培优化学反应与能量变化辅导专题训练

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培优化学反应与能量变化辅导专题训练
一、化学反应与能量变化练习题(含详细答案解析)
1.A 、B 是中学化学常见的化合物,它们各由两种元素组成;乙为元素R 组成的单质,它们之间存在如图所示关系.根据要求回答问题:
()1如图三个反应中,属于氧化还原反应的有______个.
()2若元素R 与氧同主族,下列事实能说明R 与氧的非金属性相对强弱的有______.
A .还原性:22H R H O >
B .酸性:22H R H O >
C .稳定性:22H R H O < C .沸点:22H R H O <
()3若化合物B 常温下为气体,其水溶液呈碱性(答题必须用具体物质表示). ①化合物B 的电子式为______;其水溶液呈碱性的原因是______(用离子方程式表示). ②化合物B 可与2O 组成燃料电池(氢氧化钾溶液为电解质溶液),其反应产物与反应Ⅲ相同.写出该电池负极的电极反应式______.
③当1mol 的化合物B 分别参与反应Ⅱ、Ⅲ时,热效应为1H V 和2H V ,则反应Ⅰ的热化学方程式为______(注:反应条件相同、所有物质均为气体).
【答案】3 A 、C 32NH H 0+4NH OH +
-+
3222NH 6e 6OH N 6H O ---+=+ ()()()()2212N g O g 2NO g H 0.8H H +==-V V V
【解析】
【分析】
()1A 、B 是中学化学常见的化合物,它们各由两种元素组成,乙为元素R 组成的单质,反应Ⅰ、Ⅱ为有氧气参加的反应,应为氧化还原反应,反应Ⅲ由化合物A 、B 反应生成单质,也应为氧化还原反应;
()2元素R 与氧同主族,则R 为硫元素,硫的非金属性弱于氧,根据元素周期律判断; ()3若化合物B 常温下为气体,其水溶液呈碱性,则B 为3NH ,根据转化关系可知,A 为NO ,乙为2N ,据此答题。

【详解】
()1A 、B 是中学化学常见的化合物,它们各由两种元素组成,乙为元素R 组成的单质,反应Ⅰ、Ⅱ为有氧气参加的反应,应为氧化还原反应,反应Ⅲ由化合物A 、B 反应生成单质,也应为氧化还原反应,所以属于氧化还原反应的有Ⅰ、Ⅱ、Ⅲ,共3个; ()2元素R 与氧同主族,则R 为硫元素,硫的非金属性弱于氧,根据元素周期律可知,能
说明S 与氧的非金属性相对强弱的有,还原性:22H R H O >、稳定性:22H R H O <,故答案为:A 、C ;
()3若化合物B 常温下为气体,其水溶液呈碱性,则B 为3NH ,根据转化关系可知,A 为NO ,乙为2N ;
①化合物B 的电子式为
;其水溶液呈碱性的原因是一水合氨电离产生氢氧根离子,离子方程式为32NH H 0+4NH OH +
-+;
②化合物3NH 与2O 组成燃料电池(氢氧化钾溶液为电解质溶液),电池负极为氨气发生
氧化反应生成氮气和水,电极反应式为3222NH 6e 6OH N 6H O ---+=+;
③当1mol 的化合物B 分别参与反应Ⅱ、Ⅲ时,热效应为1H V 和2H V ,根据盖斯定律,将反应反应(Ⅰ-Ⅱ4)5
⨯可得反应Ⅰ的热化学方程式为()()()()2212N g O g 2NO g H 0.8H H +==-V V V 。

【点睛】
元素非金属性强弱的判断依据:①非金属单质跟氢气化合的难易程度(或生成的氢化物的稳定性),非金属单质跟氢气化合越容易(或生成的氢化物越稳定),元素的非金属性越强,反之越弱;②最高价氧化物对应的水化物(即最高价含氧酸)的酸性强弱.最高价含氧酸的酸性越强,对应的非金属元素的非金属性越强,反之越弱;③氧化性越强的非金属元素单质,对应的非金属元素的非金属性越强,反之越弱,(非金属相互置换)。

2.某同学设计一个燃料电池(如图所示),目的是探究氯碱工业原理和粗铜的精炼原理。

根据要求回答相关问题:
(1)甲装置中,通入氢气的电极为________(填“正极”或“负极”),该极电极反应式为________;若将KOH 溶液换成硫酸溶液,则正极电极反应式为
__________________________。

(2)关于乙装置,下列说法正确的是________(填序号);
①溶液中Na +向C 极移动
②从C 极处逸出的气体能使湿润的KI 淀粉试纸变蓝
③反应一段时间后通入适量HCl 可恢复到电解前电解质的浓度
④若标准状况下Fe 极产生2.24L 气体,则溶液中转移0.2mol 电子
该装置中发生的总反应的离子方程式为__________________________。

