ,150(1+x )2=216,解得x 1=0.2,x 2=﹣2.2(舍去),答:该店第三、第四季度营业额的增长率是20%.【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.21.(2022·上海·八年级专题练习)如图,某建筑工程队在一堵墙边上用20米长的铁栏围成一个面积为60平方米的长方形仓库,已知可利用的墙长是11米,铁栅栏只围三边,且在正下方要造一个2米宽的门.问:以上要求所围成长方形的两条邻边的长分别是多少米?【答案】仓库的长与宽分别为10米和6米【分析】仓库的宽为x 米,则可以知道该仓库的长为:()2022222x x -+=-米,然后根据长方形面积公式列出方程求解即可.【详解】解:设仓库的宽为x 米,根据题意,可以知道该仓库的长为:()2022222x x -+=-米由题意可列出方程:()22260x x -=整理,得211300x x -+=,解方程,得15=x ,26x =,当5x =时,长=22212x -=,不合题意舍去,当6x =时,长=22210x -=,符合题意,答:仓库的长与宽分别为10米和6米.【点睛】本题主要考查了一元二次方程的应用,解题的关键在于能够准确根据题意列出方程求解.22.(2022·上海·八年级专题练习)某纸箱厂要生产一批无盖纸盒,购进了长为20厘米,宽为16厘米的长方形硬纸板,将硬纸板的四个角剪掉四个小正方形(如图所示),剩下的部分正好做成无盖纸盒(不计损耗),若纸盒的底面面积为140平方厘米,则剪下的小正方形的边长是多少厘米?【答案】3厘米【分析】根据题意设小正方形的边长为x ,则底面为长为()202x -厘米,宽为()162x -厘米的长方形,根据其面积为140平方厘米,建立一元二次方程,解方程求解即可,并根据条件取舍结果.【详解】解:设设小正方形的边长为x ,根据题意得:()202x -()162x -140=解得123,15x x ==Q 宽为()162x -0>解得4x <3x \=答:剪下的小正方形的边长是3厘米【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.23.(2022·上海·八年级专题练习)制造一种产品,原来每件成本价500元,销售价625元,经市场预测,两个月后销售价将下降15.2%,为保证利润不变,必须降低成本,问平均每个月下降成本的百分比是多少?【答案】平均每个月下降成本的百分比是10%.【分析】设平均每个月成本下降x ,分别表示出下降后的售价及成本即可列出方程求解.【详解】解:设平均每个月成本下降x ,根据题意得:625(1-15.2%)-500(1-x )2=625-500,解得:x =-1.9(舍去)或x =0.1=10%,答:平均每个月下降成本的百分比是10%.【点睛】本题考查了一元二次方程的应用,解题的关键是表示出下降后的成本和售价,难度不大.24.(2022·上海·八年级期中)如图,在一块长为30米,宽为20米的长方形空地上,建两幢底部是长方形的小楼房,其余部分铺设草坪.要求这些草坪的宽都相等,并且两幢小楼房的底部面积的和与草坪的面积的比是1:3,求草坪的宽度.25.(2022·上海·八年级专题练习)如图,根据防疫的相关要求,学生入校需晨检,体温超标的同学须进入临时隔离区进行留观.我校要建一个面积为10平方米的长方形临时隔离区,隔离区的一面利用学校边墙(墙长4.5米),其它三面用防疫隔离材料搭建,与墙垂直的一边还要开一扇1米宽的进出口(不需材料),共用防疫隔离材料8米,求这个隔离区的长和宽分别是多少米?【答案】隔离区的长为4米和宽2.5米【常考】一、单选题1.(2021·上海·八年级期中)下列方程中,是一元二次方程的是( )A.ax2+bx+c=0B.4x21=0C.x2+4=0D.3x2+x+1x=02.(2021·上海·八年级期中)下列方程中,属于一元二次方程的是()A.2356x x-=B.120x-=C.224x y+=D.610x+=【答案】A【分析】根据一元二次方程的定义逐一判断即可,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程.二、填空题3.(2020·上海市格致初级中学八年级期中)某校八年级举行足球比赛,每个班级都要和其他班级比赛一次,结果一共进行了6场比赛,则八年级共有_____个班级.4.(2021·上海·八年级期中)若关于x 的方程()211270aa x x +-+-=是一元二次方程,则=a ___________.【答案】1-【分析】根据一元二次方程的定义得到由此可以求得a 的值.【详解】∵关于x 的方程(a ﹣1)xa 2+1﹣7=0是一元二次方程,∴a 2+1=2,且a ﹣1≠0,解得,a =﹣1.故答案为﹣1.【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).三、解答题5.(2020·上海市格致初级中学八年级期中)用配方法解方程:x2=4.6.(2022·上海·八年级专题练习)解方程:2-=-x x31213二次方程,一定要注意舍去不合理的根.【易错】一.选择题(共4小题)1.(2021秋•崇明区校级期末)下列方程中,属于一元二次方程的是( )A.32x﹣1=0B.x+=3C.x2=(x﹣2)(x+1)D.(x﹣2)(x+2)+4=0【分析】根据一元二次方程的定义判断即可.【解答】解:A.32x﹣1=0,是一元一次方程,故A不符合题意;B.是分式方程,故B不符合题意;C.方程整理可得x+2=0,是一元一次方程,故C不符合题意;D.(x﹣2)(x+2)+4=0是一元二次方程,故D符合题意;故选:D.