中考数学培优(含解析)之反比例函数附详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学培优(含解析)之反比例函数附详细答案
一、反比例函数
1.如图,一次函数y=x+4的图象与反比例函数y= (k为常数,且k≠0)的图象交于A (﹣1,a),B(b,1)两点.
(1)求反比例函数的表达式;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;
(3)求△PAB的面积.
【答案】(1)解:当x=﹣1时,a=x+4=3,
∴点A的坐标为(﹣1,3).
将点A(﹣1,3)代入y= 中,
3= ,解得:k=﹣3,
∴反比例函数的表达式为y=﹣
(2)解:当y=b+4=1时,b=﹣3,
∴点B的坐标为(﹣3,1).
作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,如图所示.
∵点B的坐标为(﹣3,1),
∴点D的坐标为(﹣3,﹣1).
设直线AD的函数表达式为y=mx+n,
将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n中,
,解得:,
∴直线AD的函数表达式为y=2x+5.
当y=2x+5=0时,x=﹣,
∴点P的坐标为(﹣,0)
(3)解:S△PAB=S△ABD﹣S△BDP= ×2×2﹣ ×2× =
【解析】【分析】(1)由一次函数图象上点的坐标特征可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出反比例函数的表达式;(2)利用一次函数图象上点的坐标特征可求出点B的坐标,作点B关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB的值最小,由点B的坐标可得出点D的坐标,根据点A、D的坐标利用待定系数法,即可求出直线AB的函数表达式,再由一次函数图象上点的坐标特征即可求出点P的坐标;(3)根据三角形的面积公式结合S△PAB=S△ABD﹣S△BDP,即可得出结论.
2.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.
(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= ,y=2(x﹣1)2+1的最大值和最小值;
(2)若y= 的值不大于2,求符合条件的x的范围;
(3)若y= ,当a≤x≤2时既无最大值,又无最小值,求a的取值范围;
(4)y=2(x﹣m)2+m﹣2,当2≤x≤4时有最小值为1,求m的值.
【答案】(1)解:y=2x+1中k=2>0,
∴y随x的增大而增大,
∴当x=2时,y最小=5;当x=4时,y最大=9.
∵y= 中k=2>0,
∴在2≤x≤4中,y随x的增大而减小,
∴当x=2时,y最大=1;当x=4时,y最小= .
∵y=2(x﹣1)2+1中a=2>0,且抛物线的对称轴为x=1,
∴当x=1时,y最小=1;当x=4时,y最大=19
(2)解:令y= ≤2,
解得:x<0或x≥1.
∴符合条件的x的范围为x<0或x≥1
(3)解:①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0
(4)解:①当m<2时,有2(2﹣m)2+m﹣2=1,
解得:m1=1,m2= (舍去);②当2≤m≤4时,有m﹣2=1,
解得:m3=3;③当m>4时,有2(4﹣m)2+m﹣2=1,
整理得:2m2﹣15m+29=0.
∵△=(﹣15)2﹣4×2×29=﹣7,无解.
∴m的值为1或3.①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无
最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0;
【解析】【分析】(1)根据k=2>0结合一次函数的性质即可得出:当2≤x≤4时,y=2x+1的最大值和最小值;根据二次函数的解析式结合二次函数的性质即可得出:当2≤x≤4时,
y=2(x﹣1)2+1的最大值和最小值;(2)令y= ≤2,解之即可得出x的取值范围;(3)①当k>0时,如图得当0<x≤2时,得到y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,得到y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=
无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,于是得到结论;(4)分m<2、2≤m≤4和m>4三种情况考虑,根据二次函数的性质结合当2≤x≤4时有最小值为1即可得出关于m的一元二次方程(一元一次方程),解之即可得出结论.
3.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,
OE=2.
(1)求反比例函数的解析式;
(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.
【答案】(1)解:∵OB=4,OE=2,∴BE=OB+OE=6.
∵CE⊥x轴,
∴∠CEB=90°.
在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO= ,
∴CE=BE•tan∠ABO=6× =3,
结合函数图象可知点C的坐标为(﹣2,3).
∵点C在反比例函数y= 的图象上,
∴m=﹣2×3=﹣6,
∴反比例函数的解析式为y=﹣
(2)解:∵点D在反比例函数y=﹣第四象限的图象上,∴设点D的坐标为(n,﹣)(n>0).
在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO= ,
∴OA=OB•tan∠ABO=4× =2.
∵S△BAF= AF•OB= (OA+OF)•OB= (2+ )×4=4+ .
∵点D在反比例函数y=﹣第四象限的图象上,
∴S△DFO= ×|﹣6|=3.
∵S△BAF=4S△DFO,
∴4+ =4×3,
解得:n= ,
经验证,n= 是分式方程4+ =4×3的解,
∴点D的坐标为(,﹣4).
【解析】【分析】(1)由边的关系可得出BE=6,通过解直角三角形可得出CE=3,结合函数图象即可得出点C的坐标,再根据点C的坐标利用反比例函数图象上点的坐标特征,即可求出反比例函数系数m,由此即可得出结论;(2)由点D在反比例函数在第四象限的
图象上,设出点D的坐标为(n,﹣)(n>0).通过解直角三角形求出线段OA的长度,再利用三角形的面积公式利用含n的代数式表示出S△BAF,根据点D在反比例函数图形上利用反比例函数系数k的几何意义即可得出S△DFO的值,结合题意给出的两三角形的面积间的关系即可得出关于n的分式方程,解方程,即可得出n值,从而得出点D的坐标.
4.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).
(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.
【答案】(1)解:设反比例函数的解析式为(k>0)
∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1。

