江苏省泰兴中学必修3物理 全册全单元精选试卷检测题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省泰兴中学必修3物理 全册全单元精选试卷检测题
一、必修第3册 静电场及其应用解答题易错题培优(难)
1.如图所示,两块竖直放置的平行金属板A 、B ,两板相距d ,两板间电压为U ,一质量为m 的带电小球从两板间的M 点开始以竖直向上的初速度v 0运动,当它到达电场中的N 点时速度变为水平方向,大小变为2v 0 求(1)M 、N 两点间的电势差
(2)电场力对带电小球所做的功(不计带电小球对金属板上电荷均匀分布的影响,设重力加速度为g )
【答案】20MN Uv U dg
=;
【解析】 【详解】
竖直方向上小球受到重力作用而作匀减速直线运动,则竖直位移大小为h =20
2v g
小球在水平方向上受到电场力作用而作匀加速直线运动,则 水平位移x =0
22
v t ⋅ h =
2
v t ⋅ 联立得,x =2h =20
v g
故M 、N 间的电势差为U MN =-Ex =-20v U d g =-2
0Uv gd
从M 运动到N 的过程,由动能定理得 W 电+W G =
12m 20(2)v -2
012
mv 所以联立解得W 电=2
02mv
答:M 、N 间电势差为-2
0Uv gd
,电场力做功2
02mv .
2.如图所示,在光滑绝缘水平面上B 点的正上方O 处固定一个质点,在水平面上的A 点放另一个质点,两个质点的质量均为m ,带电量均为+Q 。

C 为AB 直线上的另一点(O 、
A 、
B 、
C 位于同一竖直平面上),AO 间的距离为L ,AB 和BC 间的距离均为2
L
,在空间加一个水平方向的匀强电场后A 处的质点处于静止。

试问: (1)该匀强电场的场强多大?其方向如何?
(2)给A 处的质点一个指向C 点的初速度,该质点到达B 点时所受的电场力多大? (3)若初速度大小为v 0,质点到达C 点时的加速度和速度分别多大?
【答案】(1)22kQ L ,方向由A 指向C ;273kQ ;(3)22kQ mL 2
2
0kQ v mL
+【解析】 【分析】
(1)在空间加一个水平方向的匀强电场后A 处的质点处于静止,对A 进行受力分析,根据平衡条件求解。

(2)质点到达B 点时受竖直向下的O 点的库仑力和水平向右的电场力,根据力的合成求解 (3)根据牛顿第二定律求出加速度,根据动能定理求出C 点时速度。

【详解】
(1)在空间加一个水平方向的匀强电场后A 处的质点处于静止,对A 进行受力分析,
AO 间的库仑力为2
2Q F K L
=;
根据平衡条件得:sin F EQ θ= 2sin 2F KQ
E Q L
θ=
= 方向由A 指向C
(2)该质点到达B 点时受竖直向下的O 点的库仑力和水平向右的电场力,
库仑力为2
2
'(sin60)Q F K L =;
水平向右的电场力F EQ "=
B 点时所受的电场力222
2
273()[](sin60)kQ kQ F EQ L =+= (3)质点到达C 点时进行受力分析,根据牛顿第二定律得
2
2
2
2
sin
Q
K EQ
F KQ
L
a
m m mL
θ+
===


从A点到C点根据动能定理得
22
11
22o
EQL mv mv
=-;
2
2
kQ
v
mL
υ
=+
【点睛】
本题的关键要耐心细致地分析物体的运动过程,对物体进行受力分析,运用动能定理、牛顿第二定律进行处理。