【点评】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程,叫一元二次方程.2.(2021秋•普陀区校级期中)若方程(m﹣1)x2+x=1是关于x的一元二次方程,则m的取值范围是( )A.m≠1B.m≥0C.m≥0且m≠1D.m为任何实数【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.结合二次根式有意义的条件,被开方数是非负数即可求得.【解答】解:根据题意得:解得:m≥0且m≠1.故选:C.【点评】本题主要考查两个知识点:一元二次方程的定义和二次根式有意义的条件,特别要注意二次项系数a≠0这一条件,当a=0时,上面的方程就不是一元二次方程了.3.(2021春•浦东新区校级月考)若x=1是方程(k﹣1)x2+(k2﹣1)x﹣k+1=0的一个根,则k值满足( )A.k=±1B.k=1C.k=﹣1D.k≠±1【分析】方程的根就是能够使方程左右两边相等的未知数的值;利用这一知识点求出未知字母系数后,要善于观察未知数的系数;将x=1代入原方程即可解得k的值.【解答】解:把x=1代入方程(k﹣1)x2+(k2﹣1)x﹣k+1=0,可得k﹣1+k2﹣1﹣k+1=0,即k2=1,解得k=﹣1或1;但当k=1时k﹣1和k2﹣1均等于0,故应舍去;所以,取k=﹣1;故选:C.【点评】此题应特别注意求出未知字母系数的值后,要代入原方程看是否符合题意.4.(2021春•浦东新区月考)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是( )A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选:B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.二.填空题(共4小题)5.(2021秋•普陀区校级月考)关于x的方程(m﹣3)x+(m﹣2)x+5=0是一元二次方程,则m的值为 ﹣3 .【分析】本题根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)只含有一个未知数.【解答】解:∵关于x的方程(m﹣3)x+(m﹣2)x+5=0是一元二次方程,∴,解得m=﹣3.故答案为:﹣3.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.6.(2021秋•浦东新区校级月考)关于x的方程(m+5)x2﹣2mx﹣4=0是一个一元二次方程,那么m的取值范围是 m≠﹣5 .【分析】根据一元二次方程的定义可得m+5≠0,再解不等式即可.【解答】解:由关于x的方程(m+5)x2﹣2mx﹣4=0是一个一元二次方程,得m+5≠0,解得m≠﹣5.故答案为:m≠﹣5.【点评】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程,叫一元二次方程.7.(2021秋•宝山区校级月考)当m ≠2 时,关于x的方程mx2+4x=2x2﹣mx+6是一元二次方程.【分析】根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行解答即可.【解答】解:mx2+4x=2x2﹣mx+6,mx2+4x﹣2x2+mx﹣6=0,(m﹣2)x2+(m+4)x﹣6=0,∵关于x的方程mx2+4x=2x2﹣mx+6是一元二次方程,∴m﹣2≠0,解得m≠2.故答案为:≠2.【点评】本题考查了一元二次方程的定义,解题时,要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a≠0).8.(2022•普陀区二模)如果关于x的方程(x﹣1)2=m没有实数根,那么实数m的取值范围是 m<0 .【分析】根据负数没有平方根,即可解答.【解答】解:如果关于x的方程(x﹣1)2=m没有实数根,那么实数m的取值范围是:m<0,故答案为:m<0.【点评】本题考查了解一元二次方程﹣直接开平方法,熟练掌握负数没有平方根是解题的关键.三.解答题(共2小题)9.(2022春•宝山区校级月考)解关于x的方程:mx2+4=3(1﹣x2)(m≠﹣3).【分析】先把方程变形为x2=,然后讨论当m>﹣3时,方程没有实数解;当m<﹣3时,利用直接开平方法解方程,即可解答.【解答】解:mx2+4=3(1﹣x2),mx2+4=3﹣3x2,(m+3)x2=﹣1,x2=,当m>﹣3时,方程没有实数解;当m<﹣3时,x=±=±,∴m1=,m2=﹣.【点评】本题考查了一元二次方程的定义,解一元二次方程﹣直接开平方法,熟练掌握解一元二次方程﹣直接开平方法是解题的关键.10.(2021秋•虹口区校级期末)解关于x的方程:a2(x2﹣x+1)﹣a(x2﹣1)=(a2﹣1)x.【分析】按x的降幂排列整理方程,根据字母系数的取值分类讨论求解.【解答】解:整理方程得(a2﹣a)x2﹣(2a2﹣1)x+(a2+a)=0.(1)当a2﹣a≠0,即a≠0,1时,原方程为一元二次方程,[ax﹣(a+1)][(a﹣1)x﹣a]=0,x1=,x2=;(2)当a2﹣a=0时,原方程为一元一次方程,当a=0时,x=0;当a=1时,x=2.【点评】考查运用分类讨论的思想解字母系数的方程,难度适中.【压轴】一.填空题(共2小题)1.(2021•上海模拟)对于实数a,b,定义运算“*”:a*b=.例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1*x2= 3或﹣3 .【分析】首先解方程x2﹣5x+6=0,再根据a*b=,求出x1*x2的值即可.