高考数列的概念专题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数列的概念选择题
1.已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220n
n x b x -+=的实数根,
则10b 等于( ) A .24
B .32
C .48
D .64
2.已知数列{}n a 满足1221n n n a a a ++=+,n *∈N ,若11
02
a <<,则( ) A .8972a a a +< B .91082a a a +> C .6978a a a a +>+
D .71089a a a a +>+
3.已知数列{}n a 满足: 12a =,11
1n n
a a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007
B .1008
C .1009.5
D .1010
4.已知数列{}n a 满足12a =,11
1n n
a a +=-,则2018a =( ). A .2
B .
12 C .1-
D .12
-
5.已知数列{}n a 满足11a =
),2n N n *=
∈≥,且()2cos
3
n n n a b n N π
*=∈,则数列{}n b 的前18项和为( ) A .120
B .174
C .204-
D .
373
2
6.数列{}n a 的通项公式是2
76n a n n =-+,4a =( )
A .2
B .6-
C .2-
D .1
7.在数列{}n a 中,10a =
,1n a +,则2020a =( ) A .0
B .1
C
.D
8.
的一个通项公式是( )
A
.n a =
B
.n a =C
.n a =D
.n a =9.
3


,则 ) A .第8项
B .第9项
C .第10项
D .第11项
10.若数列的前4项分别是
1111,,,2345
--,则此数列的一个通项公式为( )
A .1(1)n n --
B .(1)n n
-
C .1(1)1n n +-+
D .(1)1
n
n -+
11.在数列{}n a 中,11a =,()*
1
22,21
n n a n n N a -=≥∈-,则3
a =( )
A .6
B .2
C .
23
D .
211
12.已知数列{}n a 满足()()*
6
22,6,6
n n p n n a n p
n -⎧--≤=∈⎨
>⎩N ,且对任意的*
n ∈N 都有
1n n a a +>,则实数p 的取值范围是( )
A .71,4⎛⎫ ⎪⎝⎭
B .101,
7⎛⎫
⎪⎝⎭
C .()1,2
D .10,27⎛⎫
⎪⎝⎭
13.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072
B .2073
C .2074
D .2075
14.数列{}n a 中,12a =,121n n a a +=-,则10a =( ) A .511
B .513
C .1025
D .1024
15.数列{}n a 的前n 项和记为n S ,()
*
11N ,2n n n a a a n n ++=-∈≥,12018a =,
22017a =,则100S =( )
A .2016
B .2017
C .2018
D .2019
16.在数列{}n a 中,12a =,1
1
1n n a a -=-(2n ≥),则8a =( ) A .1-
B .
12
C .1
D .2
17.数列{}n a 满足1
111,(2)2
n n n a a a n a --==≥+,则5a 的值为( )
A .
18
B .
17 C .
131
D .
16
18.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第40项为( ). A .648
B .722
C .800
D .882
19.已知数列{}n a
满足112n a +=+112
a =,则该数列前2016项的和为( ) A .2015
B .2016
C .1512
D .
3025
2
20.在数列{}n a 中,已知11a =,25a =,()
*
21n n n a a a n N ++=-∈,则5a 等于( )
A .4-
B .5-
C .4
D .5
二、多选题
21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:
1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列
数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数
C .202020182022
3a a a =+
D .123a a a +++…20202022a a +=
22.已知数列0,2,0,2,0,2,
,则前六项适合的通项公式为( )
A .1(1)n
n a =+-
B .2cos
2
n n a π= C .(1)2sin
2
n n a π
+= D .1cos(1)(1)(2)n a n n n π=--+--
23.若不等式1(1)(1)2n n
a n
+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .2
24.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =
C .135********a a a a a +++
+=
D .
222
122019
20202019
a a a a a +++= 25.若数列{}n a 满足112,02
121,1
2
n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为
( ) A .
1
5
B .
25
C .
45
D .