3.一个质量m=30g,带电量为-1.7×10-8C的半径极小的小球,用丝线悬挂在某匀强的电场中,电场线水平.当小球静止时,测得悬线与竖直方向成30o,求该电场的电场强的大小和方向?
【答案】7
110/
E N C
=⨯,水平向右
【解析】
【分析】
【详解】
小球在电场中受重力、电场力、拉力三个力,合力为零,则知电场力的方向水平向左,而小球带负电,电场强度的方向与负电荷所受电场力方向相反,所以匀强电场场强方向水平向右.
由图,根据平衡条件得
tan30
qE mg
=︒

tan30
mg
E
q

=
代入解得
7
110/
E N C
=⨯
4.如图所示,边长为a 的等边三角形ABC 的三个顶点分别固定三个点电荷+q 、+q 、-q ,已知静电力常量K .
(1)求C 点电荷受到的电场力的大小和方向 (2)求三角形中心O 点处的场强的大小和方向
【答案】(12
23q k a
方向由C 指向O - (2)26q k a 场强方向O 向C
【解析】
(1)根据库仑定律,A 对C 的引力2
12q F k a
=
根据库仑定律,B 对C 的引力:2
22q F k a
=
根据平行四边形定则可以得到:2
122cos303q F F k a
== ,合力方向由C 指向O
(2) 设OA 距离为r,由几何关系知33
r a = 则A 在O 点产生场强大小为122
3q q E k k r a ==,方向由A 指向O B 在O 点产生场强大小为2223q q E k k r a ==,方向由B 指向O C 在O 点产生场强大小为322
3q q E k
k r a ==,方向由O 指向C 所以根据平行四边形定则可以得到:22
26q q
E k
k r a ==,合场强方向O 向C .
点睛:本题考查库仑定律以及电场的叠加问题,关键要掌握库仑定律公式、点电荷场强公式和平行四边形定则,结合数学知识求解.
5.如图所示,长=1m L 的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向夹角θ=37°。

已知小球所带电荷量
61.010q C -=⨯,匀强电场的场强33.010N/C E =⨯,取重力加速度210m/s g =,
sin370.6︒=。

求:
(1)小球所受电场力F 大小; (2)小球质量m ;
(3)将电场撤去小球回到最低点时速度v 的大小; (4)撤去电场后小球到达最低点时绳子对小球的拉力大小。

【答案】(1)3⨯10-3N ;(2)4⨯10-4kg ;(3)2m/s ;(4)5.6⨯10-3N 【解析】 【分析】 【详解】
(1)小球所受电场力F 大小
3310N F qE -==⨯
(2)球受mg 、绳的拉力T 和电场力F 作用,
根据共点力平衡条件和图中几何关系有
tan mg qE θ=
解得小球的质量
-4410kg m =⨯
(3)将电场撤去,小球摆动到最低点的过程由机械能守恒定律得:
21(1-cos37)2
mgL mv ︒=
解得
2.0m/s v =
(4)将电场撤去,小球摆动到最低点时由牛顿第二定律得
2
-
v
T mg m
L
=
解得
-3
5.610N
T=⨯
6.如图所示,小球的质量为0.1kg
m=,带电量为5
1.010C
q-
=⨯,悬挂小球的绝缘丝线与竖直方向成30
θ=︒时,小球恰好在水平向右的匀强电场中静止不动.问:
(1)小球的带电性质;
(2)电场强度E的大小;
(3)若剪断丝线,求小球的加速度大小.
【答案】(1)小球带正电(2)4
5.7710N/C
E=⨯(3)2
11.54m/s
a=
【解析】
【详解】
(1)对小球进行受力分析,如图;由电场力的方向可确定小球带正电;
(2)根据共点力平衡条件,有qE=mgtan300
解得:04
5
3
1
303
=/ 5.7710/
10
mgtan
E N C N C
q-
≈⨯

(3)当线断丝线后,小球的合力为
30
mg
F
cos

由牛顿第二定律,则有:
22
/11.54/
cos303
F g
a s m s
m
==
==
小球将做初速度为零,加速度的方向沿着线的反向,大小为11.54m/s2,匀加速直线运动.【点睛】
本题关键是对小球受力分析,明确带电小球受电场力、细线的拉力和重力,根据共点力平
衡条件及牛顿第二定律列示求解.
二、必修第3册 静电场中的能量解答题易错题培优(难)
7.如图甲所示,真空中的电极被连续不断均匀地发出电子(设电子的初速度为零),经加速电场加速,由小孔穿出,沿两个彼此绝缘且靠近的水平金属板A 、B 间的中线射入偏转电场,A 、B 两板距离为d 、A 、B 板长为L ,AB 两板间加周期性变化的电场,AB
U 如图乙所示,周期为T ,加速电压为2
12
2mL U eT
=,其中m 为电子质量、e 为电子电量,L 为A 、B 板长,T 为偏转电场的周期,不计电子的重力,不计电子间的相互作用力,且所有电子都能离开偏转电场,求:
(1)电子从加速电场1U 飞出后的水平速度0v 大小?
(2)0t =时刻射入偏转电场的电子离开偏转电场时距A 、B 间中线的距离y ;
(3)在足够长的时间内从中线上方离开偏转电场的电子占离开偏转电场电子总数的百分比。