【解答】解:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴(x﹣3)(x﹣2)=0,解得:x=3或2,①当x1=3,x2=2时,x1*x2=32﹣3×2=3;②当x1=2,x2=3时,x1*x2=3×2﹣32=﹣3.故答案为:3或﹣3.【点评】此题主要考查了因式分解法解一元二次方程以及利用材料分析解决新问题,根据已知进行分类讨论是解题关键.2.(2021秋•浦东新区期中)已知关于x的方程x2﹣(a+2)x+a﹣2b=0的判别式等于0,且x=是方程的根,则a+b的值为 .【分析】由Δ=[﹣(a+2)]2﹣4×(a﹣2b)=0得一关于a,b的方程,再将x=代入原方程又得一关于a,b的方程.联立两个方程组成方程组,解方程组即可求出a、b的值.【解答】解:由题意可得:Δ=[﹣(a+2)]2﹣4×(a﹣2b)=0,即a2+8b+4=0,再将x=代入原方程得:2a﹣8b﹣3=0,根据题意得:两方程相加可得a2+2a+1=0,解得a=﹣1,把a=﹣1代入2a﹣8b﹣3=0中,可得b=,则a+b=.故填空答案为.【点评】此题考查了根的判别式,以及方程的解的定义,把求未知系数的问题转化为解方程组的问题.二.解答题(共6小题)3.(2021秋•奉贤区校级期中)关于x的一元二次方程mx2﹣(3m﹣1)x+2m﹣1=0,其根的判别式的值为1,求m的值及该方程的解.【分析】由一元二次方程的Δ=b2﹣4ac=1,建立m的方程,求出m的解后再化简原方程并求解.【解答】解:由题意知,m≠0,Δ=b2﹣4ac=[﹣(3m﹣1)]2﹣4m(2m﹣1)=1∴m1=0(舍去),m2=2,∴原方程化为:2x2﹣5x+3=0,解得,x1=1,x2=3/2.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.4.(2021秋•徐汇区校级期中)如果关于x的方程mx2﹣2(m+2)x+m+5=0没有实数根,试判断关于x的方程(m﹣5)x2﹣2(m﹣1)x+m=0的根的情况.【分析】根据题意:要使方程mx2﹣2(m+2)x+m+5=0没有实数根,必有Δ<0,解可得m的取值范围,将其代入方程(m﹣5)x2﹣2(m﹣1)x+m=0的Δ公式中,判断Δ的取值范围,即可得出答案.【解答】解:①∵当m≠0时,方程mx2﹣2(m+2)x+m+5=0没有实数根,∴Δ=[﹣2(m+2)]2﹣4m(m+5)=4(m2+4m+4﹣m2﹣5m)=4(4﹣m)<0.∴m>4.对于方程(m﹣5)x2﹣2(m﹣1)x+m=0.当m=5时,方程有一个实数根;当m≠5时,Δ1=[﹣2(m﹣1)]2﹣4m(m﹣5)=12m+4.∵m>4,∴Δ1=12m+4>0,方程有两个不相等的实数根.②当m=0时,方程mx2﹣2(m+2)x+m+5=0有实数根,不符合题意,答:当m=5时,方程(m﹣5)x2﹣2(m﹣1)x+m=0有一个实数根;当m>4且m≠5时,此方程有两个不相等的实数根.【点评】主要考查一元二次方程根与系数之间的关系及根的情况的判断公式的使用;要求学生熟练掌本题易错点是忽视对第二个方程是否是一元二次方程进行讨论,这个方程可能是一元一次方程.5.(2022春•金山区校级期中)某经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240元时,此时的月销售量是 60 吨;(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?【分析】(1)因为每吨售价每下降10元时,月销售量就会增加7.5吨,可求出当每吨售价是240元时,此时的月销售量是多少吨.(2)设当售价定为每吨x元时,根据当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元,当每吨售价每下降10元时,月销售量就会增加7.5吨,且该经销店计划月利润为9000元而且尽可能地扩大销售量,以9000元作为等量关系可列出方程求解.【解答】解:(1)45+×7.5=60;(2分)(2)设当售价定为每吨x元时,由题意,可列方程(x﹣100)(45+×7.5)=9000.(2分)化简得x2﹣420x+44000=0.解得x1=200,x2=220.(6分)当售价定为每吨200元时,销量更大,所以售价应定为每吨200元.【点评】本题考查理解题意能力,关键是找出降价10元,却多销售7.5吨的关系,从而列方程求解.6.(2021秋•徐汇区校级期末)已知关于x的一元二次方程有两个不相等的实数根,求k的取值范围.【分析】一元二次方程有两个不相等的实数根,则Δ=b2﹣4ac>0,结合一元二次方程的定义,求出k 的取值范围.【解答】解:由题意得:1﹣2k≠0即k≠,k+1≥0,即k≥﹣1Δ=b2﹣4ac=(﹣2)2﹣4×(1﹣2k)×(﹣1)=8﹣4k>0,综合所述,得﹣1≤k<2且,【点评】1、一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根2、切记不要忽略一元二次方程二次项系数不为零这一隐含条件.7.(2021秋•金山区校级期中)如图,某工程队在工地互相垂直的两面墙AE、AF处,用180米长的铁栅栏围成一个长方形场地ABCD,中间用同样材料分割成两个长方形.已知墙AE长120米,墙AF长40米,要使长方形ABCD的面积为4000平方米,问BC和CD各取多少米?【分析】设BC=x米,则CD=(180﹣2x)米,然后根据长方形的面积公式列出方程求解即可.【解答】解:设BC=x米,则CD=(180﹣2x)米.由题意,得:x(180﹣2x)=4000,整理,得:x2﹣90x+2000=0,解得:x=40或x=50>40(不符合题意,舍去),∴180﹣2x=180﹣2×40=100<120(符合题意).答:BC=40米,CD=100米.【点评】本题考查了一元二次方程的应用,解题的关键是用x表示CD的长,然后根据长方形的面积公式列出方程.8.(2020秋•浦东新区校级期中)某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金﹣各种费用)为275万元?【分析】(1)直接根据题意先求出增加的租金是6个5000,从而计算出租出多少间;。
