专题18函数与方程思想(教学案)2017年高考二轮复习文数(无答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题18 函数与方程思想(教学案)
-2017年高考文数二轮复习
函数与方程思想在高考中也是必考内容,特别是在函数、解析几何、三角函数等处都可能考到,几乎大多数年份高考中大题都会涉及到.因此认真体会函数与方程思想是成功高考的关键.
考点一函数思想
一般地,函数思想就是构造函数从而利用函数的图象与性质解题,经常利用的性质是:单调性、奇偶性、周期性、最大值和最小值、图象变换等.在解题中,善于挖掘题目的隐含条件,构造出函数解析式和巧用函数的性质,是应用函数思想的关键,它广泛地应用于方程、不等式、数列等问题.
考点二方程思想
1.方程思想就是将所求的量(或与所求的量相关的量)设成未知数,用它表示问题中的其他各量,根据题中的已知条件列出方程(组),通过解方程(组)或对方程(组)进行研究,使问题得到解决.
2.方程思想与函数思想密切相关:方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标;函数y=f(x)也可以看作二元方程f(x)-y=0,通过方程进行研究,方程f(x)=a有解,当且仅当a属于函数f(x)的值域.函数与方程的这种相互转化关系十分重要.考点三函数与方程思想在解题中的应用
可用函数与方程思想解决的相关问题.
1.函数思想在解题中的应用主要表现在两个方面:
(1)借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;
(2)在研究问题中通过建立函数关系式或构造中间函数,把研究的问题化为讨论函数的有关性质,达到化难为易、化繁为简的目的.
2.方程思想在解题中的应用主要表现在四个方面:
(1)解方程或解不等式;
(2)带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识的应用;
(3)需要转化为方程的讨论,如曲线的位置关系等;
(4)构造方程或不等式求解问题.
考点一、运用函数与方程思想解决字母 (或式子)的求值或取值范围问题
例1.(2015·福建,14)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2
(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.
【变式探究】 (2014·陕西卷)
如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切),已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )
A .y =12x 3-12
x 2-x B .y =12x 3+12
x 2-3x C .y =14
x 3-x D .y =14x 3+12
x 2-2x 考点二、运用函数与方程思想解决方程问题
例2、(2015·山东,10)设函数f (x )=⎩
⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 取值范围是( )
A.⎣⎡⎦⎤23,1
B .[0,1] C.⎣⎡⎭
⎫23,+∞ D .[1, +∞)
【规律方法】
研究此类含参数的三角、指数、对数等复杂方程解的问题,通常有两种处理思路:一是分离参数构建函数,将方程有解转化为求函数的值域;二是换元,将复杂方程问题转化为熟悉的二次方程,进而利用二次方程解的分布情况构建不等式或构造函数加以解决.
【变式探究】 (2015·天津,8)已知函数f (x )=⎩
⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( )
A.⎝⎛⎭⎫74,+∞
B.⎝
⎛⎭⎫-∞,74 C.⎝⎛⎭⎫0,74 D.⎝⎛⎭
⎫74,2 难点三、运用函数与方程思想解决不等式问题
例3.(2015·湖南,15)已知函数f (x )=⎩
⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________.
【规律方法】
(1)在解决值的大小比较问题时,通过构造适当的函数,利用函数的单调性或图象解决是一种重要思想方法.
(2)在解决不等式恒成立问题时,一种重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题.同时要注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更明朗化,一般地,已知存在范围的量为变量,而待求范围的量为参数.
(3)在解决不等式证明问题时,构造适当的函数,利用函数方法解题是近几年各省市高考的一个热点.用导数来解决不等式问题时,一般都要先根据欲证的不等式构造函数,然后借助导数研究函数的单调性情况,再结合在一些特殊点处的函数值得到欲证的不等式.
【变式探究】设函数f(x)=2x 3+3ax 2+3bx +8c 在x =1及x =2时取到极值.
(1)求a ,b 的值;
(2)若对于任意的x ∈[0,3]都有f(x)<c 2成立,求c 的取值范围;
(3)若方程f(x)=c 2有三个根,求c 的取值范围.
难点四、运用函数与方程思想解决最优化问题
例4、(2015·江苏,17)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,R 以l 2,l 1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数
y=a
x2+b
(其中a,b为常数)模型.
(1)求a,b的值;
(2)设公路l与曲线C相切于P点,P的横坐标为t.
①请写出公路l长度的函数解析式f(t),并写出其定义域;
②当t为何值时,公路l的长度最短?求出最短长度.
【规律方法】
解析几何、立体几何及其实际应用等问题中的最优化问题,一般利用函数思想来解决,思路是先选择恰当的变量建立目标函数,再用函数的知识来解决.
【变式探究】某地建一座桥,两端的桥墩已建好,这两桥墩相距m米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x米的相邻两桥墩之间的桥面工程费用为(2+x)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.
(1)试写出y关于x的函数关系式.
(2)当m=640米时,需新建多少个桥墩才能使y最小?
【小结反思】
1.函数与方程思想在许多容易题中也有很多体现.
2.有很多时候可以将方程看成函数来研究,这就是函数思想.
3.有些时候可以将函数看成方程来研究,这就是最简单的方程思想.我们可以有意通过函数思想部分训练提升自己的数学能力.。