【答案】(1) 02L v T =;(2) 2
08eU T md
;(3) 31.7%
【解析】 【分析】 【详解】
(1)加速电场加速。

由动能定理得
2
1012
qU mv =
解得
02L v T
=
(2)电子在偏转电场里水平方向匀速运动,水平方向有
0L v t =
所以运动时间
2
T t =
则0t =时刻射入偏转电场的电子,在竖直方向匀加速运动,竖直方向有
22
2001812()22eU eU T T md y at md
=⨯⨯=
= (3)由上问可知电子在电场中的运动时间均为2
T
t =,设电子在0U 时加速度大小为1a ,03U 时加速度大小为2a ,由牛顿第二定律得:
01U e ma d ⋅
=,023U
e ma d
⋅= 在0
2
T
时间内,设1t 时刻射入电场中的电子偏转位移刚好为0,则: 2
21111121112222T T a t a t t a t ⎡⎤⎛⎫⎛⎫=---⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦
解得
14
T
t =
在0
2T
时间内,04
T
时间内射入电场中的电子均可从中垂线上方飞出。

2
T T 这段时间内,设能够从中垂线上方飞出粒子的时间间隔为2t ,2t T t =-时刻射入的
电子刚好偏转位移为0,则有
2
22222212112222T T a t a t t a t ⎡⎤⎛⎫⎛⎫=---⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣
⎦ 解得
2t =
所以
1234t t t T ⎛⎫
∆=+= ⎪ ⎪⎝⎭
所以从中线上方离开偏转电场的电子占离开偏转电场电子总数的百分比
3100%31.7%4
t T η∆-=
=≈
8.如图所示,从电子枪射出的电子束(初速度不计)经电压U 1=2000V 加速后,从一对金属板Y 和Y′正中间平行金属板射入,电子束穿过两板空隙后最终垂直打在荧光屏上的O 点.若现在用一输出电压为U 2=160V 的稳压电源与金属板YY′连接,在YY′间产生匀强电场,使得电子束发生偏转.若取电子质量为9×10﹣31kg ,YY′两板间距d=2.4cm ,板长l=6.0cm ,板的末端到荧光屏的距离L=12cm .整个装置处于真空中,不考虑重力的影响,
试回答以下问题:
(1)电子束射入金属板YY′时速度为多大?
(2)加上电压U 2后电子束打到荧光屏上的位置到O 点的距离为多少?
(3)如果两金属板YY′间的距离d 可以随意调节(保证电子束仍从两板正中间射入),其他条件都不变,试求电子束打到荧光屏上的位置到O 点距离的取值范围. 【答案】(1)2.67×107m/s ;(2)15mm ;(3)0~30mm . 【解析】 【分析】 【详解】
(1)根据动能定理,设电子在加速电极作用下获得速度为v 0, 有2
1012
U e mv =
, 解得:102U e
v m
=
…①
代入数据解得:7708
10/ 2.6710/3
v m s m s =
⨯≈⨯; (2)电子穿过偏转电极过程中,在沿初速度方向做匀速直线运动有l=v 0t…② 在沿电场方向受力为F=Eq…③ 根据匀强电场性质U 2=Ed…④ 根据牛顿第二定律F=ma…⑤
根据匀变速直线运动规律,在出偏转电场时其在电场方向位移为[来2
12
y at =
…⑥ 根据①﹣⑥式可推得:2
21
4U l y dU =
…⑦ 此时在电场方向上的分速度为:v y =at…⑧
出电场后电子做直线运动最终打在荧光屏上,距离O 点的距离设为y´,根据几何关系及①⑦⑧可得