【数学知识点】一元二次方程20道例题及答案
【数学知识点】一元二次方程20道例题及答案本文整理了一元二次方程例题及解析,欢迎阅读。
一、选择题(每小题3分,共30分)1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )A、(x-p)2=5B、(x-p)2=9C、(x-p+2)2=9D、(x-p+2)2=52、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )A、-1B、0C、1D、23、若、是方程x2+2x-2021=0的两个实数根,则2+3+的值为( )A、2021B、2021C、-2021D、40104、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )A、k-B、k- 且k0C、k-D、k- 且k05、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( )A、 x2+3x-2=0B、x2-3x+2=0C、x2-2x+3=0D、x2+3x+2=06、已知关于x的方程x2-(2k-1)x+k2=0有两个不相等的实根,那么k的最大整数值是( )A、-2B、-1C、0D、17、某城2021年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2021年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意所列方程正确的是( )A、300(1+x)=363B、300(1+x)2=363C、300(1+2x)=363D、363(1-x)2=3008、甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为-3和5,乙把常数项看错了,解得两根为2+ 和2- ,则原方程是( )A、 x2+4x-15=0B、x2-4x+15=0C、x2+4x+15=0D、x2-4x-15=09、若方程x2+mx+1=0和方程x2-x-m=0有一个相同的实数根,则m的值为( )A、2B、0C、-1D、10、已知直角三角形x、y两边的长满足|x2-4|+ =0,则第三边长为( )A、 2 或B、或2C、或2D、、2 或二、填空题(每小题3分,共30分)11、若关于x的方程2x2-3x+c=0的一个根是1,则另一个根是12、一元二次方程x2-3x-2=0的解是 .13、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是14、等腰△ABC中,BC=8,AB、AC的长是关于x的方程x2-10x+m=0的两根,则m的值是15、2021年某市人均GDP约为2021年的1.2倍,如果该市每年的人均GDP增长率相同,那么增长率为16、科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高根鞋鞋根的最佳高度约为 cm.(精确到0.1cm)17、一口井直径为2m,用一根竹竿直深入井底,竹竿高出井口0.5m,如果把竹竿斜深入井口,竹竿刚好与井口平,则井深为 m,竹竿长为 m.18、直角三角形的周长为2+ ,斜边上的中线为1,则此直角三角形的面积为19、如果方程3x2-ax+a-3=0只有一个正根,则的值是20、已知方程x2+3x+1=0的两个根为、,则 + 的值为一、选择题1~5 BCBCB 6~10 CBDAD提示:3、∵是方程x2+2x-2021=0的根,2+2=2021又+=-2 2+3+=2021-2=2021二、填空题11~15 4 25或16 10%16~20 6.7 , 4 3提示:14、∵AB、AC的长是关于x的方程x2-10x+m=0的两根在等腰△ABC中若BC=8,则AB=AC=5,m=25若AB、AC其中之一为8,另一边为2,则m=1620、∵△=32-411=50又+=-30,0,0,0直接开平方法依据的是平方根的意义,步骤是:将方程转化为x=p或(mx+n)=p的形式;分三种情况降次求解:当p>0时;当p=0时;当p<0时,方程无实数根。
一元二次方程知识点梳理
一元二次方程复习考点1:一元二次方程的概念形如:02=++c bx ax (0≠a )的方程.即:只含有一个未知数,并且所含未知数的最高次数是2的方程,叫一元二次方程.其中a 、b 、c 都是常数,a 叫二次项系数,b 叫一次项系数,c 叫常数项;02=++c bx ax (0≠a )叫做一元二次方程的一般式.例:若方程32)1(1=--+x xm m 是关于x 的一元二次方程,求m 的值.考点2:一元二次方程的解法1.直接开平方法:对形如b a x =+2)((b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
x+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式3..公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。