65
26.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}
F n ,则(){}
F n 的通项公式为( )
A .(1)1()2
n n F n -+=
B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==
C .(
)n n
F n ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦ D .(
)n n F n ⎡⎤⎥=+⎥⎝⎭⎝⎭⎦
27.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,11
4
a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为1
4(1)
n a n n =+
C .数列{}n a 为递增数列
D .数列1n S ⎧⎫

⎬⎩⎭
为递增数列 28.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )
A .数列{}n a 的公差d <0
B .数列{}n a 中S n 的最大项为S 10
C .S 10>0
D .S 11>0
29.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .2
3n S n n =- B .2392
-=n n n
S
C .36n a n =-
D .2n a n =
30.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )
A .若100S =,则50a >,60a <;
B .若412S S =,则使0n S >的最大的n 为15;
C .若150S >,160S <,则{}n S 中7S 最大;
D .若89S S <,则78S S <.
31.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >
D .若67S S >则56S S >.
32.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减
D .数列{}n S 有最大值
33.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310
S S =
D .当8n ≥时,0n a <
34.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )
A .若100S =,则280S S +=;
B .若412S S =,则使0n S >的最大的n 为15
C .若150S >,160S <,则{}n S 中8S 最大
D .若78S S <,则89S S <
35.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >
B .170S <
C .1819S S >
D .190S >
【参考答案】***试卷处理标记,请不要删除
一、数列的概念选择题 1.D 解析:D 【分析】
根据题意,得到1n n n a a b ++=,12n
n n a a +=,求得22a =,推出
1
1
2n n a a +-=,进而可求出10a ,11a ,从而可求出结果.
【详解】
因为n a ,1n a +是方程220n
n x b x -+=的实数根, 所以1n n n a a b ++=,12n
n n a a +=,
又11a =,所以22a =; 当2n ≥时,1
12
n n n a a --=,所以
11
112n n n n n n
a a a a a a ++--==, 因此4102232a a =⋅=,5
111232a a =⋅=
所以101011323264b a a =+=+=. 故选:D. 【点睛】
本题主要考查由数列的递推关系求数列中的项,属于常考题型.
2.C
解析:C 【分析】 由递推公式1221n n n a a a ++=
+得出25445n n n a a a ++=+,计算出25,24a ⎛⎫∈ ⎪⎝⎭
,利用递推公式推导得出()0,1n a ∈(n 为正奇数),1n a >(n 为正偶数),利用定义判断出数列
{}()21n a n N *-∈和{}()2n a n N *∈的单调性,进而可得出结论.
【详解】
()()
113212132221212221n n n n n n a a a a a a ++++===++++,110,2a ⎛⎫∈ ⎪⎝⎭,25,24a ⎛⎫∴∈ ⎪⎝⎭, ()()
12
1259245221545944221454544452121
n n n n n n n n n n n n a a a a a a a a a a a a ++++++-+++=====-+++++⨯++,
且()2241544545n n n n n n n a a a a a a a +-+-=-=++,()
2
1212
2121
n n n n n n n a a a a a a a +-+-=-=
++. 110,2a ⎛⎫∈ ⎪⎝⎭
,则101a <<,则()()3
590,14445n a a =-∈+, 如此继续可得知()(
)210,1n a n N *
-∈∈,则(
)2
21
21212141=
045
n n n n a a
a a -+---->+,
所以,数列{}()21n a n N *
-∈单调递增;
同理可知,()21n
a n N *
>∈,数列{}()2n
a n N *
∈单调递减.
对于A 选项,78a a <且79a a <,8972a a a ∴+>,A 选项错误; 对于B 选项,89a a >且108a a <,则91082a a a +<,B 选项错误; 对于C 选项,68a a >,97a a >,则6978a a a a +>+,C 选项正确; 对于D 选项,79a a <,108a a <,则71098a a a a +<+,D 选项错误. 故选:C. 【点睛】
本题考查数列不等式的判断,涉及数列递推公式的应用,解题的关键就是推导出数列
{}()21n a n N *-∈和{}()2n a n N *∈的单调性,考查推理能力,属于难题.