(
)21
22´4U l l L l L
y y l dU ++=
=…⑨ 将数据代入⑦式可得y=3mm <
2
d
,所以此时电子可以射出偏转电场 于是将数据代入⑨式可得y′=15mm
(3)d 越小则偏转电场越强,电子的偏转也越厉害,但是同时两板间距缩小电子更容易打在极板上,
所以电子的偏转应有最大值,且临界条件为电子刚好擦YY´极板而出.即:2
d
y =…⑩ 联立⑦式代入数据可解得此时:y=6mm , 继续代入⑨式可得此时:y′=30mm ,
所以电子束打到荧光屏上的位置到O 点距离的取值范围为0~30mm ;
9.在一个水平面上建立x 轴,在过原点O 垂直于x 轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C ,方向与x 轴正方向相同,在原点O 处放一个质量m=0.01 kg 带负电荷的绝缘物块,其带电荷量q = -5×10-8 C .物块与水平面间的动摩擦因数μ=0.2,给物块一个沿x 轴正方向的初速度v 0=2 m/s.如图所示.试求:
(1)物块沿x 轴正方向运动的加速度; (2)物块沿x 轴正方向运动的最远距离; (3)物体运动的总时间为多长? 【答案】(1)5 m/s 2 (2)0.4 m (3)1.74 s 【解析】 【分析】
带负电的物块以初速度v 0沿x 轴正方向进入电场中,受到向左的电场力和滑动摩擦力作用,做匀减速运动,当速度为零时运动到最远处,根据动能定理列式求解;分三段进行研究:在电场中物块向右匀减速运动,向左匀加速运动,离开电场后匀减速运动.根据运动学公式和牛顿第二定律结合列式,求出各段时间,即可得到总时间. 【详解】
(1)由牛顿第二定律可得mg Eq ma μ+= ,得25m/s a =
(2)物块进入电场向右运动的过程,根据动能定理得:()2101
02
mg Eq s mv μ-+=-. 代入数据,得:s 1=0.4m
(3)物块先向右作匀减速直线运动,根据:00111••22
t v v v
s t t +=
=,得:t 1=0.4s
接着物块向左作匀加速直线运动:221m/s qE mg
a m
=μ-=. 根据:21221
2
s a t =
得220.2t s = 物块离开电场后,向左作匀减速运动:232m/s mg
a g m
μμ=-=-=-
根据:3322a t a t = 解得30.2t s =
物块运动的总时间为:123 1.74t t t t s =++= 【点睛】
本题首先要理清物块的运动过程,运用动能定理、牛顿第二定律和运动学公式结合进行求解.
10.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O ,半径为r ,A 、B 、C 、D 分别是圆周上的点,其中A 、C 分别是最高点和最低点,BD 连线与水平方向夹角为
37︒。

该区间存在与轨道平面平行的水平向左的匀强电场。

一质量为m 、带正电的小球在
轨道内侧做完整的圆周运动(电荷量不变),经过D 点时速度最大,重力加速度为g (已知sin370.6︒=,cos370.8︒=),求: (1)小球所受的电场力大小;
(2)小球经过A 点时对轨道的最小压力。

【答案】(1)4
3
mg ;(2)2mg ,方向竖直向上. 【解析】 【详解】
(1)由题意可知 :
tan 37mg
F
︒= 所以:
43
F mg =
(2)由题意分析可知,小球恰好能做完整的圆周运动时经过A 点对轨道的压力最小. 小球恰好做完整的圆周运动时,在B 点根据牛顿第二定律有:
2sin 37B v mg
m r