步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2=3(x +4)中,不能随便约去x +4。
⑷ 注意:解一元二次方程时一般不使用配方法(除特别要求外)。
知识点13 一元二次方程的实际应用2017(解答题)
三、解答题1.(2017重庆,23,10分)(本小题满分10分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃的产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一总分运往市场销售.该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m %,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2 m %,但销售均价比去年减少了m %.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.思路分析:(1)根据“枇杷的产量不超过樱桃的产量的7倍”即可列出不等式求得今年收获樱桃的质量;(2)抓住关键语句,仔细梳理,根据去年、今年樱桃销售量、销售均价,求出各自的销售额,可以用一张表格概括其中数量关系:然后根据“今年樱桃和枇杷的销售总金额与去年樱桃和枇杷的市场销售总金额相同”可列方程求解.解:(1)设该果农今年收获樱桃至少x千克,今年收获枇杷(400-x)千克,依题意,得:400-x≥7x,解得:x≥50.答:该果农今年收获樱桃至少70千克.(2)由题意,得:3000×(1-m %)+4000×(1+2m %)×(1-m %)=7000,解得:m1=0(不合题意,舍去),m2=12.5;答:m的值为12.5.2.(2017山东菏泽,19,7分)(本题7分)列方程解应用题某玩具厂生产一种玩具,按照控制成本加捻促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天课多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?思路分析:根据等量关系“利润=(售价-成本)×销售量”列出每天的销售利润与销售单价的方程求解,求解结果符合题意即可.解:设销售单价为x元,由题意,得:(x-360)[160+2(480-x)]=20000,整理,得:x 2-920x+211600=0,解得:x 1=x 2=460,答:这种玩具的销售单价为460元时,厂家每天可获利润20000.3. (2017四川眉山,24,9分)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?思路分析:(1)根据“第一档次的利润+增加的利润=新批次的利润”,可列出一元一次方程求解;(2)根据“总利润=该档次每件的利润×该档次的产品的产量”,列出一元二次方程求解,注意检验是否符合题意.解:(1)设此批次蛋糕属第x 档次产品,则10+2(x -1)=14,解得x =3.答:此批次蛋糕属第3档次产品.(或:∵14-102+1=3,∴此批次蛋糕属第3档次产品.)(2)设该烘焙店生产的是第x 档次的产品,根据题意,得[10+2(x -1)][76-4(x -1)]=1080,解之,得x 1=5,x 2=11(舍去).答:该烘焙店生产的是第5档次的产品.4. (2017江苏淮安,26,10分)某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图像,图中折线ABCD 表示人均收费y (元)与参加旅游的人数x (人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为________元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?思路分析:(1)参加旅游的人数不超过10人对应的函数图像是线段AB ,线段AB 对应的纵坐标就是人均费用;(2)先根据总费用3600员确定参加旅游的人数,然后利用“总费用=人均费用×总人数”列方程求解. 解:(1)240.(2)设参加这次旅游有a 人.∵10×240=2400<3600,∴a >10.∵25×150=3750>3600,第26题图∴a <25.综合知,10<a <25.设直线BC 的函数表达式为y =kx b +,把B (10,240),C (25,150)代入,得2401015025k b k b =+⎧⎨=+⎩., 解得k =-6,b =300.∴直线BC 的函数表达式为y =6300x -+.∴人数为a 时的人均费用为6300a -+.根据题意,得(6300)a a -+=3600.整理,得250600a x -+=0.解得1a =20,2a =30.∵10<a <25,∴a =20.答:参加这次旅游有20人.5. (2017湖南常德,23,8分)收发微信红包已成为各类人群进行交流联系、增强感情的一部分.下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.甜甜: 妹妹:请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?思路分析:列一元一次方程和一元二次方程,进行求解.解:(1)设2015年到2017年甜甜和她妹妹在六一收到红包的年平均增长率是x根据题意列方程得:400(1+x )²=484解得1x =0.1 2x =﹣2.1(舍)故平均增长率为10%.