白云区第一中学校2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
白云区第一中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知a >b >0,那么下列不等式成立的是( )
A .﹣a >﹣b
B .a+c <b+c
C .(﹣a )2>(﹣b )2
D .
2. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a
的 取值范围是( )
A .(1,)-+∞
B .(1,0)- C. (2,)-+∞ D .(2,0)-
3. 设F 为双曲线22
221(0,0)x y a b a b
-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到
另一条渐近线的距离为1
||2OF ,则双曲线的离心率为( )
A .
B .3
C .
D .3
【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想. 4. 如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( )
A .54
B .162
C .54+18
D .162+18
5. 函数 y=x 2﹣4x+1,x ∈[2,5]的值域是( )
A .[1,6]
B .[﹣3,1]
C .[﹣3,6]
D .[﹣3,+∞)
6. 将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8
π
个单位后,得到一个偶函数的图象,则ϕ的最小值为( ) (A )
43π ( B ) 83π (C ) 4
π (D )
8
7.数列1,﹣4,7,﹣10,13,…,的通项公式a n为()
A.2n﹣1 B.﹣3n+2 C.(﹣1)n+1(3n﹣2)D.(﹣1)n+13n﹣2
8.直线的倾斜角是()
A.B.C.D.
9.四棱锥P﹣ABCD的底面是一个正方形,PA⊥平面ABCD,PA=AB=2,E是棱PA的中点,则异面直线BE与AC所成角的余弦值是()
A. B. C.D.
10.设函数y=sin2x+cos2x的最小正周期为T,最大值为A,则()
A.T=π,B.T=π,A=2 C.T=2π,D.T=2π,A=2
11.已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为()
A.B.C.D.=0.08x+1.23
12.已知f(x)=m•2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的取值范围为()A.(0,4) B.[0,4)C.(0,5] D.[0,5]
二、填空题
13.已知角α终边上一点为P(﹣1,2),则值等于.
14.若命题“∃x∈R,x2﹣2x+m≤0”是假命题,则m的取值范围是.
15.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是.
16.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .
17.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω|=5,则复数ω= .
18.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m .
三、解答题
19.已知二次函数f (x )的图象过点(0,4),对任意x 满足f (3﹣x )=f (x ),且有最小值是. (1)求f (x )的解析式;
(2)求函数h (x )=f (x )﹣(2t ﹣3)x 在区间[0,1]上的最小值,其中t ∈R ;
(3)在区间[﹣1,3]上,y=f (x )的图象恒在函数y=2x+m 的图象上方,试确定实数m 的范围.
20.在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (0,4);B (﹣3,0),C (1,1) (1)求点C 到直线AB 的距离; (2)求AB 边的高所在直线的方程.
21.在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ()
=1,M ,N 分别为C 与x 轴,y 轴的交点.
(1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.
22.在三棱锥S﹣ABC中,SA⊥平面ABC,AB⊥AC.
(Ⅰ)求证:AB⊥SC;
(Ⅱ)设D,F分别是AC,SA的中点,点G是△ABD的重心,求证:FG∥平面SBC;
(Ⅲ)若SA=AB=2,AC=4,求二面角A﹣FD﹣G的余弦值.
23.记函数f(x)=log2(2x﹣3)的定义域为集合M,函数g(x)=的定义域为集合N.求:
(Ⅰ)集合M,N;
(Ⅱ)集合M∩N,∁R(M∪N).
24.设a>0,是R上的偶函数.
(Ⅰ)求a的值;
(Ⅱ)证明:f(x)在(0,+∞)上是增函数.
白云区第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】C 【解析】解:∵a >b >0,∴﹣a <﹣b <0,∴(﹣a )2>(﹣b )2
,
故选C .
【点评】本题主要考查不等式的基本性质的应用,属于基础题.
2. 【答案】A 【解析】
考
点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.
【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).