= 小球由B 运动到A 的过程根据动能定理有:
()
22
111sin 37cos3722
B A mgr Fr mv mv ︒︒--+=-
小球在A 点时根据牛顿第二定律有:
2A
N v F mg m r
+=
联立以上各式得:
2N F mg =
由牛顿第三定律可知,小球经过A 点时对轨道的最小压力大小为2mg ,方向竖直向上.
11.将一内壁光滑的绝缘细圆管做成的圆环BDC 固定在竖直面内,圆环的圆心为O ,D 为圆环的最低点,其中∠BOC =90,圆环的半径为R ,水平虚线BC 的上方存在水平向右的范围足够大的匀强电场.圆心O 的正上方A 点有一质量为m 、带电荷量为+q 的小球(可视为质点),其直径略小于圆管内径.现将该小球无初速度释放,经过一段时间后小球刚好无碰撞地进入圆管中并继续在圆管中运动,重力加速度为g .求:
(1)A 点到O 点的距离及匀强电场的电场强度大小; (2)小球运动到圆环的最低点D 时对圆环的作用力. 【答案】(1)mg
q
(2)(3+32mg ;方向竖直向下 【解析】 【详解】
(1)小球被释放后在重力和电场力的作用下做匀加速直线运动,小球从B 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则有:
tan 45mg
qE
︒=
解得:
mg q
E =
因为∠BOC =90,圆环的半径为R ,故BC 2R ,故根据几何关系有可知:
AO 2R
(2)小球从A 点到D 点的过程中,根据动能定理得:
()
221
202
D R mg R R Eq
mv ++=- 当小球运动到圆环的最低点D 时,根据牛顿第二定律得:
2
D
N v F mg m R
-=
联立解得:
()
332N F mg =+
根据牛顿第三定律得小球运动到圆环的最低点D 时对圆环的压力大小为()
332mg +,方向竖直向下.
答:(1)A 点到O 点的距离2R ,匀强电场的电场强度大小mg q
E =

(2)小球运动到圆环的最低点D 时对圆环的作用力()
332mg +
12.如图所示,在竖直直角坐标系xOy 内,x 轴下方区域I 存在场强大小为E 、方向沿y 轴正方向的匀强电场,x 轴上方区域Ⅱ存在方向沿x 轴正方向的匀强电场。

已知图中点D 的坐标为(27
,2
L L -
-),虚线GD x ⊥轴。

两固定平行绝缘挡板AB 、DC 间距为3L ,OC 在x 轴上,AB 、OC 板平面垂直纸面,点B 在y 轴上。

一质量为m 、电荷量为q 的带电粒子(不计重力)从D 点由静止开始向上运动,通过x 轴后不与AB 碰撞,恰好到达B 点,已知
AB =14L ,OC =13L 。

(1)求区域Ⅱ的场强大小E '以及粒子从D 点运动到B 点所用的时间0t ;
(2)改变该粒子的初位置,粒子从GD 上某点M 由静止开始向上运动,通过x 轴后第一次与AB 相碰前瞬间动能恰好最大。

①求此最大动能km E 以及M 点与x 轴间的距离1y ;
②若粒子与AB 、OC 碰撞前后均无动能损失(碰后水平方向速度不变,竖直方向速度大小不变,方向相反),求粒子通过y 轴时的位置与O 点的距离y 2。

【答案】(1)6E ; (2)①18qEL ,9L ;②3L 【解析】 【详解】
(1)该粒子带正电,从D 点运动到x 轴所用的时间设为1t ,则
21112
L a t =
11a t υ=
根据牛顿第二定律有
1qE ma =
粒子在区域II 中做类平抛运动,所用的时间设为2t ,则
2
2227122L a t = 23L t υ=
根据牛顿第二定律有
2qE ma '=
粒子从D 点运动到B 点所用的时间
012t t t =+
解得
6E E '=,0t =(2)①设粒子通过x 轴时的速度大小为0υ,碰到AB 前做类平抛运动的时间为t ,则
03L t
υ=
粒子第一次碰到AB 前瞬间的x 轴分速度大小
2x a t υ=
碰前瞬间动能
()22012
k x E m υυ=
+ 即
2222292k m L E a t t ⎛⎫=+ ⎪⎝⎭
由于22222
22299L a t L a t
⋅=为定值,当222229L a t t =即t =k E 有最大值 由(1)得
26qE
a m
=
最大动能
18km E qEL =
对应的
0υ=
粒子在区域I 中做初速度为零的匀加速直线运动,则
20112a y υ=
解得
19y L =
②粒子在区域II 中的运动可等效为粒子以大小为0υ的初速度在场强大小为6E 的匀强电场中做类平抛运动直接到达y 轴的K 点,如图所示,则时间仍然为2t
02OK t υ=

