港闸区第二中学2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
港闸区第二中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 抛物线x=﹣4y 2的准线方程为( )
A .y=1
B .y=
C .x=1
D .x=
2. 如图甲所示, 三棱锥 的高 ,分别在P ABC -8,3,30PO AC BC ACB ===∠=
,M N BC
和上,且,图乙的四个图象大致描绘了三棱锥的体积与PO (),203CM x PN x x ==∈
(,N AMC -y 的变化关系,其中正确的是(
)
A .
B . C. D .1111]
3. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知三个社区分别有低收入家C B A ,,庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从社C 区抽取低收入家庭的户数为( )
A .48
B .36
C .24
D .18
【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.4. 已知x ,y 满足时,z=x ﹣y 的最大值为( )
A .4
B .﹣4
C .0
D .2
5. 已知三棱柱 的侧棱与底面边长都相等,在底面上的射影为的中点, 111ABC A B C -1A ABC BC 则异面直线与所成的角的余弦值为(
)
AB 1CC
A B D .
34
6. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪
≤⎨⎪+≤⎩
下,目标函数z x my =+的最大值小于2,则m 的取值范围为
(
)
A
.(1,1+
B
.(1)++∞
C. (1,3)
D .(3,)
+∞7. 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为(
)
A .4320
B .2400
C .2160
D .1320
8. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为(
)
A. B .483C.D .16320
3
9. 对于复数
,若集合具有性质“对任意,必有”,
则当
时,等于 ( )
A1B-1C0D
10.设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )
A .只有减区间没有增区间
B .是f (x )的增区间
C .m=±1
D .最小值为﹣3
11.设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数
()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数
()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+
+++= ⎪ ⎪ ⎪ ⎪⎝⎭
⎝⎭⎝⎭⎝⎭
( )A .2013 B .2014 C .2015 D .2016
1111]
12.已知数列为等差数列,为前项和,公差为,若,则的值为( ){}n a n S d 201717
100201717
S S -=d A .
B .
C .
D .1
20
1
10
1020
二、填空题
13.在中,有等式:①;②;③;④
ABC ∆sin sin a A b B =sin sin a B b A =cos cos a B b A =.其中恒成立的等式序号为_________.sin sin sin a b c
A B C
+=+14.已知过双曲线的右焦点的直线交双曲线于两点,连结,若
22
221(0,0)x y a b a b
-=>>2F ,A B 11,AF BF ,且,则双曲线的离心率为( )
1||||AB BF =190ABF ∠=︒
A .
B
C .
D 5-6-
【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.
15.已知、、分别是三内角的对应的三边,若,则
a b c ABC ∆A B C 、、C a A c cos sin -=
的取值范围是___________.3cos(4
A B π
-+
【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、
转化思想.
16.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=,若函数y=f (f ()
210{ 21(0)
x
x
x e x x x +≥++<(x )﹣a )﹣1有三个零点,则a 的取值范围是_____.
三、解答题
17.
已知椭圆的离心率
,且点
在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)直线与椭圆
交于
、
两点,且线段
的垂直平分线经过点
.求
(
为坐标原点)
面积的最大值.
18.(本小题满分12分)设f (x )=-x 2+ax +a 2ln x (a ≠0).(1)讨论f (x )的单调性;
(2)是否存在a >0,使f (x )∈[e -1,e 2]对于x ∈[1,e]时恒成立,若存在求出a 的值,若不存在说明理由.
19.直三棱柱ABC ﹣A 1B 1C 1 中,AA 1=AB=AC=1,E ,F 分别是CC 1、BC 的中点,AE ⊥A 1B 1,D 为棱A 1B 1上的点.(1)证明:DF ⊥AE ;
(2)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为?若存在,说明点D 的位置,
若不存在,说明理由.
20.(本小题满分12分)
两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设分别表示甲,乙,丙3个,,x y z 盒中的球数.
(1)求,,的概率;
0x =1y =2z =(2)记,求随机变量的概率分布列和数学期望.
x y ξ=+ξ【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.
21.(本小题满分12分)
已知函数.2
1()(3)ln 2
f x x a x x =
+-+(1)若函数在定义域上是单调增函数,求的最小值;
()f x (2)若方程在区间上有两个不同的实根,求的取值范围.
2
1()()(4)02f x a x a x -+--=1[,]e e
22.(本题满分15分)
设点是椭圆上任意一点,
过点作椭圆的切线,与椭圆交于,P 14:2
21=+y x C P )1(14:22222>=+t t
y t x C A 两点.
B
(1)求证:;
PB PA =(2)的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
OAB ∆【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.
港闸区第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题
1. 【答案】D
【解析】解:抛物线x=﹣4y 2即为y 2=﹣x ,
可得准线方程为x=.