∴A(﹣1,﹣2)。

又∵点A在上,∴,解得k=2。


∴反比例函数的解析式为
(2)解:观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣1<x<0或x>1。

(3)解:四边形OABC是菱形。

证明如下:
∵A(﹣1,﹣2),∴。

由题意知:CB∥OA且CB= ,∴CB=OA。

∴四边形OABC是平行四边形。

∵C(2,n)在上,∴。

∴C(2,1)。

∴。

∴OC=OA。

∴平行四边形OABC是菱形。

【解析】【分析】(1)设反比例函数的解析式为(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式。

(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CB∥OA 且CB= ,判断出四边形OABC是平行四边形,再证明OA=OC
5.如图,正比例函数和反比例函数的图象都经过点A(3,3),把直线OA向下平移后,与反比例函数的图象交于点B(6,m),与x轴、y轴分别交于C、D两点.
(1)求m的值;
(2)求过A、B、D三点的抛物线的解析式;
(3)若点E是抛物线上的一个动点,是否存在点E,使四边形OECD的面积S1,是四边
形OACD面积S的?若存在,求点E的坐标;若不存在,请说明理由.
【答案】(1)解:∵反比例函数的图象都经过点A(3,3),
∴经过点A的反比例函数解析式为:y= ,
而直线OA向下平移后,与反比例函数的图象交于点B(6,m),
∴m=
(2)解:∵直线OA向下平移后,与反比例函数的图象交于点B(6,),
与x轴、y轴分别交于C、D两点,
而这些OA的解析式为y=x,
设直线CD的解析式为y=x+b
代入B的坐标得: =6+b,
∴b=﹣4.5,
∴直线OC的解析式为y=x﹣4.5,
∴C、D的坐标分别为(4.5,0),(0,﹣4.5),
设过A、B、D三点的抛物线的解析式为y=ax2+bx+c,
分别把A、B、D的坐标代入其中得:
解之得:a=﹣0.5,b=4,c=﹣4.5
∴y=﹣0.5x2+4x﹣4.5
(3)解:如图,
设E的横坐标为x,
∴其纵坐标为﹣0.5x2+4x﹣4.5,
∴S1= (﹣0.5x2+4x﹣4.5+OD)×OC,
= (﹣0.5x2+4x﹣4.5+4.5)×4.5,
= (﹣0.5x2+4x)×4.5,
而S= (3+OD)×OC= (3+4.5)×4.5= ,
∴(﹣0.5x2+4x)×4.5= ,
解之得x=4± ,
∴这样的E点存在,坐标为(4﹣,0.5),(4+ ,0.5).
【解析】【分析】(1)先根据点A的坐标求得反比例函数的解析式,又点B在反比例函数图像上,代入即可求得m的值;(2)先根据点A的坐标求得直线OA的解析式,再结合点B的坐标求得直线CD的解析式,从而可求得点C、D的坐标,利用待定系数法即可求得抛物线的解析式;(3)先设出抛物线上E点的坐标,从而表示出面积S1,再求得面积S 的值,令其相等可得到关于x的二元一次方程,方程有解则点E存在,并可求得点E的坐
标.
6.理数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:
思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接
AD.设AC=1,则BD=BA=2,BC= .tanD=tan15°= = = .
思路二利用科普书上的和(差)角正切公式:tan(α±β)= .假设
α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)= =
= .
思路三在顶角为30°的等腰三角形中,作腰上的高也可以…
思路四…
请解决下列问题(上述思路仅供参考).
(1)类比:求出tan75°的值;
(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;
(3)拓展:如图3,直线与双曲线交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.
【答案】(1)解:方法一:如图1,
在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC= .tan∠DAC=tan75°= = = = ;
方法二:tan75°=tan(45°+30°)= = = =
(2)解:如图2,
在Rt△ABC中,AB= = = ,sin∠BAC= ,即