(3)乙装置中,X 为阳离子交换膜,反应一段时间后交换膜左侧溶液中pH____(填“增
大”、“减小”或“不变”);若用饱和MgCl2溶液代替饱和氯化钠溶液,则该装置中发生的总反应______(填“改变”或“不变”)。

(4)如果粗铜中含有锌、银等杂质,丙装置中反应一段时间,硫酸铜溶液浓度将
________(填“增大”“减小”或“不变”),精铜电极上的电极反应式为
_______________________________。

【答案】负极 H2-2e-+2OH-=2H2O O2+4e-+4H+=2H2O ②③ 2Cl-+2H2O 电解
2OH-
+H2↑+Cl2↑增大改变减小 Cu2++2e-=Cu
【解析】
【分析】
甲池为原电池,氧气发生还原反应,通入氧气的一极为正极,氢气发生还原反应,通入氢气的一极为负极;乙池中Fe电极与负极相连为阴极,石墨电极为阳极;丙池中精铜为阴极,粗铜为阳极。

【详解】
(1)氢氧燃料电池中氢气发生还原反应,所以通入氢气的一极为负极,电解质溶液为KOH溶液,所以电极方程式为H2-2e-+2OH-=2H2O;正极为通入氧气的一极,若电解质为硫酸,氧气得电子后会生成水,电极方程式为:O2+4e-+4H+=2H2O;
(2)①C极为阳极,电解池中阳离子流向阴极,故错误;
②电解饱和食盐水时阳极上氯离子放电生成氯气,氯气可以使湿润的KI淀粉试纸变蓝,故正确;
③电解饱和食盐水阳极生成氯气,阴极生成氢气,所以反应一段时间后通入适量HCl可恢复到电解前电解质的浓度,故正确;
④电子不能在溶液中转移,故错误;
综上所述答案为②③;
乙装置中右侧阳极反应为:2Cl--2e-=Cl2↑,左侧阴极反应为水电离的氢离子放电:2H++2e-
=H2↑,总反应为2Cl-+2H2O 电解
2OH-+H2↑+Cl2↑;
(3)乙装置中右侧阳极反应为:2Cl--2e-=Cl2↑,左侧阴极反应为水电离的氢离子放电:
2H++2e-=H2↑,水的电离平衡被破坏,电离出更多的氢氧根,X为阳离子交换膜,所以生成的OH-无法迁移到阳极,所以左侧溶液中pH增大;由于Mg2+会与OH-反应生成沉淀,所以总反应发生改变;
(4)丙池中阴极即精铜上发生反应:Cu2++2e-=Cu,而阳极即粗铜上由于由比铜活泼的金属杂质放电,所以转移相同电子数目时,阳极不能生成与阴极消耗的等量的铜离子,所以硫酸铜溶液浓度减小。

【点睛】
第2题第4个选项为易错点,学生要注意审题,电子并不能在溶液中进行专业,不要盲目计算,
3.按要求回答下列问题。

(1)Al2(SO4)3溶液显酸性的离子方程式:____________________________;
(2)CuSO4溶液与过量氨水反应的离子方程式:____________________________;
(3)Mg-Al-NaOH溶液组成的原电池,负极的电极反应式:_________________________;
(4)CH3OH-O2燃料电池,KOH溶液作电解质,负极的电极反应式:____________________;
(5)惰性电极电解CuSO4溶液的总反应的化学方程式:______________________________;
(6)Na2C2O4溶液的物料守恒:______________________________;
(7)Fe3+的基态电子排布式:______________________________;
(8)N2H4的结构式:______________________________。