3. 【答案】B 【
解
析
】
4. 【答案】D
【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体, 其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组
成,
故表面积S=3×6×6+3××6×6+
×
=162+18
,
故选:D
5. 【答案】C
【解析】解:y=x 2﹣4x+1=(x ﹣2)2
﹣3 ∴当x=2时,函数取最小值﹣3 当x=5时,函数取最大值6 ∴函数 y=x 2
﹣4x+1,x ∈[2,5]的值域是[﹣3,6]
故选C
【点评】本题考查了二次函数最值的求法,即配方法,解题时要分清函数开口方向,辨别对称轴与区间的位置
关系,仔细作答
6. 【答案】B
【解析】将函数()()sin 20y x ϕϕ=+>的图象沿
x 轴向左平移
8
π
个单位后,得到一个偶函数
sin 2sin 28
4
[()]()y x x π
π
ϕϕ=+
+=+
+的图象,可得
42
ππ
ϕ+=
,求得ϕ的最小值为 4
π
,故选B .
7. 【答案】C
【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(﹣1)
n+1
,绝对值为3n
﹣2,故通项公式a n =(﹣1)n+1
(3n ﹣2).
故选:C .
8.【答案】A
【解析】解:设倾斜角为α,
∵直线的斜率为,
∴tanα=,
∵0°<α<180°,
∴α=30°
故选A.
【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握.
9.【答案】B
【解析】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),
=(﹣2,0,1),=(2,2,0),
设异面直线BE与AC所成角为θ,
则cosθ===.
故选:B.
10.【答案】B
【解析】解:由三角函数的公式化简可得:
=2()
=2(sin2xcos+cos2xsin)=2sin(2x+),
∴T==π,A=2
故选:B
11.【答案】C
【解析】解:法一:
由回归直线的斜率的估计值为1.23,可排除D
由线性回归直线方程样本点的中心为(4,5),
将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B
法二:
因为回归直线方程一定过样本中心点,
将样本点的中心(4,5)分别代入各个选项,只有C满足,
故选C
【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程.
12.【答案】B
【解析】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},
∴f(x1)=f(f(x1))=0,
∴f(0)=0,
即f(0)=m=0,
故m=0;
故f(x)=x2+nx,
f(f(x))=(x2+nx)(x2+nx+n)=0,
当n=0时,成立;
当n≠0时,0,﹣n不是x2+nx+n=0的根,
故△=n2﹣4n<0,
故0<n<4;
综上所述,0≤n+m<4;
故选B.
【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.
二、填空题
13.【答案】.
【解析】解:角α终边上一点为P(﹣1,2),
所以tanα=﹣2.
===﹣.
故答案为:﹣.
【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.14.【答案】m>1.
【解析】解:若命题“∃x∈R,x2﹣2x+m≤0”是假命题,
则命题“∀x∈R,x2﹣2x+m>0”是真命题,
即判别式△=4﹣4m<0,
解得m>1,
故答案为:m>1
15.【答案】.
【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,
所以甲胜出的概率为
故答案为.
【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目.
16.【答案】.
【解析】解:∵=1﹣bi,∴a=(1+i)(1﹣bi)=1+b+(1﹣b)i,
∴,解得b=1,a=2.
∴|a﹣bi|=|2﹣i|=.
故答案为:.
【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题.
17.【答案】 ±(7﹣i ) .
【解析】解:设z=a+bi (a ,b ∈R ),∵(1+3i )z=(1+3i )(a+bi )=a ﹣3b+(3a+b )i 为纯虚数,∴.
又ω=
==
,|ω|=,∴
.
把a=3b 代入化为b 2
=25,解得b=±5,∴a=±15.
∴ω=±
=±(7﹣i ).
故答案为±(7﹣i ).
【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出.
18.【答案】1 【解析】 试题分析:()()()()22131112
22=-+--+-=
m AB ,解得:1=m ,故填:1.
考点:空间向量的坐标运算
三、解答题
19.【答案】
【解析】解:(1)二次函数f (x )图象经过点(0,4),任意x 满足f (3﹣x )=f (x )
则对称轴x=,
f (x )存在最小值, 则二次项系数a >0
设f (x )=a (x ﹣)2
+.
将点(0,4)代入得:
f (0)=,
解得:a=1
∴f (x )=(x ﹣)2+=x 2
﹣3x+4.
