傅里叶变换公式由来

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

傅里叶变换公式由来
傅里叶变换公式由法国数学家约瑟夫·傅里叶于19世纪初提出。

他研究了热传导方程,在解析热传导问题时,将周期性函数展开为一系列正弦和余弦函数的叠加。

傅里叶发现,任意周期为
T的函数f(t)可以用一系列正弦和余弦函数的叠加来表示,即
f(t) = Σ[A_n*cos(2πn/T) + B_n*sin(2πn/T)]。

这就是傅里叶级数
展开形式。

傅里叶变换公式则是傅里叶级数展开在连续函数上的推广。

傅里叶变换是一种将一个连续函数表达为复指数函数的叠加的方法,它将时间域上的函数转换成频域上的函数。

傅里叶变换是通过积分计算得到的,其公式为:F(ω) = ∫[f(t) * e^(-iωt)]dt,
其中F(ω)表示函数f(t)在频率ω处的幅度,即将时间函数f(t)
变换到频率函数F(ω)上。

傅里叶变换公式的由来主要是基于傅里叶级数展开的推广和研究。

它在数学、物理、工程等领域中有广泛的应用,可用于信号处理、图像处理、电路分析等多个领域,为这些领域提供了强大的数学工具。

相关文档
最新文档