故选:D .
2. 【答案】A 【解析】
考
点:几何体的体积与函数的图象.
【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.
3. 【答案】C
【解析】根据分层抽样的要求可知在社区抽取户数为.
C 249
2
108180270360180108=⨯=++⨯4. 【答案】A
【解析】解:由约束条件
作出可行域如图,
联立,得A(6,2),
化目标函数z=x﹣y为y=x﹣z,
由图可知,当直线y=x﹣z过点A时,直线在y轴上的截距最小,z有最大值为4.
故选:A.
【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
5.【答案】D
【解析】
考点:异面直线所成的角.
6.【答案】A
【解析】
考点:线性规划.
【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为
z
m
,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨
⎧==+00001mx y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求
m 的范围.
7. 【答案】D
【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有•
=388,
第二组(1,1,2,2),利用间接法,有(﹣
)•
=932
根据分类计数原理,可得388+932=1320种,故选D .
【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题.
8. 【答案】
【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V =23-×2×2×1=,故选D.
13203
9. 【答案】B 【解析】由题意,可取,所以
10.【答案】B
【解析】解:若f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,则f (0)=|m|﹣1=0,则m=1或m=﹣1,
当m=1时,f (x )=|x ﹣1|﹣|x ﹣1|=0,此时为偶函数,不满足条件,当m=﹣1时,f (x )=|x+1|﹣|x ﹣1|,此时为奇函数,满足条件,作出函数f (x )的图象如图:则函数在上为增函数,最小值为﹣2,故正确的是B ,故选:B
【点评】本题主要考查函数的奇偶性的应用,根据条件求出m 的值是解决本题的关键.注意使用数形结合进行求解.
11.【答案】D
【解析】
1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫
⎛⎫⎛⎫
⎛⎫⎛⎫⎛⎫⎛⎫
⎛⎫=
++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
⎝⎭⎝
⎭⎝⎭⎝⎭⎣⎦
,故选D. 1()1
2201620162
=⨯⨯=考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.
【方法点睛】本题通过 “三次函数()()3
2
0f x ax bx cx d a =+++≠都有对称中心()
(
)00,x f x ”这一探索
性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出的对称中心后再利用对称()3115
33212
f x x x x =-+-性和的.
第Ⅱ卷(非选择题共90分)
12.【答案】B 【解析】
试题分析:若为等差数列,
,则为等差数列公差为, {}n a ()
()111212n
n n na S d a n n
n -+
==+-⨯n S n ⎧⎫⎨⎬⎩⎭
2d ,故选B. 2017171
100,2000100,201717210
S S d d ∴
-=⨯==考点:1、等差数列的通项公式;2、等差数列的前项和公式.
二、填空题
13.【答案】②④
【解析】
试题分析:对于①中,由正弦定理可知,推出或,所以三角形为等腰三角
sin sin a A b B =A B =2
A B π
+=
形或直角三角形,所以不正确;对于②中,,即恒成立,所以是正
sin sin a B b A =sin sin sin sin A B B A =确的;对于③中,,可得,不满足一般三角形,所以不正确;对于④中,由cos cos a B b A =sin()0B A -=正弦定理以及合分比定理可知
是正确,故选选②④.1sin sin sin a b c
A B C
+=+考点:正弦定理;三角恒等变换.14.【答案】B 【
解
析
】
15.【答案】 【
解
析
】
16.【答案】1
1[133e
e ⎧⎫+⋃+⎨⎬
⎩
⎭
,)【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,
当x ≥0时,由f (x )﹣1=0得
,得x=0,110x x
e
+-=由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2,即f (x )=a ,f (x )=a ﹣2,作出函数f (x )的图象如图:
y=
≥1(x ≥0),1x
x
e +y ′=,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,
1x
x e
-x=1时,函数取得最大值:,
1
1e
+当1<a ﹣2时,即a ∈(3,3+)时,y=f (f (x )﹣a )﹣1有4个零点,
11e <+1
e 当a ﹣2=1+时,即a=3+时则y=
f (f (x )﹣a )﹣1有三个零点,
1e 1
e 当a >3+时,y=
f (f (x )﹣a )﹣1有1个零点
1
e 当a=1+时,则y=
f (f (x )﹣a )﹣1有三个零点,
1
e 当时,即a ∈(1+,3)时,y=
f (f (x )﹣a )﹣1有三个零点.
11{ 21
a e a >+-≤1e
综上a ∈,函数有3个零点.1
1[133e
e ⎧⎫+⋃+⎨⎬⎩
⎭
,)故答案为:.
11[133e
e ⎧⎫+⋃+⎨⎬⎩
⎭
)点睛:已知函数有零点求参数取值范围常用的方法和思路
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;
(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.三、解答题
17.【答案】
【解析】【知识点】圆锥曲线综合椭圆
【试题解析】(Ⅰ)由已知,
点在椭圆上,,解得.