(2)h(x)=f(x)﹣(2t﹣3)x
=x2﹣2tx+4=(x﹣t)2+4﹣t2,x∈[0,1].
当对称轴x=t≤0时,h(x)在x=0处取得最小值h(0)=4;
当对称轴0<x=t<1时,h(x)在x=t处取得最小值h(t)=4﹣t2;
当对称轴x=t≥1时,h(x)在x=1处取得最小值h(1)=1﹣2t+4=﹣2t+5.
综上所述:
当t≤0时,最小值4;
当0<t<1时,最小值4﹣t2;
当t≥1时,最小值﹣2t+5.
∴.
(3)由已知:f(x)>2x+m对于x∈[﹣1,3]恒成立,
∴m<x2﹣5x+4对x∈[﹣1,3]恒成立,
∵g(x)=x2﹣5x+4在x∈[﹣1,3]上的最小值为,
∴m<.
20.【答案】
【解析】解(1)∵,
∴根据直线的斜截式方程,直线AB:,化成一般式为:4x﹣3y+12=0,
∴根据点到直线的距离公式,点C到直线AB的距离为;
(2)由(1)得直线AB的斜率为,∴AB边的高所在直线的斜率为,
由直线的点斜式方程为:,化成一般式方程为:3x+4y﹣7=0,∴AB边的高所在直线的方程为3x+4y﹣7=0.
21.【答案】
【解析】解:(Ⅰ)由
从而C的直角坐标方程为
即
θ=0时,ρ=2,所以M(2,0)
(Ⅱ)M点的直角坐标为(2,0)
N点的直角坐标为
所以P点的直角坐标为,则P点的极坐标为,
所以直线OP的极坐标方程为,ρ∈(﹣∞,+∞)
【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
22.【答案】
【解析】(Ⅰ)证明:∵SA⊥平面ABC,AB⊂平面ABC,
∴SA⊥AB,又AB⊥AC,SA∩AC=A,
∴AB⊥平面SAC,
又AS⊂平面SAC,∴AB⊥SC.
(Ⅱ)证明:取BD中点H,AB中点M,
连结AH,DM,GF,FM,
∵D,F分别是AC,SA的中点,
点G是△ABD的重心,
∴AH过点G,DM过点G,且AG=2GH,
由三角形中位线定理得FD∥SC,FM∥SB,
∵FM∩FD=F,∴平面FMD∥平面SBC,
∵FG⊂平面FMD,∴FG∥平面SBC.
(Ⅲ)解:以A为原点,AB为x轴,AC为y轴,AS为z轴,建立空间直角坐标系,
∵SA=AB=2,AC=4,∴B(2,0,0),D(0,2,0),H(1,1,0),
A(0,0,0),G(,,0),F(0,0,1),
=(0,2,﹣1),=(),
设平面FDG的法向量=(x,y,z),
则,取y=1,得=(2,1,2),
又平面AFD的法向量=(1,0,0),
cos<,>==.
∴二面角A﹣FD﹣G的余弦值为.
【点评】本题考查异面直线垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.
23.【答案】
【解析】解:(1)由2x﹣3>0 得x>,∴M={x|x>}.
由(x﹣3)(x﹣1)>0 得x<1 或x>3,∴N={x|x<1,或x>3}.
(2)M∩N=(3,+∞),M∪N={x|x<1,或x>3},
∴C R(M∪N)=.
【点评】本题主要考查求函数的定义域,两个集合的交集、并集、补集的定义和运算,属于基础题.
24.【答案】
【解析】解:(1)∵a>0,是R上的偶函数.
∴f(﹣x)=f(x),即+=,
∴+a•2x=+,
2x(a﹣)﹣(a﹣)=0,
∴(a﹣)(2x+)=0,∵2x+>0,a>0,
∴a﹣=0,解得a=1,或a=﹣1(舍去),
∴a=1;
(2)证明:由(1)可知,
∴
∵x>0,
∴22x>1,
∴f'(x)>0,
∴f(x)在(0,+∞)上单调递增;
【点评】本题主要考查函数单调性的判断问题.函数的单调性判断一般有两种方法,即定义法和求导判断导数正负.。