淄川区二中2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淄川区二中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 设集合(

A .
B .
C .
D

2. 若复数z=2﹣i ( i 为虚数单位),则=(

A .4+2i
B .20+10i
C .4﹣2i
D .
3. 如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C 对隧道底AB 的张角θ最大时采集效果最好,则采集效果最好时位置C 到AB 的距离是(

A .2m
B .2m
C .4 m
D .6 m
4. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是(

A

B .
C .
D

5. 已知f (x )为R 上的偶函数,对任意x ∈R 都有f (x+6)=f (x )+f (3),x 1,x 2∈[0,3],x 1≠x 2时,有
成立,下列结论中错误的是(

A .f (3)=0
B .直线x=﹣6是函数y=f (x )的图象的一条对称轴
C .函数y=f (x )在[﹣9,9]上有四个零点
D .函数y=f (x )在[﹣9,﹣6]上为增函数
6. 设定义在R 上的函数f (x )对任意实数x ,y ,满足f (x )+f (y )=f (x+y ),且f (3)=4,则f (0)+f (﹣3)的值为( )
A .﹣2
B .﹣4
C .0
D .4
7. (2011辽宁)设sin (+θ)=,则sin2θ=(

A .
﹣B .﹣
C .
D

班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
8.不等式组在坐标平面内表示的图形的面积等于()
A.B.C.D.
9.自主招生联盟成行于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.在调查某高中学校高三学生自主招生报考的情况,得到如下结果:
①报考“北约”联盟的学生,都没报考“华约”联盟
②报考“华约”联盟的学生,也报考了“京派”联盟
③报考“卓越”联盟的学生,都没报考“京派”联盟
④不报考“卓越”联盟的学生,就报考“华约”联盟
根据上述调查结果,下列结论错误的是()
A.没有同时报考“华约” 和“卓越”联盟的学生
B.报考“华约”和“京派”联盟的考生一样多
C.报考“北约” 联盟的考生也报考了“卓越”联盟
D.报考“京派” 联盟的考生也报考了“北约”联盟
10.已知变量x与y负相关,且由观测数据算得样本平均数=3,=2.7,则由该观测数据算得的线性回归方程可能是()
A.=﹣0.2x+3.3B.=0.4x+1.5C.=2x﹣3.2D.=﹣2x+8.6
11.已知等比数列{a n}的第5项是二项式(x+)4展开式的常数项,则a3•a7()
A.5B.18C.24D.36
12.如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP∥BD;②EP⊥AC;③EP⊥面SAC;④EP∥面SBD中恒成立的为()
A.②④B.③④C.①②D.①③
二、填空题
13.设函数f(x)=,则f(f(﹣2))的值为 .
14.若点p(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,则弦MN所在直线方程为 
15.= .
16.阅读如图所示的程序框图,运行相应的程序,若输入的X的值为2,则输出的结果是 .
17.等比数列{a n}的前n项和S n=k1+k2·2n(k1,k2为常数),且a2,a3,a4-2成等差数列,则a n=________.18.在中,角、、所对应的边分别为、、,若,则_________三、解答题
19.求同时满足下列两个条件的所有复数z:
①z+是实数,且1<z+≤6;
②z的实部和虚部都是整数.
20.(1)求z=2x+y的最大值,使式中的x、y满足约束条件
(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1.
21.已知函数f(x)=|x﹣a|.
(Ⅰ)若不等式f(x)≤2的解集为[0,4],求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若∃x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求实数m的取值范围.
22.已知定义在区间(0,+∞)上的函数f(x)满足f()=f(x1)﹣f(x2).
(1)求f(1)的值;
(2)若当x>1时,有f(x)<0.求证:f(x)为单调递减函数;
(3)在(2)的条件下,若f(5)=﹣1,求f(x)在[3,25]上的最小值.
23.已知函数f(x)=x3+x.
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)求证:f(x)是R上的增函数;
(3)若f(m+1)+f(2m﹣3)<0,求m的取值范围.
(参考公式:a3﹣b3=(a﹣b)(a2+ab+b2))
24.已知函数.
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.
淄川区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】B
【解析】解:集合A中的不等式,当x>0时,解得:x>;当x<0时,解得:x<,
集合B中的解集为x>,
则A∩B=(,+∞).
故选B
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
2.【答案】A
【解析】解:∵z=2﹣i,
∴====,
∴=10•=4+2i,
故选:A.
【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.
3.【答案】A
【解析】解:建立如图所示的坐标系,设抛物线方程为x2=﹣2py(p>0),
将点(4,﹣4)代入,可得p=2,
所以抛物线方程为x2=﹣4y,
设C(x,y)(y>﹣6),则
由A(﹣4,﹣6),B(4,﹣6),可得k CA=,k CB=,
∴tan∠BCA===,
令t=y+6(t>0),则tan∠BCA==≥
∴t=2时,位置C对隧道底AB的张角最大,
故选:A.
【点评】本题考查抛物线的方程与应用,考查基本不等式,确定抛物线的方程及tan∠BCA,正确运用基本不等式是关键.
4.【答案】C
【解析】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,
∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],
∵在定义域内任取一点x0,
∴x0∈[﹣5,5],
∴使f(x0)≤0的概率P==
故选C
【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键 
5.【答案】D
【解析】解:对于A:∵y=f(x)为R上的偶函数,且对任意x∈R,均有f(x+6)=f(x)+f(3),
∴令x=﹣3得:f(6﹣3)=f(﹣3)+f(3)=2f(3),
∴f(3)=0,故A正确;
对于B:∵函数y=f(x)是以6为周期的偶函数,
∴f(﹣6+x)=f(x),f(﹣6﹣x)=f(x),
∴f(﹣6+x)=f(﹣6﹣x),
∴y=f(x)图象关于x=﹣6对称,即B正确;
对于C:∵y=f(x)在区间[﹣3,0]上为减函数,在区间[0,3]上为增函数,且f(3)=f(﹣3)=0,
∴方程f(x)=0在[﹣3,3]上有2个实根(﹣3和3),又函数y=f(x)是以6为周期的函数,
∴方程f(x)=0在区间[﹣9,﹣3)上有1个实根(为﹣9),在区间(3,9]上有一个实根(为9),
∴方程f(x)=0在[﹣9,9]上有4个实根.故C正确;
对于D:∵当x1,x2∈[0,3]且x1≠x2时,有,
∴y=f(x)在区间[0,3]上为增函数,又函数y=f(x)是偶函数,
∴y=f(x)在区间[﹣3,0]上为减函数,又函数y=f(x)是以6为周期的函数,
∴y=f(x)在区间[﹣9,﹣6]上为减函数,故D错误.
综上所述,命题中正确的有A、B、C.
故选:D.
【点评】本题考查抽象函数及其应用,命题真假的判断,着重考查函数的奇偶性、对称性、周期性、单调性,考查函数的零点,属于中档题.
6.【答案】B
【解析】解:因为f(x)+f(y)=f(x+y),
令x=y=0,
则f(0)+f(0)=f(0+0)=f(0),
所以,f(0)=0;
再令y=﹣x,
则f(x)+f(﹣x)=f(0)=0,
所以,f(﹣x)=﹣f(x),
所以,函数f(x)为奇函数.
又f(3)=4,
所以,f(﹣3)=﹣f(3)=﹣4,
所以,f(0)+f(﹣3)=﹣4.
故选:B.
【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题.
7.【答案】A
【解析】解:由sin(+θ)=sin cosθ+cos sinθ=(sinθ+cosθ)=,
两边平方得:1+2sinθcosθ=,即2sinθcosθ=﹣,
则sin2θ=2sinθcosθ=﹣.
故选A
【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.
8.【答案】B
【解析】解:作出不等式组对应的平面区域,
则对应的平面区域为矩形OABC,
则B(3,0),
由,解得,即C(,),
∴矩形OABC 的面积S=2S △0BC =2×=,
故选:
B
【点评】本题主要考查二元一次不等式组表示平面区,利用数形结合是解决本题的关键. 
9. 【答案】D
【解析】集合表示报考“北约”联盟的学生,集合表示报考“华约”联盟的学生,A B 集合表示报考“京派”联盟的学生,集合表示报考“卓越”联盟的学生,
C D 由题意得,∴