【答案】Al3++3H2O⇌Al(OH)3+3H+ Cu2++4NH3•H2O=[Cu(NH3)4]2++4H2O Al-3e-+4OH-═AlO2-
+2H2O CH3OH+8OH--6e-=CO32-+6H2O 2CuSO4+2H2O 电解
2Cu+2H2SO4+O2↑ c(Na+)=2[c(C2O42-
)+c(HC2O4-)+c(H2C2O4)] [Ar]3d5
【解析】
【详解】
(1)Al2(SO4)3溶液中存在铝离子的水解,所以溶液显酸性,故答案为:
Al3++3H2O⇌Al(OH)3+3H+;
(2)CuSO4溶液与过量氨水反应会生成铜氨络离子,故答案为:
Cu2++4NH3•H2O=[Cu(NH3)4]2++4H2O;
(3)Mg-Al-NaOH溶液组成的原电池,总反应为Al与氢氧化钠溶液反应生成偏铝酸钠和氢气的反应,Al失电子被氧化做负极,故答案为:Al-3e-+4OH-═AlO2-+2H2O;
(4)CH3OH-O2燃料电池,KOH溶液作电解质,负极甲醇失去电子生成二氧化碳,由于电解质为氢氧化钾溶液,所以反应生成了碳酸根离子,发生的负极电极反应式为CH3OH+8OH--6e-=CO32-+6H2O;
(5)电解硫酸铜溶液生成铜单质、氧气和硫酸,故答案为:
2CuSO4+2H2O 电解
2Cu+2H2SO4+O2↑;
(6)Na2C2O4溶液中钠离子的浓度等于含碳原子微粒的浓度之和的二倍,故答案为:
c(Na+)=2[c(C2O42-)+c(HC2O4-)+c(H2C2O4)];;
(7)Fe元素为26号元素,失去最外层三个电子生成Fe3+,故基态电子排布式为:[Ar]3d5;
(8) N2H4是共价化合物,氮原子和氢原子形成共价键,氮原子和氮原子间也形成共价键,结构式为:。

4.燃料电池是符合绿色化学理念的新型发电装置。

如图为氢氧燃料电池示意图,该电池电极表面镀一层细小的铂粉,铂吸附气体的能力强,性质稳定,请回答:
(1)氢氧燃料电池的能量转化主要形式是___,在导线中电子流动方向为___(用a、b表示)。

(2)负极反应式为___,正极反应式为___。

(3)用该燃料电池作电源,用Pt作电极电解饱和食盐水:
①写出阴极的电极反应式:___。

②写出总反应的离子方程式:___。

③当阳极产生7.1gCl2时,燃料电池中消耗标况下H2___L。

【答案】由化学能转变为电能由a到b 2H2-4e-+4OH-=4H2O O2+4e-+2H2O=4OH-
2H2O+2e-=H2↑ +2OH-或2H+ +2e-=H2↑ Cl-+2H2O H2↑+2OH-+Cl2↑ 2.24
【解析】
【分析】
(1)原电池是将化学能转变为电能的装置,原电池放电时,电子从负极沿导线流向正极;(2)负极上燃料失电子发生还原反应,正极上氧气得电子生成氢氧根离子;
(3)用惰性电极电解饱和食盐水时,阳极上氯离子放电,阴极上氢离子放电;
根据转移电子守恒计算消耗氢气的物质的量
【详解】
(1)该装置是把化学物质中的能量转化为电能,所以是化学能转变为电能;在原电池中,负极上失电子,正极上得电子,电子的流向是从负极流向正极,所以是由a到b,
故答案为:由化学能转变为电能;由a到b;
(2)碱性环境中,该反应中负极上氢气失电子生成氢离子,电极反应式为2H2-4e-+4OH-
=4H2O,正极上氧气得电子生成氢氧根离子,电极反应式为O2+4e-+2H2O=4OH-,故答案为:2H2-4e-+4OH-=4H2O;O2+4e-+2H2O=4OH-;
(3)用惰性电极电解饱和食盐水时,阴极上氢离子放电,电极反应式为:2H2O+2e-=H2↑ +2OH-或2H+ +2e-=H2↑,阳极上氯离子放电生成氯气,所以总反应离子方程式为:Cl-+
2H2O H2↑+2OH-+Cl2↑ ,根据转移电子守恒计算消耗氢气的物质的量,电解时,阳极上生成氯气,每生成 0.1mol 氯气转移电子的物质的量=0.1mol×(1-0)×2=0.2mol,
燃料电池中消耗氢气的物质的量=0.2mol/2=0.1mol,所以标况下体积为2.24L,
故答案为:2H2O+2e-=H2↑ +2OH-或2H+ +2e-=H2↑ ; Cl-+2H2O H2↑+2OH-+Cl2↑ ;
2.24。

5.A、B、C三个烧杯中分别盛有相同物质的量浓度的稀硫酸。

(1)A中反应的离子方程式为_________________________________。

(2)B中Fe极为_______极,电极反应式为_______________________。

C中Fe极为
_______极,电极反应式为__________________________,电子从_______极流出(填“Zn”或“Fe”)。

(3)比较A、B、C中铁被腐蚀的速率,由快到慢的顺序是___________________。

【答案】Fe+2H+=Fe2+H2↑负极Fe-2e-=Fe2+正极2H++2e-=H2↑Zn B>A>C
【解析】
【分析】
已知金属活动性:Zn>Fe>Sn,则A发生化学腐蚀,铁与硫酸反应生成硫酸亚铁和氢气,B中Fe为负极,Sn为正极,Fe被腐蚀,C中Zn为负极,Fe为正极,Fe被保护,以此解答。

