高考物理动量定理解题技巧及练习题(含答案)及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理动量定理解题技巧及练习题(含答案)及解析
一、高考物理精讲专题动量定理
1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。
用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。
另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。
求:
(1)C的质量m C;
(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;
(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。
【答案】(1)2kg ;(2)27J,36N·S;(3)9J
【解析】
【详解】
(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒
m C v1=(m A+m C)v2
解得C的质量m C=2kg。
(2)t=8s时弹簧具有的弹性势能
E p1=1
2
(m A+m C)v22=27J
取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小
I=(m A+m C)v3-(m A+m C)(-v2)=36N·S
(3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大
(m A+m C)v3=(m A+m B+m C)v4
1 2(m A+m C)2
3
v=
1
2
(m A+m B+m C)2
4
v+E p2
解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。
2.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y轴方向没有变化,与横坐标x的关系如图2所示,图线是双曲线(坐标是渐近线);顶角 =53°的光滑金属长导轨MON固定在水平面内,ON与x轴重合,一根与ON垂直的长导体棒在水平向右的外力作用下沿导轨MON向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t=0时,导体棒位于顶角O处;导体棒的质量为m=4kg;OM、ON接触处O点的接触电阻为R=0.5Ω,其余电阻不计,回路电动势E与时间t的关
系如图3所示,图线是过原点的直线,求:
(1)t =2s 时流过导体棒的电流强度的大小; (2)在1~2s 时间内导体棒所受安培力的冲量大小;
(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)8A (2)8N s ⋅(3)32
639
F x =+【解析】 【分析】 【详解】
(1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为
4V E =
由欧姆定律得
24A 8A 0.5
E I R =
== (2)由图2可知,1(T m)x B =⋅ 由图3可知,E 与时间成正比,有
E =2t (V )
4E
I t R
=
= 因θ=53°,可知任意t 时刻回路中导体棒有效切割长度43
x L = 又由
F BIL =安
所以
163
F t 安=
即安培力跟时间成正比
所以在1~2s 时间内导体棒所受安培力的平均值
163233N 8N
2
F +
==
故
8N s I F t =∆=⋅安
(3)因为
43
v
E BLv Bx ==⋅
所以
1.5(m/s)v t =
可知导体棒的运动时匀加速直线运动,加速度
21.5m/s a =
又2
12
x at =
,联立解得 32
639
F x =+
【名师点睛】
本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系,
要掌握牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式.
3.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A 以v 0=12 m/s 的水平速度撞上静止的滑块B 并粘在一起向左运动,与弹簧作用后原速率弹回,已知A 、B 的质量分别为m 1=0.5 kg 、m 2=1.5 kg 。
求: ①A 与B 撞击结束时的速度大小v ;
②在整个过程中,弹簧对A 、B 系统的冲量大小I 。
【答案】①3m/s ; ②12N •s 【解析】 【详解】
①A 、B 碰撞过程系统动量守恒,以向左为正方向 由动量守恒定律得
m 1v 0=(m 1+m 2)v
代入数据解得
v =3m/s
②以向左为正方向,A 、B 与弹簧作用过程 由动量定理得
I =(m 1+m 2)(-v )-(m 1+m 2)v
代入数据解得
I =-12N •s
负号表示冲量方向向右。
4.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小
球A 以速度v 0=2m/s 向右运动与B 球发生弹性正碰,取重力加速度g =10m/s 2.求:
(1)碰撞结束时A 球的速度大小及方向; (2)碰撞过程A 对B 的冲量大小及方向.