U A B B C
D C D B =∅
⎧⎪⊆⎪⎨=∅⎪⎪=⎩I I ð
U A D B C D B
⊆⎧⎪
=⎨⎪=⎩ð选项A .,正确;
B D =∅I 选项B .,正确; B
C =选项C .,正确. A
D ⊆10.【答案】A
【解析】解:变量x 与y 负相关,排除选项B ,C ;回归直线方程经过样本中心,
把=3, =2.7,代入A 成立,代入D 不成立.故选:A . 
11.【答案】D
【解析】解:二项式(x+)4展开式的通项公式为T r+1=•x 4﹣2r ,
令4﹣2r=0,解得r=2,∴展开式的常数项为6=a 5,∴a 3a 7=a 52=36,故选:D .
【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题. 
12.【答案】 A
【解析】解:如图所示,连接AC 、BD 相交于点O ,连接EM ,EN .
A D
B=C
在①中:由异面直线的定义可知:EP与BD是异面直线,
不可能EP∥BD,因此不正确;
在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,
∴SO⊥AC.
∵SO∩BD=O,∴AC⊥平面SBD,
∵E,M,N分别是BC,CD,SC的中点,
∴EM∥BD,MN∥SD,而EM∩MN=M,
∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.
在③中:由①同理可得:EM⊥平面SAC,
若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,
因此当P与M不重合时,EP与平面SAC不垂直.即不正确.
在④中:由②可知平面EMN∥平面SBD,
∴EP∥平面SBD,因此正确.
故选:A.
【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养. 
二、填空题
13.【答案】 ﹣4 .
【解析】解:∵函数f(x)=,
∴f(﹣2)=4﹣2=,
f(f(﹣2))=f()==﹣4.
故答案为:﹣4.
14.【答案】:2x﹣y﹣1=0
解:∵P(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,
∴圆心与点P确定的直线斜率为=﹣,
∴弦MN所在直线的斜率为2,
则弦MN所在直线的方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0.
故答案为:2x﹣y﹣1=0
15.【答案】 2 .
【解析】解:=2+lg100﹣2=2+2﹣2=2,
故答案为:2.
【点评】本题考查了对数的运算性质,属于基础题.
16.【答案】 ﹣3 .
【解析】解:分析如图执行框图,
可知:该程序的作用是计算分段函数f(x)=的函数值.
当x=2时,f(x)=1﹣2×2=﹣3
故答案为:﹣3
【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.
17.【答案】
【解析】当n=1时,a1=S1=k1+2k2,当n≥2时,a n=S n-S n-1=(k1+k2·2n)-(k1+k2·2n-1)=k2·2n-1,∴k1+2k2=k2·20,即k1+k2=0,①
又a2,a3,a4-2成等差数列.
∴2a3=a2+a4-2,
即8k2=2k2+8k2-2.②
由①②联立得k1=-1,k2=1,
∴a n=2n-1.
答案:2n-1
18.【答案】
【解析】
因为,所以,
所以,所以
答案:
三、解答题
19.【答案】
【解析】解:设z+=t,则z2﹣tz+10=0.∵1<t≤6,∴△=t2﹣40<0,解方程得z=±i.
又∵z的实部和虚部都是整数,∴t=2或t=6,
故满足条件的复数共4个:z=1±3i 或z=3±i.
20.【答案】
【解析】解:(1)由题意作出可行域如下,