9OK L =
由于933OK L
OB L
==,粒子与AB 碰撞一次后,再与CD 碰撞一次,最后到达B 处 则
23y L =
三、必修第3册 电路及其应用实验题易错题培优(难)
13.为测量某金属丝的电阻率,小明同学设计了如图甲、乙所示的两种实验方案,已知电源的电动势E 和内阻r 在实验过程中保持不变。

(1)小明先进行了如图甲方案的测量。

①他首先利用游标卡尺和螺旋测微器分别测出甲、乙、丙三根不同金属丝的直径,示数分别如图甲、乙、丙所示。

则三根金属丝直径的测量值分别为d甲=________mm、d乙
=________mm、d丙=________mm。

若三根金属丝的材料、长度相同且粗细均匀,则它们的电阻R甲、R乙和R丙中最大的是________,最小的是________。

②实验过程中,小明先将甲金属丝接入电路,并用米尺测出接入电路中的甲金属丝的长度
l=50.00cm。

闭合开关后移动滑动变阻器的滑片分别处于不同的位置,并依次记录了两电表的测量数据如下表所示,其中5组数据的对应点他已经标在如图所示的坐标纸上,请你标出余下一组数据的对应点,并画出U-I图线________________。

实验次
123456

U/V0.90 1.20 1.50 1.80 2.10 2.40
I/A0.180.240.310.370.430.49
③该方案测得的甲金属丝的电阻率ρ甲=__________Ω·m(计算结果保留两位有效数字)。

④对于上述第(1)所述的测量过程,随着通过金属丝的电流I不断增大,滑动变阻器上的电功率P随之变化。

对于P-I的关系图象,在下列图中可能正确的是(________)
(2)小明又用如图乙方案测量乙金属丝的电阻率,已知电源的电动势E=5.0V、内阻
r=0.20Ω。

实验中他可以通过改变接线夹(即图乙中滑动变阻器符号上的箭头)接触金属丝的位置以控制接入电路中金属丝的长度。

①请在下述步骤的空格中将实验操作步骤补充完整:
a.正确连接电路,设定电阻箱的阻值,闭合开关;
b.读出电流表的示数,记录接线夹的位置;
c.断开开关,______________;
d.闭合开关,重复b、c的操作。

②根据测得电流与金属丝接入长度关系的数据,绘出如图所示的关系图线,其斜率为
_____________A-1·m-1(保留2位有效数字);图线纵轴截距与电源电动势的乘积代表了___________________的电阻之和。

③图中图线的斜率、电源电动势和金属丝横截面积的乘积代表的物理量是____________,其数值和单位为_______________(保留2位有效数字)。

(3)电表的内阻可能对实验产生系统误差,请你分别就这两种方案说明电表内阻对电阻率测量的影响____________________________________。

【答案】1.75 1.34~1.38 0.546~0.548 R 丙 R 甲 见解析 (2.3~2.5)×10-5 D 测出接入电路的金属丝的长度 12~14 电源内阻、电流表内电阻与电阻箱 金属丝的电阻率 (9.8±0.5)×10-5Ω·m 图甲方案,由于电流表分压,导致电压表测量值偏大,电阻的测量值偏大,电阻率测量值偏大;图乙方案中电表内阻对测量结果没有影响 【解析】 【分析】 【详解】
(1)①[1]金属丝甲的直径
1mm 0.0515mm 1.75mm d =+⨯=甲
[2]金属丝乙的直径
1mm 0.0218mm 1.36mm d =+⨯=乙
[3]金属丝丙的直径
0.5mm 0.046mm 0.546mm d =+=丙
[4][5]根据电阻定律的决定式
2
4=l l R S d ρ
ρπ= 可知
R 甲 最小,R 丙最大
②[6]图象如图所示
③[7]根据图象可知电阻值
4.92ΩU
R I
=
=甲 再根据电阻定律
2
4=l l R S d ρ
ρπ= 代入数据,解得
52.410m ρ-=⨯Ω⋅
④[8]随电流增大,滑动变阻器的功率先变大后变小,当滑动变阻器阻值等于其它电阻之和时,功率最大,D 正确,ABC 错误。