3.D
解析:D 【分析】
根据题设条件,可得数列{}n a 是以3为周期的数列,且313
2122
S =+-=,从而求得2017S 的值,得到答案. 【详解】
由题意,数列{}n a 满足: 12a =,11
1n n
a a +=-, 可得23411
1,121,1(1)2,22
a a a =-
==-=-=--=,
可得数列{}n a 是以3为周期的数列,且3132122
S =+-= 所以20173
672210102
S =⨯+=. 故选:D. 【点睛】
本题主要考查了数列的递推公式的应用,其中解答中得出数列{}n a 是以3为周期的数列,是解答的关键,着重考查了推理与运算能力,属于中档试题.
4.B
解析:B 【分析】
利用递推关系可得数列{}n a 是以3为周期的周期数列,从而可得2018a . 【详解】 在数列{}n a 中,
11
1n n
a a +=-,且12a =, 211112
a a ∴=-=, 32
1
1121a a =-=-=- , ()413
1
1112a a a =-
=--== ∴数列{}n a 是以3为周期的周期数列,
201867232=⨯+,
201821
2
a a ∴==.
故选:B 【点睛】
本题考查了由数列的递推关系式研究数列的性质,考查了数列的周期性,属于基础题.
5.B
解析:B 【分析】
将题干中的等式化简变形得2
11n n a n a n --⎛⎫
= ⎪⎝⎭
,利用累乘法可求得数列{}n a 的通项公式,由
此计算出(
)32313k k k b b b k N *
--++∈,进而可得出数列{}n
b 的前18项和.
【详解】
)1,2n a n N n *
--=
∈≥,将此等式变形得2
11n n a n a n --⎛⎫= ⎪⎝⎭

由累乘法得2
2
2
3
212
12
11211123n n n a
a a n a a a a a n n
--⎛⎫⎛⎫⎛⎫
=⋅⋅=⨯⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭, ()
2cos
3n n n a b n N π*=∈,22cos 3
n n b n π
∴=, ()()222
323134232cos 231cos 29cos 233k k k b b b k k k k k k πππππ--⎛⎫⎛⎫∴++=--+--+ ⎪ ⎪⎝⎭⎝
⎭592
k =-,
因此,数列{}n b 的前18项和为()5
91234566921151742
⨯+++++-⨯=⨯-=. 故选:B. 【点睛】
本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k k b b b --++是解答的关键,考查计算能力,属于中等题.
6.B
解析:B 【分析】 令4n = 代入即解 【详解】
令4n =,2
447466a =-⨯+=-
故选:B. 【点睛】
数列通项公式n a 是第n 项与序号n 之间的函数关系,求某项值代入求解.
7.A
解析:A 【分析】
写出数列的前几项,找寻规律,求出数列的周期,问题即可解. 【详解】
10a =
,1n a +1n =
时,2a 2n =
时,3a 3n =
时,4
a ; ∴ 数列{}n a 的周期是3
20206733110a a a ⨯+∴===
故选:A. 【点睛】
本题考查周期数列. 求解数列的周期问题时,周期数列的解题方法:根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.
8.C
解析:C 【分析】
根据数列项的规律即可得到结论. 【详解】
因为数列3,7,11,15⋯的一个通项公式为41n -,


的一个通项公式是n a = 故选:C . 【点睛】
本题主要考查数列通项公式的求法,利用条件找到项的规律是解决本题的关键.
9.D
解析:D 【解析】 【分析】
根据根号下的数字规律,可知为等差数列.利用等差数列性质求得通项公式,
即可判断为第几项. 【详解】
根据数列中的项,

由前几项可知,根式下的数列是以5为首项, 4为公差的等差数列 则根式下的数字组成的等差数列通项公式为()51441n a n n =+-⨯=+
而=
所以4541n =+ 解得11n = 故选:D
【点睛】
本题考查了等差数列通项公式的求法及简单应用,属于基础题.