(2)设2017年六一甜甜收到的微信红包为y 元,则妹妹收到红包为(2y +34)元,根据题意列方程得:y +(2y +34)=4842017年六一,我们共收到484元微信红包 2015年六一时,我们只共收到400元微信红包,不过我今年收到的钱数是你的2倍多34元解得y=150故甜甜收到的微信红包为:150元,妹妹收到的为新年红包为:(2y+34)=334元.6.(2017·南宁)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.[来源:@~&中#教网^](1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?思路分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7500(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.解:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7500(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去)答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1350=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.5%.故a的值至少是12.5.7.27.( 2017四川巴中,6分)巴中市某楼盘准备以每平方5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050 元的均价开盘销售.若两次下调的百分率相同,求平均每次下调的百分率.思路分析:增长率或降低率问题,由基数×(1±百分率)n=结果数据,列方程计算.解:设平均每次下调的百分率为x,由题意得:5000(1-x)2=4050,解得:x1=0.1,x2=1.9(舍去)答:平均每次下调的百分率为10%.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1. (2017山东滨州,2,3分)一元二次方程x 2-2x =0根的判别式的值为A .4B .2C .0D .-4答案:A ,解析:根的判别式可表示为b 2-4ac ,在这个方程中,a =1,b =-2,c =0,所以b 2-4ac =(-2)2-4×2. (2017山东威海,7,3分)若1- 3 是方程x 2-2x +c =0的一个根,则c 的值为( )A .-2B .4 3 -2C .3- 3D .1+ 3答案:A .解析:该方程两根之和是2,所以另一根为2-(1-3)=1+3,c =(1-3)(1+3)=-2. 3. (2017年四川绵阳,7,3分)关于x 的方程2x 2+mx +n =0的两根为-2和1,则n m 的值为A .-8B .8C .16D .-16答案:C 解析:利用根与系数的关系求解即可.4. (2017浙江舟山,8,3分)用配方法解方程0122=-+x x 时,配方结果正确的是( )A . 2)2(2=+xB .2)1(2=+xC .3)2(2=+xD .3)1(2=+x答案:B ,解析:根据完全平方式可配方,02122=-++x x ,整理的2)1(2=+x .5. (2017四川攀枝花,6,3分)关于x 的一元二次方程(m -1)x 2-2x -1=0有两个实数根,则实数m 的取值范围是( ) A .m≥0B . m >0C .m ≥0且m ≠1D .m >0且m ≠1答案:C解析:∵关于x 的一元二次方程(m -1)x 2-2x -1=0有两个实数根,∴m -1≠0且△≥0,即22-4×(m -1)×(-1)≥0,解得m ≥0,∴m 的取值范围是 m ≥0且m ≠1.故选C .6. (2017山东泰安,7,3分)一元二次方程x 2﹣6x ﹣6=0配方后化为( ) A .(x ﹣3)2=15 B .(x ﹣3)2=3C .(x +3)2=15D .(x +3)2=3答案:A ,解析:根据配方的步骤:第一步移项得662=-x x ;第二部配方,方程的左右两边都加上一次项系数一半的平方,96962+=+-x x ;第三步整理()1532=-x.7. 5.(2017四川德阳,5,3分)已知关于x 的方程0142=++-c x x 有两个相等的实数根,则常数C 的值为A .-1B .0C .1D .3答案:D ,解析:一元二次方程有两个相等实数根,则判别式为0,即Δ=0)1(4)4(2=+--c ,则可得C =3.8. 14.(2017江苏淮安,14,3分)若关于x 的一元二次方程21x x k -++=0有两个不相等的实数根,则k 的取值范围是________.答案:k <43-,解析:因为关于x 的一元二次方程21x x k -++=0有两个不相等的实数根,所以24b ac ->0,即2(1)4(1)k --+>0,解得k <43-.9. 8.(2017浙江温州,8,4分)我们知道方程的解是 x 1=1,x 2=-3,现给出另一个方程-3=0,它的解是A .x 1=1, x 2=3B .x 1=1, x 2=-3C .x 1=-1, x 2=3D .x 1=-1, x 2=-3答案:D ,解析:由题意可得:2x +1=1或-3,解得x 1=-1, x 2=-3.10. 4.(2017四川宜宾,4,3分)一元二次方程214204x x -+=的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断答案:B ,解析:根的判别式可表示为b 2-4ac ,在这个方程中a =4,b =﹣2,c =14,∴b 2-4ac =(﹣2)2-4×4×14=0,故此方程有两个相等的实数根.11. (2017山东滨州,3,3分)一元二次方程3x 2-4x +1=0的根的情况是( ) A . 