等比数列单元测试题含答案doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等比数列选择题
1.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列()
{}
1
11n n n a a -+-的
前n 项的和为( )
A .()23
82133n n +--
B .()23
182155n n +---
C .()2382133
n n ++-
D .()23182155
n n +-+-
2.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8
B .8±
C .8-
D .1
3.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12
B .18
C .24
D .32
4.在等比数列{}n a 中,24a =,532a =,则4a =( ) A .8 B .8- C .16 D .16-
5.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=
( ) A .4
B .5
C .8
D .15
6.已知各项不为0的等差数列{}n a 满足2
6780a a a -+=,数列{}n b 是等比数列,且
77b a =,则3810b b b =( )
A .1
B .8
C .4
D .2
7.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?此问题中1斗为10升,则牛主人应偿还多少升粟?( ) A .
503
B .
507
C .
100
7
D .
200
7
8.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}
2
n a 的前n 项和为n T ,若2
(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )
A .()3,+∞
B .()1,3-
C .93,5⎛⎫ ⎪⎝⎭
D .91,5⎛
⎫- ⎪⎝

9.公比为(0)q q >的等比数列{}n a 中,1349,27a a a ==,则1a q +=( ) A .1
B .2
C .3
D .4
10.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->

1021031
01
a a -<-,则使得1n T >成立的最大自然数n 的值为( )
A .102
B .203
C .204
D .20511.题目文件丢失!
12.明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑.其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”.注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为( )
A .3
B .12
C .24
D .48
13.在数列{}n a 中,32a =,12n n a a +=,则5a =( ) A .32
B .16
C .8
D .4
14.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3
分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于
9
10
,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)
A .4
B .5
C .6
D .7
15.已知等比数列{}n a 中,17a =,435a a a =,则7a =( ) A .
19
B .
17
C .
13
D .7
16.古代数学名著《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:一女子善于织布,每天织的布是前一天的2倍,已知她5天共织布5尺,问该女子每天分别织布多少?由此条件,若织布的总尺数不少于20尺,该女子需要的天数至少为 ( )
A .6
B .7
C .8
D .9
17.已知等比数列{}n a 的前n 项和为2,2n S a =,公比2q ,则5S 等于( )
A .32
B .31
C .16
D .15
18.在等比数列{}n a 中,12345634159,88
a a a a a a a a +++++=
=-,则123456
111111
a a a a a a +++++=( ) A .
35
B .
35
C .
53
D .53
-
19.已知等比数列{}n a 的前n 项和为n S ,若123
111
2a a a ++=,22a =,则3S =( ) A .8
B .7
C .6
D .4
20.设n S 为等比数列{}n a 的前n 项和,若11
0,,22
n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4
⎛⎤ ⎥⎝

B .20,3
⎛⎤ ⎥⎝

C .30,4⎛⎫ ⎪⎝⎭
D .20,3⎛⎫ ⎪⎝⎭
二、多选题21.题目文件丢失!
22.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的
2
3
再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( ) A .500n S < B .500n S ≤
C .n S 的最小值为
700
3
D .n S 的最大值为400
23.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )
A .数列{}n a 为等比数列
B .数列{}n S n +为等比数列
C .数列{}n a 中10511a =
D .数列{}2n S 的前n 项和为
2224n n n +---
24.关于递增等比数列{}n a ,下列说法不正确的是( )
A .当101a q >⎧⎨>⎩
B .10a >
C .1q >
D .1
1n
n a a +< 25.已知数列{}n a 的前n 项和为n S 且满足111
30(2),3
n n n a S S n a -+=≥=,下列命题中正确的是( )
A .1n S ⎧⎫