故选D 。

(2)①[9] 测出接入电路的金属丝的长度。

②[10]由图象可得斜率为13 A -1·m -1。

[11][12]根据
E
I rl R
=
+ 整理得
1r R l I E E
=+ 其中r 就是单位长度的电阻,根据电阻定律
r S
ρ
=
代入整理得
1R l I ES E
ρ=+ 因此图线纵轴截距与电源电动势的乘积代表电源内阻、电流表内电阻与电阻箱电阻之和;斜率、电源电动势和金属丝横截面积的乘积代表的金属丝的电阻率。

③[13]将电源电动势E 和乙金属丝的直径d 乙代入得
3
25
1.3610
13 5.0()Ωm9.410Ωm
2
ρπ
-
-

=⨯⨯⨯⋅=⨯⋅
(3)[14]图甲方案,由于电流表的分压作用,导致电压表测量值偏大,电阻的测量值偏大,电阻率测量值偏大;图乙方案中电表内阻对测量结果没有影响。

14.(1)甲同学按如图甲所示电路测量量程为500μA的电流表G的内阻.他按图甲连接好电路后,先闭合S1,断开S2,调节R1,使电流表G的指针满偏.再闭合S2,保持R1的滑动触头不动,调节R2使电流表G的指针指到满刻度的1/3.若此时电阻箱R2各旋钮的位置如图乙所示,则电流表G的内阻测量值R G=____Ω.
(2)现将该电流表G改装成量程为3V的电压表V,需给该电流表G串联一阻值为_____Ω的电阻.
(3)乙同学将(2)问中改装的电压表V校准后采用伏安法测量某待测电阻R x,实验室还备有以下器材:
A.待测电阻R x,阻值约为200Ω
B.电源E,电动势为3V,内阻可忽略不计
C.电流表A,量程为0~15 mA,内阻r A=20Ω
D.滑动变阻器R′1,最大阻值10Ω
E.滑动变阻器R′2,最大阻值5kΩ
F.开关S,导线若干
①为提高实验精确度,尽可能测量多组数据,实验中滑动变阻器应选择____(填器材序号字母).
②请在虚线框内画出乙同学用伏安法测量电阻R x的电路图_______.
【答案】(1)100 (2)5900 (3)①D ②见解析;
【解析】
【详解】
(1)[1].因s2闭合前后电总电流不变,则电流表达满偏刻度的1/3时,则并联电阻的电流为电流表满偏电流的2/3.因是并联关系,则
g R
g
R I
R I

得:
R g=R
g
I
I R=2R
由电阻箱可读出:
R=50Ω
则:
R g=2R=2×50=100Ω
(2)[2].改装成电压表要串联的阻值为
R=
g
U
I−R g=5900Ω
(3)[3].因测量范围大,要采用滑动变阻器分压式接法,宜用小阻值,故选D.
[4].因电压表内阻比得测电阻大的多,宜用电流表外接法.故画得电路图如图所示;
【点睛】
考查的电阻箱的读数,半偏法测电阻,明确总电流认为不变;电路的设计,电流表的内外接法要求大电阻内接法,小电阻外接法.滑动变阻器分压式接法宜用小阻值.15.(1)在“测定金属的电阻率”的实验中,由于金属丝直径很小,不能使用普通刻度尺,应使用螺旋测微器。

螺旋测微器的精确度为_________mm,用螺旋测微器测量某金属丝直径时的刻度位置如图所示,从图中读出金属丝的直径为_________mm。

(2)如果测出金属丝接入电路的长度l、直径d和金属丝接入电路时的电流I和其两端的电压U,就可求出金属丝的电阻率。

用以上实验中直接测出的物理量来表示电阻率,其表达式为ρ=___________。

(3)在此实验中,金属丝的电阻大约为4Ω,在用伏安法测定金属丝的电阻时,除被测电阻丝外,选用了如下实验器材:
A.直流电源:电动势约4.5 V,内阻不计;
B.电流表A:量程0~0.6 A,内阻约0.125Ω;
C.电压表V:量程0~3 V,内阻约3 kΩ;
D.滑动变阻器R:最大阻值10Ω;
E.开关、导线等。