【详解】
(1)铁与硫酸反应的离子方程式为:Fe+2H+=Fe2++H2↑;
(2)Fe比Sn活泼,则B中Fe为负极,Sn为正极,负极发生Fe-2e- = Fe2+;Zn比Fe活泼,则C中Fe为正极,Zn为负极,正极反应式为2H++2e-=H2↑,电子从负极即Zn极流出;
(3)A发生化学腐蚀;B中Fe为负极,Sn为正极,Fe被腐蚀;C中Zn为负极,Fe为正极,Fe被保护,Zn被腐蚀,则A、B、C中铁被腐蚀的速率,由快到慢的顺序是B>A>C,。

6.常见锌锰干电池因含有汞、酸或碱等,废弃后进入环境将造成严重危害。

某化学兴趣小组拟采用如下处理方法回收废电池中的各种资源
(1)填充物用60℃温水溶解,目的是__________。

(2)操作A的名称为____________。

(3)铜帽溶解时加入H2O2的目的是_______________________(用化学方程式表示)。

铜帽溶解完全后,可采用_____________方法除去溶液中过量的H2O2。

(4)碱性锌锰干电池的电解质为KOH,总反应为Zn+2MnO2+2H2O=2MnOOH+Zn(OH)2,其
负极的电极反应式为___________。

(5)滤渣的主要成分为含锰混合物,向含锰混合物中加入一定量的稀硫酸、稀草酸,并不断搅拌至无气泡为止。

主要反应为
2MnO(OH)+MnO2+2H2C2O4+3H2SO4=2MnSO4+4CO2↑+6H2O。

①当1 mol MnO2参加反应时,共有_____mol电子发生转移。

②MnO(OH)与浓盐酸在加热条件下也可发生反应,试写出该反应的化学方程式:
_____________。

【答案】加快溶解速率过滤 Cu+H2O2+H2SO4=CuSO4+2H2O 加热 Zn+2OH--2e-
=Zn(OH)2 4 2MnO(OH)+6HCl(浓)2MnCl2+Cl2↑+4H2O
【解析】
【详解】
(1)由于物质的溶解速率随温度的升高而增大。

所以填充物用60 ℃温水溶解,目的是加快溶解速率;
(2)分离难溶性固体与液体混合物的操作名称为过滤;
(3)H2O2具有强氧化性,Cu与稀硫酸不反应,但在酸性条件下,加入H2O2的Cu就会被溶解变为Cu2+,反应的化学方程式是Cu+H2O2+H2SO4=CuSO4+2H2O;H2O2不稳定,受热容易分解产生氧气和水,所以铜帽溶解完全后,可采用加热方法除去溶液中过量的H2O2。

(4)碱性锌锰干电池的电解质为KOH,总反应为Zn+2MnO2+2H2O=" 2MnOOH" +
Zn(OH)2,负极Zn发生氧化反应,电极反应式为Zn+2OH--2e-=Zn(OH)2。

(5)①根据方程式2MnO(OH)+MnO2+2H2C2O4 +3H2SO4=2MnSO4+4CO2↑+6H2O转移
4e-,可知:当1 mol MnO2参加反应时,共有4 mol的电子发生转移;
②MnO(OH)与浓盐酸在加热条件下也可发生反应,则该反应的化学方程式是:
2MnO(OH)+6HCl(浓)2MnCl2+Cl2↑+4H2O。

7.某化学兴趣小组的同学设计了如图所示的装置,完成下列问题:
(1)反应过程中,_____棒质量减少,当一电极质量增加2 g,另一电极减轻的质量_____(填“大于”、“小于”或“等于”)2g,正极的电极反应为_______。

(2)盐桥的作用是向甲、乙两烧杯中提供NH 和Cl -,使两烧杯溶液中保持电荷守恒。

①反应过程中Cl -
将进入______(填“甲”或“乙”)烧杯。

②当外电路中转移0.2 mol 电子时,乙烧杯中浓度最大的阳离子是______。

【答案】锌 大于 Cu 2++2e -=Cu 甲 NH 4+
【解析】
【分析】
锌比铜活泼,锌为负极,发生氧化反应,电极方程式为Zn-2e -=Zn 2+,铜为正极,发生还原反应,电极方程式为Cu 2++2e -=Cu ,结合电极方程式解答该题;
(1) 锌比铜活泼,锌为负极,铜为正极,铜电极析出铜;
(2)盐桥的作用是向甲、乙两烧杯中提供NH 和Cl -,使两烧杯溶液中保持电荷守恒。