10.C
解析:C 【分析】
根据数列的前几项的规律,可推出一个通项公式. 【详解】
设所求数列为{}n a ,可得出()11
1
111
a
+-=
+,()21
2
121
a
+-=
+,()31
3
131
a
+-=
+,()41
4
141
a
+-=
+,
因此,该数列的一个通项公式为()1
11
n n
a n +-=
+.
故选:C. 【点睛】
本题考查利用数列的前几项归纳数列的通项公式,考查推理能力,属于基础题.
11.C
解析:C 【分析】
利用数列的递推公式逐项计算可得3a 的值. 【详解】
()*122,21
n n a n n N a -=
≥∈-,11a =,212221
a a ∴=
=-,3222
213a a =
=-. 故选:C. 【点睛】
本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.
12.D
解析:D 【分析】
根据题意,得到数列是增数列,结合通项公式,列出不等式组求解,即可得出结果. 【详解】
因为对任意的*n ∈N 都有1n n a a +>, 则数列{}n a 单调递增; 又()()*
6
22,6,6
n n p n n a n p
n -⎧--≤=∈⎨
>⎩N ,
所以只需6
7201p p a a ->⎧⎪>⎨⎪<⎩,即2
1106p p p p
<⎧⎪
>⎨⎪-<⎩,解得1027p <<. 故选:D.
【点睛】
本题主要考查由数列的单调性求参数,属于基础题型.
13.C
解析:C 【分析】
由于数列22221,2,3,2,5,6,7,8,3,45⋯共有2025项,其中有45个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余20254512+31971--=项,所以去掉平方数和立方数后,第2020项是在2025后的第()20201971=49-个数,从而求得结果. 【详解】
∵2452025=,2462116=,20202025<,所以从数列2
2
2
2
1,2,3,2,5,6,7,8,3,45⋯中去掉45个平方数,
因为331217282025132197=<<=,所以从数列2
2
2
2
1,2,3,2,5,6,7,8,3,45⋯中去掉
12个立方数,
又66320254<<,所以在从数列2
2
2
2
1,2,3,2,5,6,7,8,3,45⋯中有3个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数, 所以从数列2
2
2
21,2,3,2,5,6,7,8,3,45⋯中去掉平方数和立方数后还有
20254512+31971--=项,此时距2020项还差2020197149-=项, 所以这个数列的第2020项是2025492074+=, 故选:C. 【点睛】
本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要
弄明白在数列2
2
2
2
1,2,3,2,5,6,7,8,3,45⋯去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.
14.B
解析:B 【分析】
根据递推公式构造等比数列{}1n a -,求解出{}n a 的通项公式即可求解出10a 的值. 【详解】
因为121n n a a +=-,所以121n n a a +=-,所以()1121n n a a +-=-,
所以
11
21
n n a a +-=-且1110a -=≠, 所以{}1n a -是首项为1,公比为2的等比数列,
所以112n n a --=,所以121n n a -=+,所以9
1021513a =+=,
故选:B. 【点睛】
本题考查利用递推公式求解数列通项公式,难度一般.对于求解满足
()11,0,0n n a pa q p p q +=+≠≠≠的数列{}n a 的通项公式,可以采用构造等比数列的方
法进行求解.
15.A
解析:A 【分析】
根据题意,由数列的递推公式求出数列的前8项,分析可得数列{}n a 是周期为6的数列,且1234560a a a a a a +++++=,进而可得1001234S a a a a =+++,计算即可得答案. 【详解】
解:因为12018a =,22017a =,()
*
11N ,2n n n a a a n n +-=-∈≥,
则321201720181a a a =-=-=-, 432(1)20172018a a a =-=--=-,
543(2018)(1)2017a a a =-=---=-, 654(2017)(2018)1a a a =-=---=, 76511(2017)2018a a a a =-=--==, 8762201812017a a a a =-=-==,
…,所以数列{}n a 是周期数列,周期为6, 因为12560a a a a ++⋅⋅⋅++=,所以
()100125697989910016S a a a a a a a a =++⋅⋅⋅++++++
12342016a a a a =+++=.