所求椭圆方程为
(Ⅱ)设,,的垂直平分线过点, 的斜率存在.
当直线的斜率时,
当且仅当时,
当直线的斜率时,设.
消去得:
由.①
,
,的中点为
由直线的垂直关系有,化简得②
由①②得
又到直线的距离为,
时,
.
由,,解得
;
即时,
;
综上:;
18.【答案】
【解析】解:(1)f (x )=-x 2+ax +a 2ln x 的定义域为{x |x >0},f ′(x )=-2x +a +a 2x
=.
-2(x +a
2
)(x -a )
x
①当a <0时,由f ′(x )<0得x >-,
a 2
由f ′(x )>0得0<x <-.
a 2
此时f (x )在(0,-)上单调递增,
a 2
在(-,+∞)上单调递减;
a
2
②当a >0时,由f ′(x )<0得x >a ,由f ′(x )>0得0<x <a ,
此时f (x )在(0,a )上单调递增,在(a ,+∞)上单调递减.(2)假设存在满足条件的实数a ,∵x ∈[1,e]时,f (x )∈[e -1,e 2],∴f (1)=-1+a ≥e -1,即a ≥e ,①由(1)知f (x )在(0,a )上单调递增,∴f (x )在[1,e]上单调递增,
∴f (e )=-e 2+a e +e 2≤e 2,即a ≤e ,②由①②可得a =e ,故存在a =e ,满足条件.
19.【答案】
【解析】(1)证明:∵AE ⊥A 1B 1,A 1B 1∥AB ,∴AE ⊥AB ,又∵AA 1⊥AB ,AA 1⊥∩AE=A ,∴AB ⊥面A 1ACC 1,
又∵AC⊂面A1ACC1,∴AB⊥AC,
以A为原点建立如图所示的空间直角坐标系A﹣xyz,
则有A(0,0,0),E(0,1,),F(,,0),A1(0,0,1),B1(1,0,1),设D(x,y,z),且λ∈,即(x,y,z﹣1)=λ(1,0,0),
则D(λ,0,1),所以=(,,﹣1),
∵=(0,1,),∴•==0,所以DF⊥AE;
(2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为.
理由如下:
设面DEF的法向量为=(x,y,z),则,
∵=(,,),=(,﹣1),
∴,即,
令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)).
由题可知面ABC的法向量=(0,0,1),
∵平面DEF与平面ABC所成锐二面角的余弦值为,
∴|cos<,>|==,即=,
解得或(舍),所以当D为A1B1中点时满足要求.
【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.
20.【答案】
【解析】(1)由,,知,甲、乙、丙3个盒中的球数分别为0,1,2,
0x =1y =2z =此时的概率.
(4分)
2
13
111
324
P C ⎛⎫=⨯⨯= ⎪⎝⎭
21.【答案】(1);(2).1111]
01a <<
【解析】
则
对恒成立,即对恒成立,
'()0f x ≥0x >1
(3a x x
≥-++0x >而当时,,
0x >1
()3231x x
-++≤-+=∴.
1a ≥若函数在上递减,
()f x (0,)+∞则对恒成立,即对恒成立,'()0f x ≤0x >1()3a x x
≤-++0x >这是不可能的.综上,.1a ≥的最小值为1. 1
(2)由,2
1()()(2)2ln 02
f x a x a x x =-+-+=得,
2
1()(2)2ln 2
a x a x x -+-=即,令,,2ln x x a x +=2ln ()x x r x x +=233
1
(1)2(ln )
12ln '()x x x x x x x r x x x
+-+--==得的根为1,
12ln 0x x --=
考点:1、利用导数研究函数的单调性;2、函数零点问题及不等式恒成立问题.
【方法点晴】本题主要考查利用导数研究函数的单调性、函数零点问题及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题(2)就是先将问题转化为不等式恒成立问题后再利用①求得的最小值的.
请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.【答案】(1)详见解析;(2)详见解析.
∴点为线段中点,;…………7分
P AB PB PA =(2)若直线斜率不存在,则,与椭圆方程联立可得,,
AB 2:±=x AB 2C )1,2(2
--±t A
,故,…………9分
)1,2(2-±t B 122-=∆t S OAB 若直线斜率存在,由(1)可得
AB ,,,…………11分1482
21+-=+k km x x 144422221+-=k t m x x 141141222212
+-+=-+=k t k x x k AB 点到直线的距离,…………13分O AB 2
2211
41k
k k m d ++=
+=∴,综上,的面积为定值.…………15分
122
12
-=⋅=∆t d AB S OAB OAB ∆122-t。