荣昌区第一中学校2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荣昌区第一中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )
A .11
B .12
C .13
D .14 2. 若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是( )
A .(2,4)
B .(2,﹣4)
C .(4,﹣2)
D .(4,2)
3. 下列命题中正确的是( )
A .复数a+bi 与c+di 相等的充要条件是a=c 且b=d
B .任何复数都不能比较大小
C .若
=
,则z 1=z 2
D .若|z 1|=|z 2|,则z 1=z 2或z 1=
4. 设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .m ∥α,n ∥β且α∥β,则m ∥n B .m ⊥α,n ⊥β且α⊥β,则m ⊥n C .m ⊥α,n ⊂β,m ⊥n ,则α⊥β D .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β
5. 已知集合23111
{1,(
),,}122
i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,}2- D .{}2
6. 下列计算正确的是( )
A 、213
3
x x x ÷= B 、4554()x x = C 、455
4x x
x = D 、445
5
0x x -=
7. 已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )
A .(﹣∞,]
B .(﹣∞,]
C .(﹣∞,
] D .(﹣∞,
]
8. 已知函数x x x f 2sin )(-=,且)2(),3
1(log ),23(ln 3.02f c f b f a ===,则( )
A .c a b >>
B .a c b >>
C .a b c >>
D .b a c >>
【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.
9. 函数f (x ﹣)=x 2+,则f (3)=( ) A .8
B .9
C .11
D .10
10.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数 B .平均数 C .中位数 D .标准差
11.为了得到函数y=cos (2x+1)的图象,只需将函数y=cos2x 的图象上所有的点( ) A
.向左平移个单位长度 B
.向右平移个单位长度
C .向左平移1个单位长度
D .向右平移1个单位长度
12.已知函数()21
11
x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( )
A .1
B .1-
C .2
D .2-
二、填空题
13.阅读下图所示的程序框图,运行相应的程序,输出的n 的值等于_________.
14
15
161718
19.已知命题p :x 2﹣3x+2>0;命题q :0<x <a .若p 是q 的必要而不充分条件,求实数a 的取值范围.
20.如图,在Rt △ABC 中,∠ACB=,AC=3,BC=2,P 是△ABC 内一点.
(1)若P 是等腰三角形PBC 的直角顶角,求PA 的长;
(2)若∠BPC=
,设∠PCB=θ,求△PBC 的面积S (θ)的解析式,并求S (θ)的最大值.
21.已知椭圆C :
=1(a >2)上一点P 到它的两个焦点F 1(左),F 2 (右)的距离的和是6.
(1)求椭圆C 的离心率的值;
(2)若PF 2⊥x 轴,且p 在y 轴上的射影为点Q ,求点Q 的坐标.
22.已知曲线2
1()f x e x ax
=+(0x ≠,0a ≠)在1x =处的切线与直线2
(1)20160e x y --+= 平行.
(1)讨论()y f x =的单调性;
(2)若()ln kf s t t ≥在(0,)s ∈+∞,(1,]t e ∈上恒成立,求实数的取值范围.
23.本小题满分12分如图,在边长为4的菱形ABCD 中,60BAD ∠=,点E 、F 分别在边CD 、CB 上.点
E 与点C 、D 不重合,E
F AC ⊥,EF
AC O =,沿EF 将CEF ∆翻折到PEF ∆的位置,使平面PEF ⊥
平面ABFED .
Ⅰ求证:BD ⊥平面P O A ;
Ⅱ记三棱锥P A B D -的体积为1V ,四棱锥P BDEF -的体积为2V ,且
124
3
V V =,
求此时线段PO 的长.
24.已知函数f (x )=2|x ﹣2|+ax (x ∈R ). (1)当a=1时,求f (x )的最小值;
(2)当f (x )有最小值时,求a 的取值范围;
(3)若函数h (x )=f (sinx )﹣2存在零点,求a 的取值范围.
P
A
B
C
D
O
E
F F
E
O D
C
B
A
荣昌区第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】A
【解析】
考点:得出数列的性质及前项和.
【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推
理与运算能力,属于中档题,本题的解答中,由“
10
a>,0
d<”判断前项和的符号问题是解答的关键.2.【答案】C
【解析】解:复数z满足iz=2+4i,则有z===4﹣2i,
故在复平面内,z对应的点的坐标是(4,﹣2),
故选C.
【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.
3.【答案】C
【解析】解:A.未注明a,b,c,d∈R.
B.实数是复数,实数能比较大小.