故选:A . 【点睛】
本题考查数列的递推公式的应用,关键是分析数列各项变化的规律,属于基础题.
16.B
解析:B 【分析】
通过递推公式求出234,,a a a 可得数列{}n a 是周期数列,根据周期即可得答案. 【详解】 解:211111=1=22a a =-
-,3211121a a =-=-=-,43
1
1112a a =-=+=, 则数列{}n a 周期数列,满足3n n a a -=,4n ≥
8521
2
a a a ∴===
, 故选:B. 【点睛】
本题考查数列的周期性,考查递推公式的应用,是基础题.
17.C
解析:C 【分析】
根据条件依次算出2a 、3a 、4a 、5a 即可. 【详解】 因为1
111,(2)2
n n n a a a n a --==
≥+,
所以211
123a =
=+,31131723a ==+,4117
11527a ==+,51
115131215
a ==+ 故选:C 18.C
解析:C 【分析】
由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:2
22n a n =,即可得
出. 【详解】
由0,2,4,8,12,18,24,32,40,50…,可得偶数项的通项公式:2
22n a n =.
则此数列第40项为2220800⨯=. 故选:C
19.C
解析:C 【分析】
通过计算出数列的前几项确定数列{}n a 是以2为周期的周期数列,进而计算可得结论. 【详解】 依题意,112
a =,
211122a =

3111222
a =
+=, ⋯
从而数列{}n a 是以2为周期的周期数列, 于是所求值为20161
(1)151222
⨯+=, 故选:C 【点睛】
关键点睛:解答本题的关键是联想到数列的周期性并找到数列的周期.
20.B
解析:B 【分析】
根据已知递推条件(
)*
21n n n a a a n N ++=-∈即可求得5
a
【详解】
由(
)*
21n n n a a a n N
++=-∈知:
3214a a a 4321a a a 5
43
5a a a
故选:B 【点睛】
本题考查了利用数列的递推关系求项,属于简单题
二、多选题 21.AC 【分析】
由该数列的性质,逐项判断即可得解. 【详解】
对于A ,,,,故A 正确;
对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加
解析:AC 【分析】
由该数列的性质,逐项判断即可得解. 【详解】
对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;
对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,
32121,a a a a a ⋅⋅⋅=+=,
各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】
关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.
22.AC 【分析】
对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】
对于选项A ,取前六项得:,满足条件; 对于选项B ,取前六项得:,不满足条件; 对于选项C ,取前六项得:,
解析:AC 【分析】
对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】
对于选项A ,1(1)n
n a =+-取前六项得:0,2,0,2,0,2,满足条件;
对于选项B ,2cos 2
n n a π
=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin
2
n n a π
+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件; 故选:AC
23.ABC 【分析】
根据不等式对于任意正整数n 恒成立,即当n 为奇数时有恒成立,当n 为偶数时有恒成立,分别计算,即可得解. 【详解】
根据不等式对于任意正整数n 恒成立, 当n 为奇数时有:恒成立, 由递减
解析:ABC 【分析】
根据不等式1(1)(1)2n n
a n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n
-<
恒成立,当n 为偶数时有1
2a n
<-恒成立,分别计算,即可得解. 【详解】
根据不等式1(1)(1)2n n
a n +--<+对于任意正整数n 恒成立, 当n 为奇数时有:1
2+a n
-<恒成立,
由12+n 递减,且1
223n <+≤,
所以2a -≤,即2a ≥-,
当n 为偶数时有:1
2a n
<-恒成立, 由12n -
第增,且31
222n ≤-<, 所以3
2
a <
, 综上可得:322
a -≤<, 故选:ABC . 【点睛】
本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.
24.ABD 【分析】
根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】
依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不
解析:ABD 【分析】
根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,
342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正
确;根据2121a a a =,222312312()a a a a a a a a =-=-,2
33423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,
,2
20192019202020182019202020182019()a a a a a a a a =-=-,
累加可知D 正确.