没有实数根 B .只有一个实数根 C .两个相等的实数根 D .两个不相等的实数根答案:D ,解析:∵∆=(-4)2-4×3×1=4>0.∴方程有两个不相等的实数根,故选D.12. (2017江苏苏州,4,3分)关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为 A .1 B .—1 C .2 D .—2答案:A ,解析:根据一元二次方程有两个相等的实数根,即根的判别式=4401k k ∆-=⇒=.13. 3.(2017江苏扬州,,3分)一元二次方程2720x x --=的实数根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定 【答案】A【解析】用根的判别式就可判断一元二次方程根的情况,因为24b ac -=57>0, 所以方程有两个不相等的实数根.2 x 1 1.1 1.2 1.3 1.4 y-1-0.490.040.591.16A.1B.1.1C.1.2D.1.3 【答案】C【解析】由表格中的数据可以看出0.04更接近于0,故方程的一个近似根是1.2,故选C 。
15. 6.(2017甘肃兰州,6,4分)如果一元二次方程2x 2+3x +m =0有两个相等的实数根,那么是实数m 的取值为A.m >98B. m >89C. m =98D. m =89【答案】C【解析】由题目可知,一元二次方程2x 2+3x +m =0有两个相等的实数根,所以b 2-4ac =9-8m =0,解得m =98,故选C16.15.(2017湖北荆门,15,3分)已知方程x 2+5x +1=0的两个实数根分别为x 1,x 2,则x 12+x 22=______.23 答案:23,解析:由根与系数的关系,得x 1+x 2=-5,x 1x 2=1.∴x 12+x 22=(x 1+x 2)2-2x 1x 2=(-5)2-2×1=25-2=23.17. 13.(2017江苏泰州,13,3分)方程22310x x +-=的两个根为1x 、2x ,则1112x x +的值等于.答案:3,解析:根据根与系数的关系可知,12x x +=32-,12x x =12-,∴1112x x +=1212x x x x +=3.18. (2017山东烟台,10,3分)若x 1,x 2是方程x 2-2mx +m 2-m -1=0的两个根,且x 1+x 2=l -x 1x 2,则m 值为( )A .-1或2B .1或-2C .-2 D. 1答案:D ,解析:由一元二次方程根与系数的关系,得 x 1+x 2=2m ,x 1x 2= m 2-m -1. 因为x 1+x 2=l -x 1x 2,所以2m =1-(m 2-m -1). 解得11m =,22m =-.又因为Δ=4[22(1)m m m ---]≥0. 解得m ≥-1.综上,m 的值为1.19. 5.(2017呼和浩特,3分)关于x 的一元二次方程()22210x a a x a +-+-=的两个实数根互为相反数,则a 的值为A .2B .0C .1D .2或0答案:B ,解析:根据“根与系数的关系”12bx x a +=-,∴—(22a a -)=0,解得:10a =,22a =(舍去),∵当a =2时,原方程为210x +=是无解的。
20. (2017湖北随州,9,3分)对于二次函数223y x mx =--,下列结论错误的是( ) A .它的图象与x 轴有两个交点 B .方程223x mx -=的两根之积为-3C .它的图象的对称轴在y 轴的右侧D .x <m 时,y 随x 的增大而减小答案:C ,解析:A .因为∆=(-2m )2-4×1×(-3)=4m 2+12>0,所以图象与x 轴有两个交点;B .方程化为x 2-2mx -3=0,设两根为x 1、x 2,则x 1⋅x 2=-31=-3;C .因为图象的对称轴为x =m ,无法确定m 与0的大小关系,从而无法判断对称轴与y 轴的位置关系;D .因为抛物线开口向上,在对称轴的左侧,y 随x 的增大而减小.21. (湖南益阳,6,5分)关于x 的一元二次方程20(0)ax bx c a ++=≠的两根为11x =,21x =-,那么下列结论一定成立的是A .240b ac ->B .240b ac -=C .240b ac -<D .240b ac -≤答案:A ,解析:关于x 的一元二次方程20(0)ax bx c a ++=≠的两根为11x =,21x =-,,说明一元二次方程有两个不相等的实数根,所以, 240b ac ->,因此选A .22. (2017甘肃庆阳,9,3分)如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m ,若设道路的宽为m x ,则下面所列方程正确的是( ) A.()()32220570x x --=B.32203220570x x +??C.()()32203220570x x --?D.2322202570x x x +?=答案:A ,解析:将两条纵向的道路向左平移,水平方向的道路向下平移,即可得草坪的长为()322x -米,第9题图x20m30m宽为()20x -米,所以草坪面积为长与宽的乘积,即可列出方程()()32220570x x --=.故选A .x20m30m23. (2017新疆生产建设兵团,7,5分)已知关于x 的方程x 2+x -a=0的一个根为2,则另一个根是( ) A. -3 B. -2 C.3 D.6答案:A 解析:设方程的另一个根为x 1,利用根与系数的关系,得x 1+2=-1,解得x 1=-3,故选A.24. 