【答案】(1)-1m/s ,方向水平向左(2)3N·s ,方向水平向右 【解析】
【分析】A 与B 球发生弹性正碰,根据动量守恒及能量守恒求出碰撞结束时A 球的速度大小及方向;碰撞过程对B 应用动量定理求出碰撞过程A 对B 的冲量; 解:(1)碰撞过程根据动量守恒及能量守恒得:0A B mv mv Mv =+
222
0111222
A B mv mv Mv =+ 联立可解得:1m/s B v =,1m/s A v =- 负号表示方向水平向左 (2)碰撞过程对B 应用动量定理可得:0B I Mv =- 可解得:3I N s =⋅ 方向水平向右
5.一个质量为60千克的蹦床运动员从距离水平蹦床网面上3.2米的高处自由下落,触网后沿竖直方向蹦回到离水平网面5米高处.已知运动员与网接触的时候为1.2秒。
求运动员和网接触的这段时间内,网对运动员的平均作用力F (g 取10 m /s 2)。
【答案】1500N ,方向竖直向上 【解析】 【详解】
设运动员从h 1处下落,刚触网的速度为
1128m s v gh == (方向向下)
运动员反弹到达高度h 2 ,离网时速度为
22210m s v gh ==(方向向上)
在接触网的过程中,运动员受到向上的弹力F 和向下的重力mg ,设向上方向为正,由动量定理有
()()21 F mg t mv mv -=--
解得=1500N F ,方向竖直向上。
6.一质量为m 的小球,以初速度v 0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,并立即沿反方向弹回.已知反弹速度的大小是入射速度大小的3
4
.求在碰撞过程中斜面对小球的冲量的大小.
【答案】7
2
mv0
【解析】
【详解】
小球在碰撞斜面前做平抛运动,设刚要碰撞斜面时小球速度为v,由题意知v的方向与竖直线的夹角为30°,且水平分量仍为v0,由此得v=2v0.碰撞过程中,小球速度由v变为反
向的3
4
v,碰撞时间极短,可不计重力的冲量,由动量定理,设反弹速度的方向为正方
向,则斜面对小球的冲量为I=m
3
()
4
v-m·(-v)
解得I=7
2
mv0.
7.两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.5T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l=0.20m,两根质量均m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行,大小0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动.经过T=5.0s,金属杆甲的加速度为
a=1.37 m/s2,求此时两金属杆的速度各为多少?
【答案】8.15m/s 1.85m/s
【解析】
设任一时刻两金属杆甲、乙之间的距离为,速度分别为和,经过很短时间,杆甲移动距离,杆乙移动距离,回路面积改变
由法拉第电磁感应定律,回路中的感应电动势:
回路中的电流:
杆甲的运动方程:
由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量变化(时
为0)等于外力F 的冲量:
联立以上各式解得
代入数据得
=8.15m/s
=1.85m/s
【名师点睛】
两杆同向运动,回路中的总电动势等于它们产生的感应电动势之差,即与它们速度之差有关,对甲杆由牛顿第二定律列式,对两杆分别运用动量定理列式,即可求解.
8.如图所示,两个小球A 和B 质量分别是m A =2.0kg,m B =1.6kg,球A 静止在光滑水平面上的M 点,球B 在水平面上从远处沿两球的中心连线向着球A 运动,假设两球相距L ≤18m 时存在着恒定的斥力F ,L >18m 时无相互作用力.当两球相距最近时,它们间的距离为d =2m,此时球B 的速度是4m/s.求:
(1)球B 的初速度大小; (2)两球之间的斥力大小;
(3)两球从开始相互作用到相距最近时所经历的时间. 【答案】(1) 09B m v s
= ;(2) 2.25F N =;(3) 3.56t s =
【解析】试题分析:(1)当两球速度相等时,两球相距最近,根据动量守恒定律求出B 球的初速度;(2)在两球相距L >18m 时无相互作用力,B 球做匀速直线运动,两球相距L≤18m 时存在着恒定斥力F ,B 球做匀减速运动,由动能定理可得相互作用力 (3)根据动量定理得到两球从开始相互作用到相距最近时所经历的时间.
(1)设两球之间的斥力大小是F ,两球从开始相互作用到两球相距最近时所经历的时间是t 。
当两球相距最近时球B 的速度4B m v s
=,此时球A 的速度A v 与球B 的速度大小相
等, 4A B m v v s ==,由动量守恒定律可()0B B A B m v m m v =+得: 09B m v s
=;
(2)两球从开始相互作用到它们之间距离最近时,它们之间的相对位移Δx=L -d ,由功能关系可得: ()
'222
1122
B B A A B B
F X m v m v m v ∆=
-+ 得:F=2.25N (3)根据动量定理,对A 球有0A Ft mv =-,得 3.56t s =
点晴:本题综合考查了动量定理、动量守恒定律和能量守恒定律,综合性较强.知道速度
相等时,两球相距最近,以及知道恒力与与相对位移的乘积等于系统动能的损失是解决本题的关键.