①原电池中阴离子移向负极,阳离子移向正极;
②乙烧杯中铜离子析出,电荷守恒计算铵根离子浓度。

【详解】
锌比铜活泼,锌为负极,发生氧化反应,电极方程式为Zn-2e -=Zn 2+,铜为正极,发生还原反应,电极方程式为Cu 2++2e -=Cu ;
(1)反应过程中,锌棒是负极,发生氧化反应,质量减小,而铜棒是正极,发生还原反应,
电极反应式为Cu 2++2e -=Cu ,则正极上质量增重,当正极质量增加2g 时,转移电子的物质的量为2g 64g /mol ×2mol=116mol ,此时负极质量减少116mol×65g/mol×12
>2g ; (2) ①反应过程中,盐桥中的Cl -移向负极锌,Cl -进入甲杯;
②当外电路中转移0.2mol 电子时,Cu 2++2e -=Cu ,铜离子减少0.1mol ,电荷减少0.2mol ,溶液中进入NH 4+0.2mol ,乙烧杯中浓度最大的阳离子是NH 4+,其浓度=0.2mol 0.1L
=2mol/L 。

8.回答下列问题:
(1)已知两种同素异形体A 、B 的热化学方程式为:A (s )+O 2(g )═CO 2(g )△H=﹣393.51 kJ·mol -1;B (s )+O 2(g )═CO 2(g )△H=﹣395.41 kJ·mol -1则两种同素异形体中较稳定的是(填“A”或“B”)______。

(2)已知化学反应N 2+3H 2垐垐垎噲垐垐催化剂
高温高压2NH 3的能量变化如图所示。

①1 mol N 和3 mol H 生成1 mol NH 3(g)是_______能量的过程(填“吸收”或“释放”)。

由12
mol
N2(g)和3
2
mol H2(g)生成1 mol NH3(g)过程________(填“吸收”或“释放”)___________ kJ能量。

(用图中字母表示,②同)
②1
2
mol N2(g)和
3
2
mol H2(g)反应生成1 mol NH3(l)的△H = _______________。

(3)工业上用H2和Cl2反应制HCl,各键能为:H﹣H:436 kJ·mol-1,Cl﹣Cl:243 kJ·mol-1,H﹣Cl:431 kJ·mol-1。

该反应的热化学方程式是_______________。

【答案】A释放释放b-a△H = -(b+c-a)kJ·mol-1H2(g)+Cl2(g)=2HCl(g)△H=-183 kJ·mol-1
【解析】
【分析】
(1)由①A(s)+O2(g)═CO2(g)△H=-393.51kJ/mol;②B(s)+O2(g)═CO2(g)△H=-395.41kJ/mol,根据盖斯定律:①-②分析反应的热效应,能量越高越不稳定;
(2)①原子结合为分子过程会放热;由图象可知,反应物的总能量大于生成物的总能量,反应放热;△H=生成物的活化能-反应物的活化能;
②根据反应热等于反应物总能量减去生成物总能量计算反应热并书写热化学方程式,注意反应物的物质的量和生成物的聚集状态;
(3)反应方程式为:H2+Cl2=2HCl,根据吸收的能量之和与放出的能量之和的相对大小判断反应的吸放热,二者的差值即为焓变的数值。

【详解】
(1)由①A(s)+O2(g)═CO2(g)△H=-393.51kJ/mol;②B(s)+O2(g)═CO2(g)△H=-395.41kJ/mol,根据盖斯定律:①-②得:A(s)=B(s)△H>0,所以B的能量高,能量越高越不稳定,A稳定;(2)①原子结合为分子过程会放热,所以1mol N和3mol H生成1mol NH3(g)是释放能量的过程;由图象可知,反应物的总能量大于生成物的总能量,则该反应为放热反应,则
1 2molN2(g)和
3
2
molH2(g)生成1mol NH3(g)过程时放热过程;△H=生成物的活化能-反应物的
活化能=b-akJ/mol,所以1mol NH3(g)过程时放热b-akJ;
②1
2
mol N2(g)和
3
2
mol H2(g)反应生成1 mol NH3(l)的△H =(akJ•mol-1)-(b kJ•mol-1+c kJ•mol-1)= -
(b+c-a)kJ•mol-1;
(3)反应方程式为:H2+Cl2=2HCl,生成2molHCl,需吸收能量:436kJ+243kJ=679kJ,放出能量:2×431kJ=862kJ,放出的能量大于吸收的能量,则该反应放热,焓变为负号,且放出的热量为:864kJ-679kJ=185kJ,所以△H=-183KJ/mol,所以反应的热化学方程式是
H2(g)+Cl2(g)=2HCl(g)△H=-183 kJ/mol。