⎬⎩⎭
是等差数列 B .13n S n
=
C .1
3(1)
n a n n =-
-
D .{}
3n S 是等比数列
26.数列{}n a 对任意的正整数n 均有2
12n n n a a a ++=,若22a =,48a =,则10S 的可能值
为( ) A .1023
B .341
C .1024
D .342
27.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .12
33
BE BA BC =
+ C .数列{a n }为等比数列
D .14n
n n a a +-=
28.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,781a a ⋅>,
871
01
a a -<-,则下列结论正确的是( ) A .01q << B .791a a ⋅> C .n S 的最大值为9S
D .n T 的最大值为7T
29.在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路
B .此人第一天走的路程比后五天走的路程多六里
C .此人第二天走的路程占全程的
14
D .此人走的前三天路程之和是后三天路程之和的8倍
30.已知数列{a n },{b n }均为递增数列,{a n }的前n 项和为S n ,{b n }的前n 项和为T n .且满足a n +a n +1=2n ,b n •b n +1=2n (n ∈N *),则下列说法正确的有( )
A .0<a 1<1
B .1<b 1
C .S 2n <T 2n
D .S 2n ≥T 2n
31.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,781a a >,
871
01
a a -<-.则下列结论正确的是( ) A .01q <<
B .791a a <
C .n T 的最大值为7T
D .n S 的最大值为7S
32.设{}n a 是无穷数列,若存在正整数k ,使得对任意n +∈N ,均有n k n a a +>,则称
{}n a 是间隔递增数列,k 是{}n a 的间隔数,下列说法正确的是( )
A .公比大于1的等比数列一定是间隔递增数列
B .已知4
n a n n
=+
,则{}n a 是间隔递增数列 C .已知()21n
n a n =+-,则{}n a 是间隔递增数列且最小间隔数是2
D .已知2
2020n a n tn =-+,若{}n a 是间隔递增数列且最小间隔数是3,则45t ≤<
33.在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若 1418a a +=, 2312a a +=,则下列说法正确的是( )
A .2q
B .数列{}2n S +是等比数列
C .8
510S =
D .数列{}lg n a 是公差为2的等差数列
34.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,991001
01
a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的
D .使1n T >成立的最大自然数n 等于198 35.对于数列{}n a ,若存在数列{}n b 满足1
n n n
b a a =-
(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;
B .若31n a n =-,则其“倒差数列”有最大值;
C .若31n a n =-,则其“倒差数列”有最小值;
D .若112n
n a ⎛⎫=-- ⎪⎝⎭,则其“倒差数列”有最大值.
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.D 【分析】
根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入
()
1
11n n n a a -+-可知数列为等比数列,求和即可.
【详解】
因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,
所以31121
208a q a q a q ⎧+=⎨=⎩,
解得2q
,12a =,
所以1222n n
n a -=⨯=,
()
()
()
111
1
1
1222111n n n n n n n n a a ++-+--+=⋅⋅-=∴--,
()
{
}
1
11n n n a a -+∴-是以8为首项,4-为公比的等比数列,
()
23
3
5
7
9
21
11
8[1(4)]8222222
(1)1(4)155
n n n n n n S -++---∴=-+--+
+⋅==+---, 故选:D 【点睛】
关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可. 2.A 【分析】
分析出70a >,再结合等比中项的性质可求得7a 的值. 【详解】
设等比数列{}n a 的公比为q ,则2
750a a q =>,
由等比中项的性质可得2
75964a a a ==,因此,78a =.
故选:A. 3.C 【分析】
将已知条件整理为()()2
2
121328a q q q -+=,可得()
2
218
3221q q a q +=
-,进而可得
()44
2
7612249633221
q a a a q q q q +=+=-,分子分母同时除以4
q ,利用二次函数的性质即
可求出最值. 【详解】
因为{}n a 是等比数列,543264328a a a a +--=,
所以432
111164328a q a q a q a q +--=,
()()222
1232328a q q q q q ⎡⎤+-+=⎣⎦,
即()()2
2
121328a q q q -+=,所以()
2
218
3221q q a q +=
-,
()()46
5
4
2
4
7611112
2124
82424
9696332321
2121q a a a q a q a q q q a q q a q q q +=+=+=⨯==---,