C.∵=,则z1=z2,正确;
D.z1与z2的模相等,符合条件的z1,z2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确.故选:C.
4.【答案】B
【解析】解:对于A,若m∥α,n∥β且α∥β,说明m、n是分别在平行平面内的直线,它们的位置关系应该是平行或异面,故A错;
对于B,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m 与n相交,
且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,
故命题B正确.
对于C,根据面面垂直的性质,可知m⊥α,n⊂β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C 不正确;
对于D,若“m⊂α,n⊂α,m∥β,n∥β”,则“α∥β”也可能α∩β=l,所以D不成立.
故选B.
【点评】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力,基本知识的应用题目.
5.【答案】D
【解析】
考点:1.复数的相关概念;2.集合的运算
6.【答案】B
【解析】
试题分析:根据()a aβααβ⋅=可知,B正确。
考点:指数运算。
7.【答案】D
【解析】解:x>0,y>0,+=1,不等式x+y≥2m﹣1恒成立,
所以(x+y)(+)=10+≥10=16,
当且仅当时等号成立,所以2m﹣1≤16,解得m;
故m的取值范围是(﹣];
故选D.
8.【答案】D
9. 【答案】C
【解析】解:∵函数=
,∴f (3)=32
+2=11.
故选C .
10.【答案】D
【解析】解:A 样本数据:82,84,84,86,86,86,88,88,88,88. B 样本数据84,86,86,88,88,88,90,90,90,90 众数分别为88,90,不相等,A 错. 平均数86,88不相等,B 错. 中位数分别为86,88,不相等,C 错
A 样本方差S 2= [(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,
B 样本方差S 2= [(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D 正确
故选D .
【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.
11.【答案】A
【解析】解:∵,故将函数y=cos2x 的图象上所有的点向左平移个单位长
度,
可得函数y=cos (2x+1)的图象, 故选:A .
【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,属于基础题.
12.【答案】A 【解析】
试题分析:由已知得()2112x f x x x -=
=-,则()21
'f x x
=,所以()'11f =. 考点:1、复合函数;2、导数的几何意义. 二、填空题
13.【答案】6
【解析】解析:本题考查程序框图中的循环结构.第1次运行后,9,2,2,S T n S T ===>;第2次运行后,
13,4,3,S T n S T ===>;第3次运行后,17,8,4,S T n S T ===>;第4次运行后,
21,16,5,S T n S T ===>;第5次运行后,25,32,6,S T n S T ===<,此时跳出循环,输出结果6n =程
序结束.
14.【答案】 存在x ∈R ,x 3﹣x 2+1>0 .
【解析】解:因为全称命题的否定是特称命题,
所以命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是:存在x ∈R ,x 3﹣x 2+1>0. 故答案为:存在x ∈R ,x 3﹣x 2+1>0.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系.
15.【答案】 4 .
【解析】解:由题意得f ′(1)=3,且f (1)=3×1﹣2=1
所以f (1)+f ′(1)=3+1=4.
故答案为4.
【点评】本题主要考查导数的几何意义,要注意分清f (a )与f ′(a ).
16.【答案】
【解析】设l 1与l 2的夹角为2θ,由于l 1与l 2的交点A (1,3)在圆的外部, 且点A 与圆心O 之间的距离为OA==
,
圆的半径为r=
,
∴sin θ==,
∴cos θ=,tan θ==,
===,
故答案为:。
【解析】
考点:棱台的表面积的求解.
18.【答案】6.
【解析】解:∵|z|=1,
|z﹣3+4i|=|z﹣(3﹣4i)|≤|z|+|3﹣4i|=1+=1+5=6,
∴|z﹣3+4i|的最大值为6,
故答案为:6.
【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题.
三、解答题
19.【答案】
【解析】解:对于命题p:x2﹣3x+2>0,解得:x>2或x<1,
∴命题p:x>2或x<1,
又∵命题q:0<x<a,且p是q的必要而不充分条件,
当a≤0时,q:x∈∅,符合题意;
当a>0时,要使p是q的必要而不充分条件,
需{x|0<x<a}⊊{x|x>2或x<1},
∴0<a≤1.
综上,取并集可得a∈(﹣∞,1].