∠BAC=30°.∵∠DAC=45°,∴∠DAB=45°+30°=75°.在Rt△ABD中,tan∠DAB= ,∴DB=AB•tan∠DAB= •()= ,∴DC=DB﹣BC= = .
答:这座电视塔CD的高度为()米
(3)解:①若直线AB绕点C逆时针旋转45°后,与双曲线相交于点P,如图3.过点C 作CD∥x轴,过点P作PE⊥CD于E,过点A作AF⊥CD于F.
解方程组:,得:或,∴点A(4,1),点B(﹣2,﹣2).对于,当x=0时,y=﹣1,则C(0,﹣1),OC=1,∴CF=4,AF=1﹣(﹣1)=2,∴tan∠ACF= ,∴tan∠PCE=tan(∠ACP+∠ACF)=tan
(45°+∠ACF)= = =3,即 =3.设点P的坐标为(a,b),则有:,
解得:或,∴点P的坐标为(﹣1,﹣4)或(,3);
②若直线AB绕点C顺时针旋转45°后,与x轴相交于点G,如图4.
由①可知∠ACP=45°,P(,3),则CP⊥CG.过点P作PH⊥y轴于H,则∠GOC=∠CHP=90°,∠GCO=90°﹣∠HCP=∠CPH,∴△GOC∽△CHP,∴.∵CH=3
﹣(﹣1)=4,PH= ,OC=1,∴,∴GO=3,G(﹣3,0).设直线CG的解析式为,则有:,解得:,∴直线CG的解析式为
.联立:,消去y,得:,整理得:,∵△= ,∴方程没有实数根,∴点P 不存在.
综上所述:直线AB绕点C旋转45°后,能与双曲线相交,交点P的坐标为(﹣1,﹣4)或
(,3).
【解析】【分析】tan∠DAC=tan75°,tan∠DAC用边的比值表示.在Rt△ABC中,由勾股定理求出AB,由三角函数得出∠BAC=30°,从而得到∠DAB=75°,在Rt△ABD中,可求出DB,DC=DB﹣BC.分两种情况讨论,设点P的坐标为(a,b),根据tan∠PCE和P在图像上列出含有a,b的方程组,求出a,b.利用已知证明△GOC∽△CHP,根据相似三角形的性质可求出G的坐标,设出直线CG的解析式,与反比例函数组成方程组消元,△<0 点P不存在.
7.如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.
(1)求直线AB和反比例函数的解析式;
(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;
(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.
【答案】(1)解:设反比例函数解析式为y= ,
把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,
∴反比例函数解析式为y= ;
把A(3,m)代入y= ,可得3m=6,
即m=2,
∴A(3,2),
设直线AB 的解析式为y=ax+b,
把A(3,2),B(﹣2,﹣3)代入,可得,
解得,
∴直线AB 的解析式为y=x﹣1
(2)解:由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方
(3)解:存在点C.
如图所示,延长AO交双曲线于点C1,
∵点A与点C1关于原点对称,
∴AO=C1O,
∴△OBC1的面积等于△OAB的面积,
此时,点C1的坐标为(﹣3,﹣2);
如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,
由B(﹣2,﹣3)可得OB的解析式为y= x,
可设直线C1C2的解析式为y= x+b',
把C1(﹣3,﹣2)代入,可得﹣2= ×(﹣3)+b',
解得b'= ,
∴直线C1C2的解析式为y= x+ ,
解方程组,可得C2();
如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,
设直线AC3的解析式为y= x+ ,
把A(3,2)代入,可得2= ×3+ ,
解得 =﹣,
∴直线AC3的解析式为y= x﹣,
解方程组,可得C3();
综上所述,点C的坐标为(﹣3,﹣2),(()).
【解析】【分析】(1)用待定系数法求出反比例函数解析式,一次函数解析式,将已知的点A,B的坐标代入设的函数解析式列出关于待定系数的方程(组)求出系数,再回代到解析式
(2)结合图像判断直线AB在双曲线的交点坐标为A,B,X取值范围为双曲线所在象限交点的横坐标,第一象限为为小于横坐标大于零,第三象限为小于横坐标
(3)结合已知条件根据同底等高、等底同高作出与原三角形面积相等的三角形,再结合已知条件用待定系数法求出与双曲线有交点的直线的解析式,得出点的坐标,注意要考虑满足条件的所有点C的坐标。