210t q =>,则()22
2421211t t t q q
-=-=--+, 所以211t q
==,即1q =时2421
q q -最大为1,此时24
24
21q q -最小为24, 所以7696a a +的最小值为24, 故选:C 【点睛】
易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;
(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;
(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化. 4.C 【分析】
根据条件计算出等比数列的公比,再根据等比数列通项公式的变形求解出4a 的值. 【详解】
因为254,32a a ==,所以3
5
2
8a q a ==,所以2q ,
所以2
424416a a q ==⨯=,
故选:C. 5.C 【分析】
由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解. 【详解】 ∵a 3a 11=4a 7, ∴2
7a =4a 7, ∵a 7≠0, ∴a 7=4, ∴b 7=4, ∴b 5+b 9=2b 7=8.
故选:C 6.B 【分析】
根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】
因为各项不为0的等差数列{}n a 满足2
6780a a a -+=,
所以2
7720a a -=,解得72a =或70a =(舍);
又数列{}n b 是等比数列,且772b a ==,
所以3
3810371178b b b b b b b ===.
故选:B. 7.D 【分析】
设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,利用等比数列的前n 项和公式即可求解. 【详解】
5斗50=升,设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,
由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则(
)3
11212
a --=50,
解得a 1=507
,所以牛主人应偿还粟的量为2
3120027a a ==
故选:D 8.D 【分析】
由2n n S a =-利用11,1,2
n n n S n a S S n -=⎧=⎨
-≥⎩,得到数列{}n a 是以1为首项,1
2为公比的等比
数列,进而得到{}
2
n a 是以1为首项,
1
4
为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0n
n n S T λ-->恒成立,转化为(
)
()
321(1)
2
10n
n
n
λ---+>对
*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.
【详解】
当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-,
两式相减得11
2
n n a a -=,
所以数列{}n a 是以1为首项,
1
2
为公比的等比数列. 因为11
2
n n a a -=, 所以22114
n n a a -=.
又2
11a =,所以{}
2
n a 是以1为首项,
1
4
为公比的等比数列, 所以1112211212n
n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414
n
n
n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,
由2(1)0n n n S T λ-->,得2
14141(1)10234n n
n
λ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣
⎦⎣⎦,
所以2
21131(1)1022n n
n λ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦
, 所以2
11131(1)110222n n n n
λ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
.
又*n N ∈,所以1102n
⎛⎫-> ⎪⎝⎭

所以1131(1)1022n n
n
λ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦

即(
)
()
321(1)
2
10n
n
n
λ---+>对*n N ∈恒成立,
当n 为偶数时,()()321210n
n
λ--+>,
所以()()3213216
632121
21
n
n
n n n λ-+-<==-
+++, 令6
321
n n b =-+,则数列{}n b 是递增数列,
所以22
69
3215
λb <=-=+; 当n 为奇数时,(
)()
321210n
n
λ-++>,
所以()()3213216
632121
21
n
n
n n n λ-+--<==-
+++,
所以16
332121
λb -<=-=-=+, 所以1λ>-.
综上,实数λ的取值范围是91,5⎛
⎫- ⎪⎝
⎭.
故选:D. 【点睛】
方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 9.D 【分析】
利用已知条件求得1,a q ,由此求得1a q +. 【详解】
依题意22211113
19
12730
a a q a q a a q q q ⎧⋅===⎧⎪=⇒⎨⎨=⎩⎪>⎩
,所以14a q +=.
故选:D 10.C 【分析】
由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解. 【详解】
由10210310a a ->,即1021031a a >,则有2
1021a q ⨯>,即0q >。

所以等比数列{}n a 各项为正数, 由
1021031
01
a a -<-,即102103(1)(1)0a a --<, 可得:1021031,1a a ><, 所以10220412203204102103()1T a a a a a a =⋅⋅
⋅=⋅>,
103205122032042051031T a a a a a a =⋅⋅
⋅⋅=<,
故使得1n T >成立的最大自然数n 的值为204,
故选:C 【点睛】
关键10220412203204102103()1T a a a a a a =⋅⋅
⋅=⋅>点点睛:在分析出1021031a a >,
1021031,1a a ><的前提下,由等比数列的性质可得102204102103()1T a a ==⋅>,
1032051031T a =<,即可求解,属于难题.
11.无
12.C 【分析】
题意说明从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,由系数前n 项和公式求得1a ,再由通项公式计算出中间项. 【详解】
根据题意,可知从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为
1a ,则有()717
1238112
a S ⋅-=
=-,解得13a =,中间层灯盏数3
4124a a q ==,
故选:C. 13.C 【分析】
根据12n n a a +=,得到数列{}n a 是公比为2的等比数列求解. 【详解】 因为12n n a a +=,
所以1
2n n
a a +=, 所以数列{}n a 是公比为2的等比数列. 因为32a =,
所以2
3
5328a a q ===. 故选:C 14.C 【分析】
依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】
第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19
的区间,长度和为2
9;第
三次操作去掉四个长度为
127的区间,长度和为427;…第n 次操作去掉12n -个长度为1
3
n 的区间,长度和为1
23
n n -,
于是进行了n 次操作后,所有去掉的区间长度之和为1
122213933n
n n n S -⎛⎫
=++⋅⋅⋅+=- ⎪⎝⎭