【点睛】
通常应用盖斯定律进行简单计算的基本方法是参照新的热化学方程式(目标热化学方程式),结合原热化学方程式(一般2~3个)进行合理“变形”,如热化学方程式颠倒、乘除以某一个数,然后将它们相加、减,得到目标热化学方程式,求出目标热化学方程式的ΔH与原热化学方程式之间ΔH的换算关系。

9.通常人们把拆开1mol某化学键所吸收的能量或形成1mol某化学键所释放的能量看作该化学键的键能,键能的大小可用于估算化学反应的反应热(△H),已知:
则下列热化学方程式不正确
...的是___(把正确的一个选项填在横线上)
a.1
2
H2(g)+
1
2
Cl2(g)═HCl(g)△H=﹣91.5kJ•mol﹣1
b.H2(g)+Cl2(g)═2HCl(g)△H=﹣183kJ•mol﹣1 c.2HCl(g)═H2(g)+Cl2(g)△H=+183kJ•mol﹣1
d.1
2
H2(g)+
1
2
Cl2(g)═HCl(g)△H=+91.5kJ•mol﹣1
【答案】d
【解析】
【分析】
根据所给的反应和表格中的键能,先判断出断键吸收的热量和成键放出的热量,然后用断键吸收的热量减去成键放出的热量既得反应热,据此计算。

【详解】
a.1
2
H2(g)+
1
2
Cl2(g)=HCl(g)△H=
1
2
×436kJ•mol-1+
1
2
×243 kJ•mol-1-431kJ•mol-1=-91.5kJ•mol-1,
故a正确;
b.H2(g)+Cl2(g)=2HCl(g) △H=436kJ•mol-1+243 kJ•mol-1-(2×431)kJ•mol-1=-183 kJ•mol-1,故b正确;
c.2HCl(g)=H2(g)+Cl2(g) △H=(2×431)kJ•mol-1-(436kJ•mol-1+243 kJ•mol-1)△H=+183 kJ/mol,故c 正确;
d.1
2
H2(g)+
1
2
Cl2(g)=HCl(g)△H=
1
2
×436kJ•mol-1+
1
2
×243 kJ•mol-1-431kJ•mol-1=-91.5kJ•mol-1,
故d错误;
故答案为d。

10.已知金刚石和石墨分别在氧气中完全燃烧的热化学方程式为:C(金刚石、s)+O2(g)=CO2(g)△H=-395.41kJ/mol,C(石墨、s)+O2(g)=CO2(g)△H=-393.51kJ/mol,则金刚石转化石墨时的热化学方程式为:_______,由此看来更稳定的碳的同素异形体为:
______。

【答案】C( 金刚石,s )=C( 石墨,s ) △ H=-1.9kJ/mol 石墨
【解析】
【分析】
由盖斯定律计算得到金刚石转化石墨的热化学方程式,分析比较即可。

【详解】
将已知反应依次编号为①②,由盖斯定律可知①—②可得C( 金刚石,s)=C(石墨,s),则△H=△H 1—△H 2=(-395.41kJ/mol )—(-393.51kJ/mol )=-1.9KJ/mol ,热化学方程式为C( 金刚石,s)=C( 石墨,s) △ H=-1.9kJ/mol ;物质的能量越小,越稳定,由金刚石转化石墨的热化学方程式可知,该反应为放热反应,金刚石的能量大于石墨的能量,则石墨比金刚石稳定,故答案为:C( 金刚石,s)=C( 石墨,s) △ H=-1.9kJ/mol ;石墨。

【点睛】
放热反应的反应物能能量大于生成物总能量,物质的能量越小,越稳定。

11.(1)已知拆开1molH H -键、1molCl Cl -键、1molH Cl -键分别需要吸收的能量为436.4kJ 、242.7kJ 、431.8kJ 。

则由2H 和2Cl 反应生成1molHCl 需要_______(填“放出”或“吸收”)_________kJ 的热量。

(2)H 2可以在2Cl 中安静地燃烧。

甲、乙两图中,能表示该反应能量变化的是图_____(填“甲”或“乙”)。

【答案】放出 92.25 甲
【解析】
【分析】
(1)若断裂化学键吸收的能量大于形成化学键放出的能量,该反应为吸热反应,若断裂化学键吸收的能量小于形成化学键放出的能量,该反应为放热反应;
(2)H 2和Cl 2的燃烧反应为放热反应。