8.在平面直角坐标系中,我们定义点P(a,b)的“变换点”为Q.且规定:当a≥b时,Q 为(b,﹣a);当a<b时,Q为(a,﹣b).
(1)点(2,1)的变换点坐标为________;
(2)若点A(a,﹣2)的变换点在函数y= 的图象上,求a的值;
(3)已知直线l与坐标轴交于(6,0),(0,3)两点.将直线l上所有点的变换点组成一个新的图形记作M.判断抛物线y=x2+c与图形M的交点个数,以及相应的c的取值范
围,请直接写出结论.
【答案】(1)(1,﹣2)
(2)解:当a≥﹣2时,则A(a,﹣2)的变换点坐标为(﹣2,﹣a),
代入y= 可得﹣a= ,解得a= ;
当a<﹣2时,则A(a,﹣2)的变换点坐标为(a,2),
代入y= 可得2= ,解得a= ,不符合题意;
综上可知a的值为;
(3)解:设直线l的解析式为y=kx+b (k≠0 ),将点(6,0)、(0,3)代入y=kx+b 得:,解得,
∴直线l的解析式为y=﹣ x+3.
当x=y时,x=﹣ x+3,解得x=2.
点C的坐标为(2,﹣2),点C的变换点的坐标为C′( 2,﹣2 ),
点(6,0)的变换点的坐标为(0,﹣6),点(0,3)的变换点的坐标为(0,﹣3),
当x≥2时,所有变换点组成的图形是以C′( 2,﹣2)为端点,过(0,﹣6 )的一条射线;即:y=2x﹣6,其中x≥2,
当x<2时,所有变换点组成的图形是以C′(2,﹣2)为端点,过(0,﹣3)的一条射线,
即y= x﹣3,其中,x<2.
所以新的图形M是以C′(2,﹣2)为端点的两条射线组成的图形.
如图所示:
由和得:x2﹣x+c+3=0①和x2﹣2x+c+6=0②
讨论一元二次方程根的判别式及抛物线与点C′的位置关系可得:
①当方程①无实数根时,即:当c>﹣时,抛物线y=x2+c与图形M没有交点;
②当方程①有两个相等实数根时,即:当c=﹣时,抛物线y=x2+c与图形M有一个交点;
③当方程②无实数根,且方程①有两个不相等的实数根时,即:当﹣5<c<﹣时,抛物线y=x2+c与图形M有两个交点;
④当方程②有两个相等实数根或y=x2+c恰好经过经过点C′时,即:当c=﹣5或c=﹣6时,抛物线y=x2+c与图形M有三个交点;
⑤当方程②方程①均有两个不相等的实数根时,且两根均小于2,即:当﹣6<c<﹣5时,抛物线y=x2+c与图形M有四个交点;
⑥当c<﹣6时,抛物线y=x2+c与图形M有两个交点.
【解析】【解答】解:(1)∵2≥﹣1,
∴点(2,1)的变换点坐标为(1,﹣2),
故答案为:(1,﹣2);
【分析】(1)由变换点的定义可求得答案;(2)由变换点的定义可求得A的变换点,代入函数解析式可求得a的值;(3)先求得直线y=x与直线l的交点坐标,然后分为当x≥2和x<2两种情况,求得M的关系式,然后在画出M的大致图象,然后将抛物线y=x2+c与M的函数关系式组成方程组,然后依据一元二次方程根的判别式进行判断即可.
9.在平面直角坐标系xOy中,对于双曲线y= (m>0)和双曲线y= (n>0),如果
m=2n,则称双曲线y= (m>0)和双曲线y= (n>0)为“倍半双曲线”,双曲线y=
(m>0)是双曲线y= (n>0)的“倍双曲线”,双曲线y= (n>0)是双曲线y= (m>0)的“半双曲线”,
(1)请你写出双曲线y= 的“倍双曲线”是________;双曲线y= 的“半双曲线”是________;
(2)如图1,在平面直角坐标系xOy中,已知点A是双曲线y= 在第一象限内任意一点,过点A与y轴平行的直线交双曲线y= 的“半双曲线”于点B,求△AOB的面积;
(3)如图2,已知点M是双曲线y= (k>0)在第一象限内任意一点,过点M与y轴
平行的直线交双曲线y= 的“半双曲线”于点N,过点M与x轴平行的直线交双曲线y= 的“半双曲线”于点P,若△MNP的面积记为S△MNP,且1≤S△MNP≤2,求k的取值范围.