由题意,90
2131n
⎛⎫-≥ ⎪⎝⎭,即21lg lg 1031n ≤=-,即()lg3lg21n -≥,解得:11
5.679lg3lg 20.47710.3010
n ≥
=≈--,
又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】
本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题. 15.B 【分析】
根据等比中项的性质可求得4a 的值,再由2
174a a a =可求得7a 的值. 【详解】
在等比数列{}n a 中,对任意的n *∈N ,0n a ≠,
由等比中项的性质可得2
4354a a a a ==,解得41a =, 17a =,2
1741a a a ==,因此,71
7
a =
. 故选:B. 16.B 【分析】
设女子第一天织布1a 尺,则数列{}n a 是公比为2的等比数列,由题意得
515(12)
512a S -==-,解得1531
a =
,由此能求出该女子所需的天数至少为7天. 【详解】
设女子第一天织布1a 尺,则数列{}n a 是公比为2的等比数列,
由题意得515(12)
512a S -==-,解得1
531a =, 5
(12)
3120
12
n n S -∴=-,解得2125n . 因为6264=,72128=
∴该女子所需的天数至少为7天.
故选:B 17.B 【分析】
先求得首项,根据等比数列的求和公式,代入首项和公比的值,即可计算出5S 的值. 【详解】
因为等比数列{}n a 的前n 项和为2,2n S a =,公比2q ,所以2
11a a q
=
=,又因为1111n
n
a q S q
q
,所以()551123112
S -=
=-.
故选:B. 18.D 【分析】
利用等比数列下标和相等的性质有162534a a a a a a ==,而目标式可化为
162534
162534
a a a a a a a a a a a a +++++结合已知条件即可求值. 【详解】
162534123456162534
111111a a a a a a a a a a a a a a a a a a ++++++++=++, ∵等比数列{}n a 中349
8
a a =-,而162534a a a a a a ==, ∴123456111111a a a a a a +
++++=12345685()93
a a a a a a -+++++=-, 故选:D 19.A 【分析】
利用已知条件化简,转化求解即可. 【详解】
已知{}n a 为等比数列,132
2a a a ∴=,且22a =,
满足
131233
21231322111124
a a a a a S a a a a a a a +++++=+===,则S 3=8. 故选:A . 【点睛】 思路点睛:
(1)先利用等比数列的性质,得132
2a a a ∴=,
(2)通分化简3
12311124
S a a a +
+==. 20.A 【分析】
设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1
102n q -⨯>,
1
(1)
221n q q
-<-,即可求出参数q 的取值范围;
解:设等比数列{}n a 的公比为q ,依题意可得1q ≠.
11
0,2
n a a >=
,2n S <, ∴1
102n q -⨯>,1
(1)221n q q
-<-, 10q ∴>>. 144q ∴-,解得3
4
q
. 综上可得:{}n a 的公比的取值范围是:30,4⎛⎤
⎥⎝⎦