【详解】
依题意可知,11a =,21a =,21n n n a a a ++=+,
312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以
712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;
由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,
可得
13572019a a a a a ++++
+=242648620202018a a a a a a a a a +-+-+-++-2020a =,
故C 不正确;
2121a a a =,222312312()a a a a a a a a =-=-,2
33423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,
,2
20192019202020182019202020182019()a a a a a a a a =-=-,
所以
2222
2
12342019
a a a a a ++++
+122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,
所以
222
122019
20202019
a a a a a +++=,故D 正确. 故选:ABD. 【点睛】
本题考查了数列的递推公式,考查了累加法,属于中档题.
25.ABC 【分析】
利用数列满足的递推关系及,依次取代入计算,能得到数列是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】
数列满足,,依次取代入计算得, ,,,,因此继续下去会循环
解析:ABC 【分析】
利用数列{}n a 满足的递推关系及13
5
a =
,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】
数列{}n a 满足112,02
121,1
2n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,
211215a a =-=
,32225a a ==,43425a a ==,5413
215
a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234
,,,5555
. 故选:ABC. 【点睛】
本题考查了数列的递推公式的应用和周期数列,属于基础题.
26.BC 【分析】
根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】
解:斐波那契数列为1,1,2,3,5,8,13,21,……, 显然,,,,,所以且,即B 满足条件; 由, 所以 所以数列
解析:BC 【分析】
根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】
解:斐波那契数列为1,1,2,3,5,8,13,21,……,
显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,

()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且
()()11,21F F ==,即B 满足条件;
由()()()11,2F n F n F n n +=+-≥, 所以(
)(
)(
)()11F n n F n n ⎤+-
=--⎥⎣⎦
所以数列(
)()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭
为公比的等比数列, 所以(
)(
)1n
F n n +-=⎝⎭
11515()n F F n n -
+=++, 令
1
n
n n F b
-=
⎝⎭
,则11n n b +=
+,
所以1
n n b b +=
-, 所以n
b ⎧⎪
⎨⎪⎪⎩

的等比数列,
所以1
n n b -
+, 所以
()11
15n n n n
F n --⎤
⎤⎛⎫
+⎥⎥=+=- ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭

⎭⎝⎭⎣⎦
⎣⎦; 即C 满足条件; 故选:BC 【点睛】
考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.
27.ABC 【分析】
数列的前项和为,且满足,,可得:,化为:,利用等差数列的通项公式可得,,时,,进而求出. 【详解】
数列的前项和为,且满足,, ∴,化为:,
∴数列是等差数列,公差为4, ∴,可得
解析:ABC 【分析】
数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),11
4
a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1
n
S ,n S ,2n ≥时,()()
111144141n n n a S S n n n n -=-=
-=---,进而求出n a .
【详解】
数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114
a =, ∴1140n n n n S S S S ---+=,化为:
1
11
4n n S S --=, ∴数列1n S ⎧⎫
⎨⎬⎩⎭
是等差数列,公差为4,
∴()1
4414n n n S =+-=,可得14n S n
=, ∴2n ≥时,()()
1111
44141n n n a S S n n n n -=-=
-=---, ∴()1
(1)41(2)41n n a n n n ⎧=⎪⎪
=⎨⎪-≥-⎪⎩

对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】
本题考查数列递推式,解题关键是将已知递推式变形为1
11
4n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题
28.AC 【分析】
由,可得,且,然后逐个分析判断即可得答案 【详解】
解:因为,所以,且,
所以数列的公差,且数列中Sn 的最大项为S5,所以A 正确,B 错误, 所以,,
所以C 正确,D 错误, 故选:AC
解析:AC 【分析】
由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案 【详解】
解:因为564S S S >>,所以650,0a a ,且650a a +>,
所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误,
所以110105610()5()02a a S a a +==+>,11111611()1102
a a S a +==<, 所以C 正确,D 错误,
故选:AC
29.BC
【分析】
由已知条件列方程组,求出公差和首项,从而可求出通项公式和前项和公式
【详解】
解:设等差数列的公差为,
因为,,
所以,解得,
所以,

故选:BC
解析:BC
【分析】
由已知条件列方程组,求出公差和首项,从而可求出通项公式和前n 项和公式
【详解】
解:设等差数列{}n a 的公差为d ,
因为30S =,46a =, 所以113230236
a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得133a d =-⎧⎨=⎩, 所以1(1)33(1)36n a a n d n n =+-=-+-=-,
21(1)3(1)393222
n n n n n n n S na d n ---=+=-+=, 故选:BC
30.ABD
【分析】
利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案.
