【精品】sympowersysterms部分模块翻译(可编辑

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S y m p o w e r s y s t e r m s 部分模块翻译
------------------------------------------作者
------------------------------------------日期
Breaker
Implement circuit breaker opening at current zero crossing
实现电路断路器在电流过零时断开
Library
Elements
Description
The Breaker block implements a circuit breaker where the opening and closing times can be controlled either from an external Simulink signal (external control mode), or from an internal control timer (internal control mode).
断路器模块实现了开闭时间由外部Simulink信号(外部控制模式)或内部控
制定时器(内部控制模式)可控的电路断路器。

A series Rs-Cs snubber circuit is included in the model. It can be connected to the circuit breaker. If the Breaker block happens to be in series with an inductive circuit, an open circuit or a current source, you must use a snubber.
一系列Rs-Cs缓冲电路包含在模型中。

它可以连接到断路器。

如果发生断路器模块串联一个电感电路、一个开路或一个电流源,你必须使用一个缓冲电路。

When the Breaker block is set in external control mode, a Simulink input appears on the block icon. The control signal connected to the Simulink input must be either 0 or 1 (0 to open the breaker, 1 to close it).
当断路器块被设置在外部控制模式下,模块图标上出现的Simulink输入端。

连接到Simulink的输入端控制信号必须是0或1(0打开断路器, 1关闭)。

When the Breaker block is set in internal control mode, the switching times are specified in the dialog box of the block.
当断路器块被设置在内部控制模式下,开关时间在模块的对话框中指定。

When the breaker is closed, it is represented by a resistance Ron. The Ron value can be set as small as necessary in order to be negligible compared with external components (a typical value is 10 mohms). When the breaker is open, it has an infinite resistance.
当断路器闭合,它由内部电阻代表。

为了与外部元件(典型值是10毫欧)相比是可以忽略的,内部电阻值有必要设置的很小。

当断路器是断开的,它具有无穷大的电阻。

The arc extinction process is simulated by opening the breaker device when its current passes through 0 at the first current zero crossing following the transition of the Simulink control input from 1 to 0.
Simulink的控制输入从1变为0且在第一次电流过零点,断路器的电流过零时,灭弧过程由断开的断路器设备模拟。

Operation动作 The Breaker closes when 闭合
Conditions条件 Control signal goes to 1 (for discrete systems, control signal must stay at 1 for at least 3 times the sampling period)控制信号变为1(离散系统,控制信号必须至少在3次采样周期保持为1)Operation动作 The Breaker opens when 断开
Conditions条件 Control signal goes to 0 控制信号变为0
Breaker current passes through 0 断路器电流过零
Note注意
The Breaker block may not be the appropriate switching device to use for DC circuits. For such applications, it is recommended that you use the Ideal Switch block as a switching device.
对于直流电路,断路器块可能不是合适的开关设备。

对于这样的应用,建议你使用理想开关模块作为开关器件。

Dialog Box and Parameters对话框和参数
Breaker resistance Ron 内部电阻
The internal breaker resistance, in ohms (Ω). The Breaker resistance Ron parameter cannot be set to 0.
断路器内部电阻,单位是欧姆。

断路器内部电阻参数不能设置为0。

Initial state 初始状态
The initial state of the breaker. A closed contact is displayed in the block icon when the Initial state parameter is set to 1, and an open contact is displayed when it is set to 0.
断路器的初始状态。

当初始状态参数设置为1时,一个常闭触点显示在模块图标上;当它被设置为0时,显示常开触点。

If the breaker initial state is set to 1 (closed), the software automatically initializes all the states of the linear circuit and the Breaker block initial current, so that the simulation starts in steady state.
如果断路器初始状态设置为1(闭合),该软件会自动初始化的线性电路的所有状态和断路器模块初始电流,以便模拟从稳态开始。

Snubber resistance Rs 过渡电阻
The snubber resistance, in ohms (Ω). Set the Snubber resistance Rsparameter to inf to eliminate the snubber from the model.
过渡电阻单位是欧姆。

将过渡电阻设置为无穷大来消除模型的缓冲。

Snubber capacitance Cs 过渡电容
The snubber capacitance, in farads (F). Set the Snubber capacitance Cs parameter to 0 to eliminate the snubber, or to inf to get a resistive snubber.
过渡电容,单位farads ( F );将过渡电容设置为0消除缓冲,设置为无穷大获得一个电阻缓冲。