故选:A . 【点睛】
等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.
二、多选题 21.无
22.AC 【分析】
由运动轨迹分析列出总路程n S 关于n 的表达式,再由表达式分析数值特征即可 【详解】
由题可知,第一次着地时,1
100S =;第二次着地时,221002003
S =+⨯;
第三次着地时,2
32210020020033S ⎛⎫
=+⨯+⨯ ⎪⎝⎭;……
第n 次着地后,2
1
222100200200200333n n S -⎛⎫
⎛⎫
=+⨯+⨯+
+⨯ ⎪ ⎪
⎝⎭
⎝⎭
则2
1
1222210020010040013333n n n S --⎛⎫⎛⎫
⎛⎫⎛⎫
⎛⎫=++++=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭⎝
⎭⎝⎭
,显然500n S <,又n S 是关于n 的增函数,2n ≥,故当2n =时,n S 的最小值为400700
10033
+=; 综上所述,AC 正确 故选:AC 23.BCD
由已知可得
11222n n n n S n S n
S n S n
++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公
式,可判断C ;
由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D . 【详解】
因为121n n S S n +=+-,所以
11222n n n n S n S n
S n S n
++++==++.
又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;
所以2n n S n +=,则2n
n S n =-.
当2n ≥时,1121n n n n a S S --=-=-,但11
121a -≠-,故A 错误;
由当2n ≥时,1
2
1n n a -=-可得91021511a =-=,故C 正确;
因为1
222n n S n +=-,所以2
3
1
1222...2221222...22n n S S S n ++++=-⨯+-⨯++-
()()()231
22
412122 (2)
212 (22412)
2n n n n n n n n n ++--⎡⎤=+++-+++=
-+=---⎢⎥-⎣
⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】
关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由
121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到
11222n n n n S n S n
S n S n
++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,
考查了推理运算能力,属于中档题, 24.BCD 【分析】
利用等比数列单调性的定义,通过对首项1a ,公比q 不同情况的讨论即可求得答案. 【详解】
A ,当10
1a q >⎧⎨>⎩时,从第二项起,数列的每一项都大于前一项,所以数列{}n a 递增,正确;
B ,当10a > ,0q <时,{}n a 为摆动数列,故错误;
C ,当10a <,1q >时,数列{}n a 为递减数列,故错误;
D ,若10a >,
1
1n
n a a +<且取负数时,则{}n a 为 摆动数列,故错误, 故选:BCD . 【点睛】
本题考查等比数列的单调性的判断,意在考查对基础知识的掌握情况,属基础题. 25.ABD 【分析】
由1
(2)n n n a S S n -=-≥代入已知式,可得{}n S 的递推式,变形后可证1n S ⎧⎫
⎨⎬⎩⎭
是等差数列,从而可求得n S ,利用n S 求出n a ,并确定3n S 的表达式,判断D . 【详解】
因为1(2)n n n a S S n -=-≥,1130n n n n S S S S ---+=,所以
1
113n n S S --=, 所以1n S ⎧⎫