【详解】
对于A :因为正数,公差不为0,且,所以公差,
所以,即,
根据等差数列的性质可得,又,
所以,,故A 正
解析:ABD
【分析】
利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案.
【详解】
对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02
a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <,
所以50a >,60a <,故A 正确;
对于B :因为412S S =,则1240S S -=,
所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >,
所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022
a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯=
==>,则80a >, 116891616()16()022
a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;
对于D :因为89S S <,则9980S a S =->,又10a >,
所以8870a S S =->,即87S S >,故D 正确,
故选:ABD
【点睛】
解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.
31.BC
【分析】
根据等差数列的前项和性质判断.
【详解】
A 错:;
B 对:对称轴为7;
C 对:,又,;
D 错:,但不能得出是否为负,因此不一定有.
故选:BC .
【点睛】
关键点点睛:本题考查等差数列
解析:BC
【分析】
根据等差数列的前n 项和性质判断.
【详解】
A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;
B 对:n S 对称轴为n =7;
C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;
D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC .
【点睛】
关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2
n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 32.ABD
【分析】
由可判断AB ,再由a1>0,d <0,可知等差数列数列先正后负,可判断CD.
【详解】
根据等差数列定义可得,所以数列单调递减,A 正确;
由数列单调递减,可知数列有最大值a1,故B 正
解析:ABD
【分析】
由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD.
【详解】
根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;
由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确.
故选:ABD.
33.AD
【分析】
由已知得到,进而得到,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为,可知不一定成立,从而判定C 错误.
【详解】
由已知得:,
结合等差数列的性质可知,,该等差
解析:AD
【分析】
由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误.
【详解】
由已知得:780,0a a ><,
结合等差数列的性质可知,0d <,该等差数列是单调递减的数列,
∴A 正确,B 错误,D 正确,
310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=, 这在已知条件中是没有的,故C 错误.
故选:AD.
【点睛】
本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.
34.BC
【分析】
根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案.
【详解】
A 选项,若,则,
那么.故A 不正确;
B 选项,若,则,
又因为,所以前8项为正,从第9项开始为负,
因为
解析:BC
【分析】
根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案.
【详解】
A 选项,若1011091002
S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,
又因为10a >,所以前8项为正,从第9项开始为负,
因为()()116168916802
a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确;
C 选项,若()115158151502
a a S a +==>,()()116168916802a a S a a +==+<,
则80a >,90a <,则{}n S 中8S 最大.故C 正确;
D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC .
【点睛】
本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.
35.ABD
【分析】
先根据题意可知前9项的和最小,判断出正确;根据题意可知数列为递减数列,则,又,进而可知,判断出不正确;利用等差中项的性质和求和公式可知,,故正确.
【详解】
根据题意可知数列为递增
解析:ABD
【分析】
先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()0117917917
2171722
a a a S a <+⨯⨯===,()11910191019
21919022
a a a S a +⨯⨯===>,故BD 正确. 【详解】
根据题意可知数列为递增数列,90a <,100a >,
∴前9项的和最小,故A 正确;
()11791791721717022a a a S a +⨯⨯=
==<,故B 正确; ()11910191019
2191902
2a a a S a +⨯⨯===>,故D 正确; 190a >,
181919S S a ∴=-,
1819S S ∴<,故C 不正确.
故选:ABD .
【点睛】
本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。

相关文档
最新文档