在以下可供选择的实验电路中,应该选图____(填“甲”或“乙”),选择的接法为____接法(填“内”或“外”),此接法测得的电阻值将___________(填“大于”、“小于”或“等于”)被测电阻的实际阻值。

(4)根据所选实验电路图,在实物图中完成其余的连线___________。

在闭合开关S前,滑动变阻器的滑片应置在_________(填“最左”或“最右”)端。

(5)根据所选量程,某次实验两电表的示数如图,则读数分别为_________V和_________A。

(6)若某次实验测得接入电路金属丝的长度为0.810m,算出金属丝的横截面积为0.81×10-
6m2,根据伏安法测出电阻丝的电阻为4.1Ω,则这种金属材料的电阻率为__________(保留二位有效数字)。

【答案】0.01 0.640
2
4
d
lI
U
π
ρ=甲外小于
最左 2.15 0.16 1×10-6Ω·m
【解析】
【分析】
【详解】
(1)[1]螺旋测微器的精确度为0.01mm
[2]金属丝的直径为
0.5mm+0.01mm×14.0=0.640mm。

(2)[3]根据
U
R
I
=及
2
1
4
l
R
d
ρ
π
=
解得
2
4
d
lI
U
π
ρ=
(3)[4] [5]因待测电阻的阻值较小,故采用电流表外接电路,即甲电路;
[6]因电压表的分流作用,使得电流表的测量值大于电阻上的实际电流,故此接法测得的电
阻值将小于被测电阻的实际阻值。

(4)[7]连线如图;在闭合开关S 前,滑动变阻器的阻值调节到最小,故滑片应置在最左端。

(5)[8]电压表读数为2.15V ;
[9]电流表读数为0.16A 。

(6)[10]根据214l
R d ρπ=可得24d R l πρ=,代入数据可知
ρ=4.1×10-6Ω·m
【点睛】
螺旋测微器示数等于固定刻度与可动刻度示数之和,对螺旋测微器读数时要注意估读;实验器材的选择、设计实验电路图是本题的难点,要掌握实验器材的选取原则及电路选择的
原则。

16.某实验小组进行电阻丝电阻率的测量,其中实验器材有;
A .直流电源(电动势约4.5V ,内阻很小可忽略)
B .0-0.5A 的电流表(内阻很小可忽略)
C .R 0=10Ω的定值电阻
D .R 0=50Ω的定值电阻
E.粗细均匀,总电阻约15Ω的待测电阻丝
F.刻度尺
G 螺旋测微器 H.开关一个,导线若干
(1)图甲是实验电路图,请规范画出其实验原理图__________;
(2)实验时,定值电阻R 0应选用________________(填器材编号);
(3)实验时,多次移动线夹所在的位置,测量其连入电路中的电阻丝的长度,记为l ,同时记下相对应的电流表的示数I ;
(4)以1I
为纵轴,以l 为横轴,得到图丙的图象,已知该图线的截距为b 、斜率为k .由此可知电源的电动势可表示为___,若测得电阻丝直径为d ,则电阻丝的电阻率可表示为ρ=____.(都用题中所给的字母符号表示)
(5)实际上电源和电流表都存在一定的内阻,而实验处理数据时忽略了这两个内阻,因此将导致电阻率的测量值_____实际值.(填“大于”或“小于”)
【答案】 C 0R b 204d kR b
π 小于 【解析】
【分析】
【详解】
(1)根据实物图画出电路图如图所示;
(2)根据电源电动势和电流表的量程可知保护电阻的阻值大约为0 4.590.5
E R Ig =
==Ω 所以保护电阻选C (4)根据闭合电路欧姆定律知: 0()x E I R R =+ 及24x l l R S d ρ
ρπ== 得:0214R l I d E E
ρπ=+ 所以结合图像是
0R b E = ,所以0R E b = 24k d E ρπ= ,所以204d kR b
πρ= (5)由于整理公式时忽略掉了电源的电阻和电流表的电阻 所以导致测量值偏小。

相关文档
最新文档