⎬⎩⎭
是等差数列,A 正确; 公差为3,又
11113S a ==,所以1
33(1)3n n n S =+-=,13n S n
=.B 正确;
2n ≥时,由1n n n a S S -=-求得1
3(1)
n a n n =
-,但13a =不适合此表达式,因此C 错;
由1
3n S n =
得1
311333n n n S +==⨯,∴{}
3n S 是等比数列,D 正确.
故选:ABD . 【点睛】
本题考查等差数列的证明与通项公式,考查等比数列的判断,解题关键由
1(2)n n n a S S n -=-≥,化已知等式为{}n S 的递推关系,变形后根据定义证明等差数列.
26.AB 【分析】
首先可得数列{}n a 为等比数列,从而求出公比q 、1a ,再根据等比数列求和公式计算可得; 【详解】
解:因为数列{}n a 对任意的正整数n 均有2
12n n n a a a ++=,所以数列{}n a 为等比数列,因为
22a =,48a =,所以2
4
2
4a q a =
=,所以2q =±, 当2q
时11a =,所以10
1012102312
S -==-
当2q =-时11a =-,所以()(
)()
10
1011234112S -⨯--==--
故选:AB 【点睛】
本题考查等比数列的通项公式及求和公式的应用,属于基础题. 27.BD 【分析】 证明12
33
BE BA BC =
+,所以选项B 正确;设BD tBE =(0t >),易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误;数列{1n n a a --}
是以4为首项,4为公比的等比数列,所以14n
n n a a +-=,所以选项D 正确,易得
321a =,选项C 不正确.
【详解】
因为2AE EC =,所以2
3
AE AC =, 所以2
()3
AB BE AB BC +=+, 所以12
33
BE BA BC =
+,所以选项B 正确;
设BD tBE =(0t >),
则当n ≥2时,由()()1123n n n n BD tBE a a BA a a BC -+==-+-,所以
()()1111
23n n n n BE a a BA a a BC t t
-+=
-+-, 所以
()11123n n a a t --=,()11233
n n a a t +-=, 所以()11322n n n n a a a a +--=-, 易得()114n n n n a a a a +--=-,
显然1n n a a --不是同一常数,所以选项A 错误;
因为2a -1a =4,
11
4n n
n n a a a a +--=-,
所以数列{1n n a a --}是以4为首项,4为公比的等比数列,
所以14n
n n a a +-=,所以选项D 正确,
易得321a =,显然选项C 不正确. 故选:BD 【点睛】
本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平. 28.AD 【分析】
根据题意71a >,81a <,再利用等比数列的定义以及性质逐一判断即可. 【详解】
因为11a >,781a a ⋅>,
871
01
a a -<-, 所以71a >,81a <,所以01q <<,故A 正确.
27981a a a =<⋅,故B 错误;
因为11a >,01q <<,所以数列{}n a 为递减数列,所以n S 无最大值,故C 错误; 又71a >,81a <,所以n T 的最大值为7T ,故D 正确. 故选:AD 【点睛】
本题考查了等比数列的性质、定义,考查了基本知识的掌握情况,属于基础题. 29.BD 【分析】
根据题意,得到此人每天所走路程构成以1
2
为公比的等比数列,记该等比数列为{}n a ,公比为1
2
q =
,前n 项和为n S ,根据题意求出首项,再由等比数列的求和公式和通项公式,逐项判断,即可得出结果. 【详解】
由题意,此人每天所走路程构成以1
2
为公比的等比数列, 记该等比数列为{}n a ,公比为1
2
q =
,前n 项和为n S , 则16611163
237813212
a S a ⎛
⎫- ⎪
⎝⎭===-,解得1192a =,
所以此人第三天走的路程为23148a a q =⋅=,故A 错;
此人第一天走的路程比后五天走的路程多()1611623843786a S a a S --=-=-=里,故B 正确;
此人第二天走的路程为21378
9694.54
a a q =⋅=≠
=,故C 错; 此人前三天走的路程为31231929648336S a a a =++=++=,后三天走的路程为
6337833642S S -=-=,336428=⨯,即前三天路程之和是后三天路程之和的8倍,D 正
确; 故选:BD. 【点睛】
本题主要考查等比数列的应用,熟记等比数列的通项公式与求和公式即可,属于常考题型. 30.ABC 【分析】
利用代入法求出前几项的关系即可判断出a 1,b 1的取值范围,分组法求出其前2n 项和的表达式,分析,即可得解. 【详解】
∵数列{a n }为递增数列;∴a 1<a 2<a 3; ∵a n +a n +1=2n ,
∴1223
24a a a a +=⎧⎨+=⎩;
∴121
23
212244a a a a a a a +⎧⎨
+=-⎩>>
∴0<a 1<1;故A 正确.
∴S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n ﹣1+a 2n )=2+6+10+…+2(2n ﹣1)=2n 2; ∵数列{b n }为递增数列; ∴b 1<b 2<b 3; ∵b n •b n +1=2n ∴1223
2
4b b b b =⎧⎨
=⎩;
∴21
32
b b b b ⎧⎨
⎩>>; ∴1<b
1B 正确. ∵T 2n =b 1+b 2+…+b 2n
=(b 1+b 3+b 5+…+b 2n ﹣1)+(b 2+b 4+…+b 2n )
(
)()()()
12
1
2
12122
12
2
n
n
n
b b b b ⋅--=
+=+-
))
2121n n ≥-=-;
∴对于任意的n ∈N*,S 2n <T 2n ;故C 正确,D 错误. 故选:ABC 【点睛】
本题考查了分组法求前n 项和及性质探究,考查了学生综合分析,转化划归,数学运算的能力,属于较难题. 31.ABC 【分析】
由11a >,781a a >,