8.(2017湖北天门,8,3分)若α,β为方程2x 2﹣5x ﹣1=0的两个实数根,则2α2+3αβ+5β的值为 A .﹣13B .12C .14D .15答案:B ,解析:∵α,β为方程2x 2﹣5x ﹣1=0的两个实数根,故2α2﹣5α﹣1=0,2β2﹣5β﹣1=0,从而5β=2β2﹣1,∴2α2+3αβ+5β=2α2+3αβ+2β2﹣1=2(α+β)2﹣αβ﹣1,由根系关系得:α+β=52,αβ=12- ,故原式=12.25. 5.(2017宁夏,3分) 关于x 的一元二次方程(a -1)x 2+3x -2=0有实数根,则a 的取值范围是A .a >18- B .a ≥18-C .a >18-且a ≠1 D .a ≥18-且a ≠1 答案:D ,解析:因为关于x 的二元一次方程有实数根,等价于△=32-4(a -1)·(-2)=9+8(a -1)≥0,且a -1≠0,即得:a ≥18-且a -1≠0.26. 8.(2017四川凉山,8,4分)一元二次方程23125x x -=+两实根的和与积分别是( ) A .32,2- B .23,2- C .23-,2D .32-,2 【答案】B【解析】设这个一元二次方程的两个根分为1x 、2x ,方程52132+=-x x 化为一元二次方程的一般形式为:32x 123232-a b 1236-a c B .27. (2017河南,6,3分)一元二次方程2x 2-5x -2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根答案:B ,解析:∵2=a ,5-=b ,2-=c ,∴∆=()()04116252245422>=+=-⨯⨯--=-ac b ,∴一元二次方程2x 2-5x -2=0有两个不相等的实数根,故选择B .28. (2017黑龙江齐齐哈尔,6,3分)若关于x 的方程29304kx x --=有实数根,则实数k 的取值范围是( ) A. k=0 B. k ≥-1且k ≠0 C. k ≥-1 D. k >-1 答案:C解析:∵关于x 的方程29304kx x --=有实数根,分两种情况求解: (1)若k ≠0,则29(3)4()994k k =---=+△≥0,∴k ≥-1且k ≠0.(2)若k=0,则原方程可化为9304x --=,此时方程有解,∴k=0符合要求 综上所述, k ≥-1.29. 6.(2017年贵州省黔东南州,6,4分)已知一元二次方程x 2-2x -1=0的两根分别为x 1,x 2,则2111x x +的值为A .2B .-1 C. 21- D .-2 答案:D ,解析:由根与系数的关系:x 1+x 2=a b -=2,x 1 • x 2=ac=-1,∴21211212121-=-=+=+x x x x x x .30. 8.(2017山东淄博,8,4分)若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则实数k 的取值范围是 ( )A .k >-1B .k >-1且k ≠0C . k <-1D . k <-1或k =0答案:B ,解析:由题意:△=b 2-4ac =4+4k >0且k ≠0,所以k >-1且k ≠0.31. 5.(2017广东广州,3分)关于x 的一元二次方程x 2+8x +q =0有两个不相等的实数根,则q 的取值范围是( ) A .q <16B .q >16C .q ≤4D .q ≥4答案:A ,解析:根据一元二次方程根的判别式,得△=82-4q >0,解得q <16.32. (2017贵州六盘水,12,4分)三角形的两边a ,b 的夹角为60°且满足方程x 2-2+4=0,则第三边长的长是A 6B .2C .3D .2答案:A ,解析:∵x 2-32x +4=0,∴(x -22)(x -2)=0,∴x 1=22,x 2=2.如图,不妨设△ABC 中,∠C =60°,BC =a =2AC =b 2BA ′⊥AC ,垂足为A ′. ∵Rt △A ′BC 中,∠C =60°,∴A ′C =12BC 2AC 2A 与A ′重合,∠A =90°. ∴AB 226BC AC -=A 选项正确.CBA′33. (2017贵州遵义)关于x 的一元二次方程x 2+3x +m =0有两个不相等的实数根,则m 的取值范围为( ) A .m ≤94 B .m <94 C. m ≤49 D .m <49答案:B ,因为一元二次方程有两个不相等的实数根,所以△>0,即△=32-4>0,解得m <94.34. 8. (2017内蒙古包头)若关于x 的不等式12ax -<的解集为1x <,则关于x 的一元二次方程210x ax ++=根的情况是 ( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定 答案:C ,解析:考点一元一次不等式的解法及一元二次方程判别式.由12a x -<的解集为1x <,得1+2ax <,即1+=12a,得=0a ,代入210x ax ++=,得210x +=,由判别式2=4b ac ∆-<0,选C.35. (2017广西河池,10,3分)若关于x 的一元二次方程022=-+a x x 的两个相等的实数根,则a 的值是( )A .1-B .1C . 4-D .4 答案:A解析:由题可知△=4+4a =0,解得a =-136. 7.(2017湖南怀化,4分)若x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两个根,则x 1•x 2的值是( )A .2B .﹣2C .4D .﹣3答案:D ,解析:根据根与系数的关系,即可得出x 1+x 2=2、x 1•x 2=﹣3,此题得解.。