【点评】本题考查必要条件、充分条件与充要条件的判断方法,考查了一元二次不等式的解法,是基础题.20.【答案】
【解析】解:(1)∵P为等腰直角三角形PBC的直角顶点,且BC=2,
∴∠PCB=,PC=,
∵∠ACB=,∴∠ACP=,
在△PAC中,由余弦定理得:PA2=AC2+PC2﹣2AC•PC•cos=5,
整理得:PA=;
(2)在△PBC中,∠BPC=,∠PCB=θ,
∴∠PBC=﹣θ,
由正弦定理得:==,
∴PB=sinθ,PC=sin(﹣θ),
∴△PBC的面积S(θ)=PB•PCsin=sin(﹣θ)sinθ=sin(2θ+)﹣,θ∈(0,),
则当θ=时,△PBC面积的最大值为.
【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.21.【答案】
【解析】解:(1)根据椭圆的定义得2a=6,a=3;
∴c=;
∴;
即椭圆的离心率是;
(2);
∴
x=
带入椭圆方程
得,
y=;
所以Q (0
,).
22.【答案】(1)()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1(0,)e 上单调递减;(2)1[,)2
+∞.
【解析】
试题解析:(1)由条件可得2
21
'(1)1f e e a
=-
=-,∴1a =, 由21()f x e x x =+,可得222
22
11'()e x f x e x x -=-=,
由'()0f x >,可得2210,0,
e x x ⎧->⎨≠⎩解得1x e >或1
x e <-;
由'()0f x <,可得2210,0,
e x x ⎧-<⎨≠⎩解得10x e -<<或1
0x e <<.
所以()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1
(0,)e
上单调递减.
(2)令()ln g t t t =,当(0,)s ∈+∞,(1,]t e ∈时,()0f s >,()ln 0g t t t =>,
由()ln kf s t t ≥,可得ln ()
t t
k f s ≥在(0,)x ∈+∞,(1,]t e ∈时恒成立,
即max ln ()t t k f s ⎡⎤≥⎢⎥⎣⎦max
()()g t f s ⎡⎤=⎢⎥
⎣⎦,故只需求出()f s 的最小值和()g t 的最大值. 由(1)可知,()f s 在1(0,)e 上单调递减,在1
(,)e +∞上单调递增,
故()f s 的最小值为1
()2f e e
=,
由()ln g t t t =可得'()ln 10g t t =+>在区间(1,]e 上恒成立, 所以()g t 在(1,]e 上的最大值为()ln g e e e e ==,
所以只需122
e k e ≥
=, 所以实数的取值范围是1[,)2
+∞.
考点:1、利用导数研究函数的单调性及求切线斜率;2、不等式恒成立问题.
【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、不等式的恒成立和导数的几何意义,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(闭区间上还要注意比较端点处函数值的大小).
23.【答案】
【解析】Ⅰ证明:在菱形ABCD 中, ∵BD AC ⊥,∴BD AO ⊥. ∵EF AC ⊥,∴PO EF ⊥, ∵平面PEF ⊥平面ABFED ,平面PEF 平面ABFED EF =,且PO ⊂平面PEF ,
∴PO ⊥平面ABFED ,
∵BD ⊂平面ABFED ,∴PO BD ⊥.
∵AO PO O =,∴BD ⊥平面POA .
Ⅱ设AO
BD H =.由Ⅰ知,PO ⊥平面ABFED ,
∴PO 为三棱锥P A B D -及四棱锥P B D E F -的高,
∴1211
,33ABD BFED V S PO V S PO ∆=⋅=⋅梯形,∵1243
V V =,
∴3344ABD CBD BFED S S S ∆∆==梯形,∴1
4
CEF CBD S S ∆∆=,
∵,BD AC EF AC ⊥⊥,
∴//EF BD ,∴CEF ∆∽CBD ∆. ∴21
()4
CEF CBD S CO CH S ∆∆==,
∴111
222
CO CH AH ===⨯
∴PO OC ==
24.【答案】
【解析】解:(1)当a=1时,f (x )=2|x ﹣
2|+x=…(2分)
所以,f (x )在(﹣∞,2)递减,在[2,+∞)递增,
故最小值为f (2)=2; …(4分)
(2)f(x)=,…(6分)
要使函数f(x)有最小值,需,
∴﹣2≤a≤2,…(8分)
故a的取值范围为[﹣2,2].…(9分)
(3)∵sinx∈[﹣1,1],∴f(sinx)=(a﹣2)sinx+4,
“h(x)=f(sinx)﹣2=(a﹣2)sinx+2存在零点”等价于“方程(a﹣2)sinx+2=0有解”,
亦即有解,
∴,…(11分)
解得a≤0或a≥4,…(13分)
∴a的取值范围为(﹣∞,0]∪[4,+∞)…(14分)
【点评】本题主要考查分段函数的应用,利用分段函数的表达式结合一元二次函数的性质,是解决本题的关键.。