【答案】(1)y=
;y=
(2)解:如图1,
∵双曲线y= 的“半双曲线”是y= ,
∴△AOD的面积为2,△BOD的面积为1,
∴△AOB的面积为1
(3)解:解法一:如图2,
依题意可知双曲线的“半双曲线”为,
设点M的横坐标为m,则点M坐标为(m,),点N坐标为(m,),∴CM= ,CN= .
∴MN= ﹣ = .
同理PM=m﹣ = .
∴S△PMN= M N•PM=
∵1≤S△PMN≤2,
∴1≤ ≤2.
∴4≤k≤8,
解法二:如图3,
依题意可知双曲线的“半双曲线”为,
设点M的横坐标为m,则点M坐标为(m,),点N坐标为(m,),∴点N为MC的中点,同理点P为MD的中点.
连接OM,
∵,
∴△PMN∽△OCM.
∴.
∵S△OCM=k,
∴S△PMN= .
∵1≤S△PMN≤2,
∴1≤ ≤2.
∴4≤k≤8.
【解析】【解答】解:(1)由“倍双曲线”的定义
∴双曲线y= ,的“倍双曲线”是y= ;
双曲线y= 的“半双曲线”是y= .
故答案为y= ,y= ;
【分析】(1)直接利用“倍双曲线”的定义即可;(2)利用双曲线的性质即可;(3)先利用双曲线上的点设出M的横坐标,进而表示出M,N的坐标;方法一、用三角形的面积公式建立不等式即可得出结论;方法二、利用相似三角形的性质得出△PMN的面积,进而建立不等式即可得出结论.
10.如图1,在平面直角坐标系,O为坐标原点,点A(﹣2,0),点B(0,2 ).
(1)直接写求∠BAO的度数;
(2)如图1,将△AOB绕点O顺时针得△A′OB′,当A′恰好落在AB边上时,设△AB′O的面积为S1,△BA′O的面积为S2, S1与S2有何关系?为什么?
(3)若将△AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.
【答案】(1)解:∵A(−2,0),B(0,),
∴OA=2,OB=,
在Rt△AOB中,tan∠BAO=,
∴∠BAO=60°
(2)解:S1=S2;
理由:∵∠BAO=60°,∠AOB=90°,
∴∠ABO=30°,
∴OA'=OA= AB,△AOA'是等边三角形,
∴OA'=AA'=AO=A'B,
∵∠B'A'O=60°,∠A'OA=60°,
∴B'A'∥AO,
根据等边三角形的性质可得,△AOA'的边AO、AA'上的高相等,即△AB′O中AO边上高和△BA′O中BA′边上的高相等,
∴△BA'O的面积和△AB'O的面积相等(等底等高的三角形的面积相等),
即S1=S2
(3)证明:S1=S2不发生变化;
理由:如图,过点A'作A'M⊥OB.过点A作AN⊥OB'交B'O的延长线于N,
∵△A'B'O是由△ABO绕点O旋转得到,
∴BO=OB',AO=OA',
∵∠AON+∠BON=90°,∠A'OM+∠BON=90°,
∴∠AON=∠A'OM,
在△AON和△A'OM中,,
∴△AON≌△A'OM(AAS),
∴AN=A'M,
∴△BOA'的面积和△AB'O的面积相等(等底等高的三角形的面积相等),
即S1=S2.
【解析】【分析】(1)先求出OA,OB,再用锐角三角函数即可得出结论;(2)根据旋转的性质和直角三角形的性质可证得OA'=AA'=AO=A'B,然后根据等边△AOA'的边AO、AA'上的高相等,即可得到S1=S2;(3)根据旋转的性质可得BO=OB',AA'=OA',再求出∠AON=∠A'OM,然后利用“角角边”证明△AON和△A'OM全等,根据全等三角形对应边相等可得AN=A'M,然后利用等底等高的三角形的面积相等证明.
11.如图,正方形、等腰的顶点在对角线上(点与、不重合),
与交于,延长线与交于点,连接 .
(1)求证: .
(2)求证:
(3)若,求的值.
【答案】(1)解:∵是正方形,
∴,,
∵是等腰三角形,
∴,,
∴,
∴,