【详解】
(1)由氢气和碘单质反应生成1molHCl ,需断裂0.5molH —H 键和0.5molCl —Cl 键,需吸收的能量为0.5×436.4kJ+0.5×242.7kJ=339.55kJ ,形成1molH —Cl 键放出的能量为431.8kJ ,形成化学键放出的热量大于断裂化学键吸收的热量,则该反应为放热反应,放出的热量为(431.8kJ —339.55kJ )=92.25kJ ,故答案为:放出;92.25;
(2)H 2和Cl 2的燃烧反应为放热反应,反应物的总能量大于生成物的总能量,由图可知,甲中反应物的总能量大于生成物的总能量,乙中反应物的总能量小于生成物的总能量,故选甲,故答案为:甲。

【点睛】
由断裂化学键吸收能量和形成化学键放出能量的相对大小判断反应是放热,还是吸热是解答关键。

12.微型纽扣电池在现代生活中有广泛应用,有一种银锌电池,其电极分别是Ag2O和Zn,电解质溶液为KOH溶液,总反应为Ag2O+Zn=ZnO+2Ag,其中一个电极反应为
Ag2O+H2O+2e-=2Ag+2OH-。

(1)正极材料为___________。

(2)写出另一电极的电极反应式__________。

(3)在电池使用的过程中,电解质溶液中KOH的物质的量怎样变化?________(增大、减小、不变)。

(4)当电池工作时通过电路对外提供了1mol电子,计算消耗的负极的质量_______。

(5)利用下列反应:Fe+2Fe3+=3Fe2+设计一个原电池,请选择适当的材料和试剂。

①电解质溶液为_____________。

②负极反应式:____________________。

③溶液中Fe3+向__________极移动。

【答案】Ag2O Zn+2OH-—2e-=ZnO+H2O 不变 32.5g FeCl3或铁盐溶液 Fe—2e-=Fe2+正【解析】
【分析】
由总反应式和电极反应式可知,微型纽扣电池中Ag2O为正极,Ag2O在正极得到电子被还原,电极反应式为Ag2O+H2O+2e-=2Ag+2OH-,锌是负极,失电子发生氧化反应,电极反应式为Zn+2OH-—2e-=ZnO+H2O。

【详解】
(1)根据总反应式和电极反应式可知,锌失电子作负极,氧化银得电子作正极,故答案为:Ag2O;
(2)根据总反应式和电极反应式可知,锌失电子作负极,电极反应式为Zn+2OH-—2e-
=ZnO+H2O,故答案为:Zn+2OH-—2e-=ZnO+H2O;
(3)由总反应为Ag2O+Zn=ZnO+2Ag可知,反应中没有消耗或生成氢氧化钾,也没有生成或消耗水,所以KOH的物质的量不变,故答案为:不变;
(4)由负极反应式Zn+2OH-—2e-=ZnO+H2O可知,消耗1mol锌通过电路对外提供了2mol
×65g/mol=32.5g,故电子,则通过电路对外提供了1mol电子,消耗锌的质量为1mol×1
2
答案为:32.5g;
(5)在Fe+2Fe3+=3Fe2+反应中,Fe被氧化,应为原电池的负极,电极反应为:Fe-2e-
=Fe2+,Fe3+得电子被还原,应为原电池正极反应,正极材料为活泼性比Fe弱的金属或非金属材料如碳棒,电解质溶液为含Fe3+离子的溶液,如FeCl3或铁盐,溶液中Fe3+向正极移
动,故答案为:FeCl3或铁盐溶液;Fe—2e-=Fe2+;正。

【点睛】
在原电池中还原剂作负极,失去电子被氧化,发生氧化反应,氧化剂在正极得到电子被还原,发生还原反应。

13.某公司开发了一种以甲醇为原料,以KOH为电解质的用于手机的可充电的高效燃料电池,充一次电可连续使用一个月。

其中B电极的电极材料为碳,如图是一个电化学过程的示意图。

请填空:
(1)充电时,原电池的负极与电源___极相连。

乙池中阳极的电极反应为___。

(2)放电时:负极的电极反应式为___。

(3)在此过程中若完全反应,乙池中A极的质量增加648 g,则甲池中理论上消耗
O2___L(标准状况下)。

(4)若在常温常压下,1gCH3OH燃烧生成CO2和液态H2O时放热22.68kJ,表示甲醇燃烧热的热化学方程式为___。

【答案】负 4OH-+4e-=2H2O+O2↑ CH3OH-6e-+8OH-=CO32-+6H2O 33.6 CH3OH(l)+3
2
O2
(g)=CO2(g)+2H2O(l)△H=-725.76kJ/mol
【解析】
【分析】
(1)放电时,负极上甲醇失电子发生氧化反应;
(2)充电时,原电池负极与电源负极相连,阳极上失电子发生氧化反应;
(3)乙池中B极上银离子得电子发生还原反应,根据转移电子相等计算氧气的体积;
(4)n(CH3OH)=1
32
mol,结合燃烧热的概念书写热化学方程式。