结合图象可知,当过点A(2,﹣1)时有最大值,
故Z max=2×2﹣1=3;
(2)由题意作图象如下,

根据距离公式,原点O到直线2x+y﹣z=0的距离d=,
故当d有最大值时,|z|有最大值,即z有最值;
结合图象可知,当直线2x+y﹣z=0与椭圆+=1相切时最大,
联立方程化简可得,
116x2﹣100zx+25z2﹣400=0,
故△=10000z2﹣4×116×(25z2﹣400)=0,
故z2=116,
故z=2x+y的最大值为.
【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用. 
21.【答案】
【解析】解:(Ⅰ)∵|x﹣a|≤2,∴a﹣2≤x≤a+2,
∵f(x)≤2的解集为[0,4],∴,∴a=2.
(Ⅱ)∵f(x)+f(x+5)=|x﹣2|+|x+3|≥|(x﹣2)﹣(x+3)|=5,
∵∃x0∈R,使得,
即成立,
∴4m+m2>[f(x)+f(x+5)]min,即4m+m2>5,解得m<﹣5,或m>1,∴实数m的取值范围是(﹣∞,﹣5)∪(1,+∞).
22.【答案】
【解析】解:(1)令x1=x2>0,
代入得f(1)=f(x1)﹣f(x1)=0,
故f(1)=0.…(4分)
(2)证明:任取x1,x2∈(0,+∞),且x1>x2,则>1,
由于当x>1时,f(x)<0,所以f()<0,
即f(x1)﹣f(x2)<0,因此f(x1)<f(x2),
所以函数f(x)在区间(0,+∞)上是单调递减函数.…(8分)
(3)因为f(x)在(0,+∞)上是单调递减函数,
所以f(x)在[3,25]上的最小值为f(25).
由f()=f(x1)﹣f(x2)得,
f(5)=f()=f(25)﹣f(5),而f(5)=﹣1,
所以f(25)=﹣2.
即f(x)在[3,25]上的最小值为﹣2.…(12分)
【点评】本题主要考查抽象函数的应用,利用赋值法以及函数单调性的定义是解决本题的关键.
23.【答案】
【解析】解:(1)f(x)是R上的奇函数
证明:∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),
∴f(x)是R上的奇函数
(2)设R上任意实数x1、x2满足x1<x2,∴x1﹣x2<0,
f(x1)﹣f(x2)=(x1﹣x2)+[(x1)3﹣(x2)3]=(x1﹣x2)[(x1)2+(x2)2+x1x2+1]=(x1﹣x2)[(x1+x2)2+x22+1]<0恒成立,
因此得到函数f(x)是R上的增函数.
(3)f(m+1)+f(2m﹣3)<0,可化为f(m+1)<﹣f(2m﹣3),
∵f(x)是R上的奇函数,∴﹣f(2m﹣3)=f(3﹣2m),
∴不等式进一步可化为f(m+1)<f(3﹣2m),
∵函数f(x)是R上的增函数,
∴m+1<3﹣2m,

24.【答案】
【解析】【知识点】利用导数求最值和极值利用导数研究函数的单调性导数的概念和几何意义
【试题解析】(Ⅰ)函数定义域为

又,所求切线方程为,即
(Ⅱ)函数在上恰有两个不同的零点,
等价于在上恰有两个不同的实根
等价于在上恰有两个不同的实根,
令则
当时,,在递减;
当时,,在递增.
故,又.
,,即。

相关文档
最新文档