(2)解:∵是正方形,
∴,,
∵是等腰三角形,
∴,
∵,∵,
∴,
∴,
∴,
∴,
∴,
(3)解:由(1)得,,,
∴,
由(2) ,
∴,
∵,
∴,
在中,


【解析】【分析】(1)证出∠ABP=∠CBQ,由SAS证明△ABP≌△CBQ可得结论;
(2)根据正方形的性质和全等三角形的性质得到,∠APF=∠ABP,可证明△APF∽△ABP,再根据相似三角形的性质即可求解;
(3)根据全等三角形的性质得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根据三角函数和已
知条件得到,由(2)可得,等量代换可得∠CBQ=∠CPQ即可求解.
12.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.
问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别
在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;
(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;
(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?
【答案】(1)解:∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;
(2)解:点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1.∵抛物线解析式为,∴,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴,将
n=m+1带入得到m=2,n=3;
∴D(2,3),∴抛物线解析式为.
(3)解:①如图,当点A′在平行于y轴的D点的特征线时:
根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,
∴MN= = ,∴抛物线需要向下平移的距离= = .
②如图,
当点A′在平行于x轴的D点的特征线时,设A′(p,3),则OA′=OA=4,OE=3,EA′= = ,∴A′F=4﹣,设P(4,c)(c>0),,在Rt△A′FP中,(4﹣)2+
(3﹣c)2=c2,∴c= ,∴P(4,),∴直线OP解析式为y=
x,∴N(2,),∴抛物线需要向下平移的距离=3﹣ = .
综上所述:抛物线向下平移或距离,其顶点落在OP上.
【解析】【分析】(1)根据特征线直接求出点D的特征线;(2)由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式;(2)分平行于x轴和y轴两种情况,由折叠的性质计算即可.。

相关文档
最新文档