【详解】
(1)充电时,原电池负极与电源负极相连,阳极上氢氧根离子失电子发生氧化反应,电极反应式为:4OH--4e-═2H2O+O2↑;
(2)放电时,甲醇失电子和氢氧根离子反应生成碳酸根离子和水,所以电极反应式为:CH3OH-6e-+8OH-═CO32-+6H2O;
(3)乙池中B极上银离子得电子发生还原反应,当乙池中B极的质量升高648g,则甲池
中理论上消耗O2体积=
648g
1
108g/mol
4
×22.4L/mol=33.6L;
(4)n (CH 3OH )=132
mol ,生成CO 2和液态H 2O 时放热22.68kJ ,则1molCH 3OH 燃烧放出的热量为1×22.68kJ×32=725.76kJ ,表示甲醇燃烧热的热化学方程式为CH 3OH (l )+32
O 2(g )=CO 2(g )+2H 2O (l ) △H=-725.76kJ/mol 。

14.从能量的变化和反应的快慢等角度研究反应:2222H +O =2H O 。

(1)为了加快正反应速率,可以采取的措施有________(填序号,下同)。

A . 使用催化剂
B . 适当提高氧气的浓度
C . 适当提高反应的温度
D . 适当降低反应的温度
(2)已知该反应为放热反应,下图能正确表示该反应中能量变化的是________。

(3)从断键和成键的角度分析上述反应中能量的变化。

(资料)①键能:拆开1mol 化学键需要吸收的能量,或是形成1mol 化学键所放出的能量称为键能。

②化学键的键能:
化学键
H —H O =O H —O 键能-1kJ mol 436 496 463
请填写表: 化学键 填“吸收热量”或“放
出热量” 能量变化kJ
拆开化学键 22molH 中的化学键 ______
____
21molO 中的化学键 ______ ____
形成化学键 4molH-O 键 ______ ____
总能量变化 ______
____
(4)氢氧燃料电池的总反应方程式为2222H +O =2H O 。

其中,氢气在________(填“正”或“负”)极发生________反应(填“氧化”或“还原”)。

电路中每转移0.2mol 电子,标准状况下消耗H 2的体积是__________________L 。

【答案】ABC A 吸收热量 872 吸收热量 496 放出热量 1852 放出热量 484 负 氧化 2.24
【解析】
【分析】
【详解】
(1)常用的加快化学反应速率的方法是:升高温度,加入正催化剂,增大反应物浓度,增大压强(浓度也增大)等,故选ABC ;
(2)反应物的总能量高于生成物的总能量,称为放热反应。

氢气的燃烧反应属于典型的放热反应,所以能正确表示反应能量变化的是A ;
(3)拆开1mol 化学键需要吸收的能量,或是形成1mol 化学键所放出的能量称为键能。

反应物化学键断裂,吸收能量,生成物形成化学键,释放能量,吸收的总能量减去释放的总能量为该反应的能量变化,若为负值,则为放热反应,反之为吸热反应。

则拆开22molH 中的化学键436×2=872kJ ,拆开21molO 中的化学键496kJ ,共吸收1368kJ ,形成4molH-O 键,放出463×4=1852kJ ,反应的总能量变化为放出484kJ ;
(4)氢氧燃料电池中,氢气作负极反应物发生氧化反应,氧气作正极反应物发生还原反应,根据反应式,每有2molH 2参与反应,转移电子4mol 电子,故每转移0.2mol 电子,参与反应的氢气为0.1mol H 2,标准状况下2.24L 。

【点睛】
反应热的计算:1. 生成物总能量-反应物总能量;2.反应物的总键能-生成物的总键能。

燃料电池注意升失氧化,负极氧化(负极失去电子发生氧化反应),燃料做负极反应物,空气或者氧气作正极反应物。

15.(1)化学反应的过程都是旧键断裂、新键形成的过程。

对于反应:
H 2+I 2垐垎?噲垐?加热2HI ,已知断开1mol H —H 键、1mol I —I 键分别需要吸收的能量是436kJ 和151kJ ,形成1mol H —I 键需要放出的能量是299kJ 。

①1mol H 2和1mol I 2完全反应,反应物断键吸收的总能量是___kJ ,生成物成键放出的总能量为___kJ ,反应共_____(填“放出”或“吸收”)能量____kJ 。

②如图,能够反映该反应能量变化的图像是____(填“A”或“B”)。

相关文档
最新文档