9.在水平地面的右端B 处有一面墙,一小物块放在水平地面上的A 点,质量m =0.5 kg ,AB 间距离s =5 m ,如图所示.小物块以初速度v 0=8 m/s 从A 向B 运动,刚要与墙壁碰撞时的速度v 1=7 m/s ,碰撞后以速度v 2=6 m/s 反向弹回.重力加速度g 取10 m/s 2.求: (1) 小物块与地面间的动摩擦因数μ;
(2) 若碰撞时间t =0.05 s ,碰撞过程中墙面对小物块平均作用力F 的大小.
【答案】(1)0.15 (2)130 N 【解析】 【详解】
(1)从A 到B 过程,由动能定理,有:-μmgs =12mv 12-1
2
mv 02 可得:μ=0.15.
(2)对碰撞过程,规定向左为正方向,由动量定理,有:Ft =mv 2-m (-v 1) 可得:F =130 N.
10.质量m =0.60kg 的篮球从距地板H =0.80m 高处由静止释放,与水平地板撞击后反弹上升的最大高度h =0.45m ,从释放到弹跳至h 高处经历的时间t =1.1s ,忽略空气阻力,取重力加速度g=10m/s 2,求:
(1)篮球与地板撞击过程中损失的机械能ΔE ; (2)篮球对地板的平均撞击力的大小. 【答案】(1)2.1J (2)16.5N ,方向向下 【解析】 【详解】
(1)篮球与地板撞击过程中损失的机械能为
0.6100.80.45)J=2.1J E mgH mgh ∆=-=⨯⨯-(
(2)设篮球从H 高处下落到地板所用时间为1t ,刚接触地板时的速度为1v ; 反弹离地时的速度为2v ,上升的时间为2t ,由动能定理和运动学公式 下落过程
211
2
mgH mv =
解得
14m/s v =
1
10.4v t s g
=
= 上升过程
221
02
mgh mv -=-
解得
23m/s v =
2
20.3s v t g
=
= 篮球与地板接触时间为
120.4s t t t t ∆=--=
设地板对篮球的平均撞击力为F ,取向上为正方向,由动量定理得
21F mg t mv mv -∆=--()()
解得
16.5F N =
根据牛顿第三定律,篮球对地板的平均撞击力 16.5N F F '==,方向向下.
点睛:本题主要考查了自由落体运动的基本规律,在与地面接触的过程中,合外力对物体的冲量等于物体动量的变化量,从而求出地板对篮球的作用力.
11.如图所示,质量为M=5.0kg 的小车在光滑水平面上以速度向右运动,一人背
靠竖直墙壁为避免小车撞向自己,拿起水枪以
的水平速度将一股水流自右向左
射向小车后壁,射到车壁的水全部流入车厢内,忽略空气阻力,已知水枪的水流流量恒为
(单位时间内流过横截面的水流体积),水的密度为。
求:
(1)经多长时间可使小车速度减为零;
(2)小车速度减为零之后,此人继续持水枪冲击小车,若要维持小车速度为零,需提供多大的水平作用力。
【答案】(1)50s (2)0.2N
【解析】解:(1)取水平向右为正方向,
由于水平面光滑,经t 时间,流入车内的水的质量为,
① 对车和水流,在水平方向没有外力,动量守恒 ②
由①②可得t=50s
(2)设时间内,水的体积为
,质量为
,则
③
设小车队水流的水平作用力为,根据动量定理 ④
由③④可得
根据牛顿第三定律,水流对小车的平均作用力为
,由于小车匀速,根据平衡条件
12.质量是40kg 的铁锤从5m 的高处自由落下,打在一高度可忽略的水泥桩上没有反弹,与水泥桩撞击的时间是0.05s ,不计空气阻力.求:撞击时,铁锤对桩的平均冲击力的大小.
【答案】8400N 【解析】
由动能定理得:mgh=
12
mv 2
-0, 铁锤落地时的速度:2210510/v gh m s ==⨯⨯= 设向上为正方向,由动量定理得:(F-mg )t=0-(-mv) 解得平均冲击力F=8400N ;
点睛:此题应用动能定理与动量定理即可正确解题,解题时注意正方向的选择;注意动能定理和动量定理是高中物理中很重要的两个定理,用这两个定理解题快捷方便,要做到灵活运用.。