871
01
a a -<-,可得71a >,81a <.由等比数列的定义即可判断A ;运用等比数列的性质可判断B ;由正数相乘,若乘以大于1的数变大,乘以小于1的数变小,可判断C; 因为71a >,801a <<,可以判断D. 【详解】
11a >,781a a >,
871
01
a a -<-, 71a ∴>,801a <<,
∴A.01q <<,故正确;
B.2
798
1a a a =<,故正确; C.7T 是数列{}n T 中的最大项,故正确.
D. 因为71a >,801a <<,n S 的最大值不是7S ,故不正确. 故选:ABC . 【点睛】
本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题. 32.BCD 【分析】
根据间隔递增数列的定义求解. 【详解】 A. ()
1111
111n k n n n k k n a a a a q
q q a q +---+=-=--,因为1q >,所以当10a <时,
n k n a a +<,故错误;
B. ()()244441++n k
n n kn a a n k n k k n k n n k n n k n +⎛⎫⎛⎫+-⎛⎫-=++-+=-= ⎪
⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭
,令24t n kn =+-,t 在n *∈N 单调递增,则()1140t k =+->,解得3k >,故正确;
C. ()()
()()()()
21212111n k
n n k
n k n a a n k n k ++⎡⎤-=++--+-=+---⎣⎦
,当n 为奇数时,()2110k
k --+>,存在1k 成立,当n 为偶数时,()2110k
k +-->,存在2
k ≥
成立,综上:{}n a 是间隔递增数列且最小间隔数是2,故正确;
D. 若{}n a 是间隔递增数列且最小间隔数是3,
则()()()
2222020202020n k n a a n k t n k n tn kn k tk +-=+-++--+=+->,n *∈N 成立,
则()220k t k +->,对于3k ≥成立,且()2
20k t k +-≤,对于k 2≤成立 即()20k t +->,对于3k ≥成立,且()20k t +-≤,对于k 2≤成立
所以23t -<,且22t -≥
解得45t ≤<,故正确.
故选:BCD
【点睛】
本题主要考查数列的新定义,还考查了运算求解的能力,属于中档题.
33.ABC
【分析】
由1418a a +=,2312a a +=,31118a a q +=,21112a q a q +=,公比q 为整数,解得1a ,q ,可得n a ,n S ,进而判断出结论.
【详解】
∵1418a a +=,2312a a +=且公比q 为整数,
∴31118a a q +=,21112a q a q +=, ∴12a =,2q 或12q =
(舍去)故A 正确, ()
12122212n n n S +-==--,∴8510S =,故C 正确;
∴122n n S ++=,故数列{}2n S +是等比数列,故B 正确;
而lg lg 2lg 2n n a n ==,故数列{}lg n a 是公差为lg 2的等差数列,故D 错误.
故选:ABC .
【点睛】
本题主要考查了等比数列的通项公式和前n 项和公式以及综合运用,属于中档题. 34.ABD
【分析】
由已知9910010a a ->,得0q >,再由99100101
a a -<-得到1q <说明A 正确;再由等比数列的性质结合1001a <说明B 正确;由10099100·
T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.
【详解】
对于A ,9910010a a ->,21971·1a q ∴>,()2
981··1a q q ∴>. 11a >,0q ∴>. 又99100101
a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;
对于B ,299101100100·01a a a a ⎧=⎨<<⎩
,991010?1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·
T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·
····991T a a a a a a a a a a a =⋯=⋯=⨯>, ()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确.
∴不正确的是C .
故选:ABD .
【点睛】
本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.ACD
【分析】
根据新定义进行判断. 【详解】
A .若数列{}n a 是单增数列,则11111111()(1)n n n n n n n n n n b b a a a a a a a a ------=-
-+=-+, 虽然有1n n a a ->,但当1
110n n a a -+
<时,1n n b a -<,因此{}n b 不一定是单增数列,A 正确; B .31n a n =-,则13131
n b n n =--
-,易知{}n b 是递增数列,无最大值,B 错; C .31n a n =-,则13131
n b n n =---,易知{}n b 是递增数列,有最小值,最小值为1b ,C 正确;
D .若112n n a ⎛⎫=-- ⎪⎝⎭,则111()121()2
n n n b =-----, 首先函数1y x x
=-在(0,)+∞上是增函数, 当n 为偶数时,11()(0,1)2n n a =-∈,∴10n n n b a a =-<,
当n 为奇数时,1
1()2n n a =+1>,显然n a 是递减的,因此1n n n
b a a =-也是递减的, 即135b b b >>>
,∴{}n b 的奇数项中有最大值为13250236b =-=>, ∴156
b =是数列{}(*)n b n N ∈中的最大值.D 正确. 故选:ACD .
【点睛】
本题考查数列新定义,解题关键正确理解新定义,把问题转化为利用数列的单调性求最值.。

相关文档
最新文档