Switching times开关时间
Specifies the vector of switching times when using the Breaker block in internal control mode. At each switching time the Breaker block opens or closes depending on its initial state. For example, if the Initial state parameter is 0(open), the breaker closes at the first switching time, opens at the second
switching time, and so on. The Switching times parameter is not visible in the dialog box if the External control of switching times parameter is selected.
当以内部的控制方式使用断路器模块时,规定切换时间的矢量。

在每一次切换时间断路器模块闭合或断开依赖于其初始的状态。

例如,如果初始状态参数是0 (断开),断路器在第一段转换的时间闭合,在第二段转换的时间断开,如此等等。

如果选择了切换时间的外部控制方式,切换时间参数在对话框中是不可见的。

External control of switching times 外部控制切换时间
If selected, adds a Simulink input to the Breaker block for external control of the switching times of the breaker. The switching times are defined by a logical signal (0or 1) connected to the Simulink input.
如果选择此项,为了断路器的切换时间的外部控制,把一Simulink输入端添
加到断路器模块。

切换时间通过连接到Simulink输入端的的一个逻辑信号( 0或1)被定义。

Measurements 测量
Select Branch voltage to measure the voltage across the Breaker block terminals.
选择“支路电压”,测量断路器模块端子电压。

Select Branch current to measure the current flowing through the Breaker block. If the snubber device is connected to the breaker model, the measured current is the one flowing through the breaker contacts only.
选择“支路电流”,测量流过断路器的电流。

如果缓冲装置连接到断路器模型,测得的电流是流经断路器触点的电流。

Select Branch voltage and current to measure the breaker voltage and the breaker current.
选择“支路电压和电流”,测量断路器的电压和电流。

Place a Multimeter block in your model to display the selected measurements during the simulation.
将万用表块放置在你的模型,在模拟过程中会显示要测的量。

In the Available Measurements list box of the Multimeter block, the measurement is identified by a label followed by the block name:
在万用表的可测量的列表框中,测量值由模块名称加标签来标识。

Limitations限制因数
When the block is connected in series with an inductor or another current source, you must add the snubber circuit. In most applications you can use a resistive snubber (Snubber capacitance parameter set to inf) with a large resistor value (Snubber resistance parameter set to 1e6 or so). Because of modeling constraints, the internal breaker inductance Ron cannot be set to 0.
当模块串联一个电感或另一个电流源时,你必须添加缓冲电路。

在大多数应用中,你可以使用一个有大电阻值(缓冲电阻参数设置为1e6等)的缓冲电阻(缓冲电容的参数设置为无穷大)。

由于模型的限制,断路器内部电阻不能设为0。

You must use a stiff integration algorithm to simulate circuits with the Breaker block. ode23tb with default parameters usually gives the best simulation speed.
你必须使用一种刚性综合算法用断路器模块模拟电路。

带有缺省参数的ode23t 通常给出了最好的仿真速度。

For discretized models, the control signal must stay at 1 for a minimum of 3 sampling time periods to correctly close the Breaker block, otherwise the device stays open.
对于离散模型,控制信号至少在3段采样周期保持为1才能正确地闭合断路器,否则断路器保持在断开状态。

Example 举例
The power_breaker demo illustrates a circuit breaker connected in series with a series RL circuit on a 60 Hz voltage source. The switching times of the Breaker block are controlled by a Simulink signal. The breaker device is initially closed and an opening order is given at t = 1.5 cycles, when current reaches a maximum. The current stops at the next zero crossing, then the breaker is reclosed at a zero crossing of voltage at t = 3 cycles.
power_breaker 演示解释了在60HZ电压源下,与一系列RL电路串联的电路断路器。

断路器模块的开关时间由Simulink信号控制。

断路器设备初始状态是闭合的,在t = 1.5个周期,电流达到最大值时,断路器断开。

在下一个过零点电流停止,然后断路器在t = 3个周期的电压过零点重新闭合。

Note that the breaker device opens only when the load current has reached zero, after the opening order。

请注意只有在负载电流为零,并给出了断开命令时,断路器设备才会断开。

Linear Transformer线性变压器
Implement two- or three-winding linear transformer实现两绕组或三绕组的线性变压器
Library库
Elements元素
Description说明
The Linear Transformer block model shown consists of three coupled windings wound on the same core.图中显示的线性变压器模块模型在同一个铁心上包含三个耦合绕组。

The model takes into account the winding resistances (R1 R2 R3) and
the leakage inductances (L1L2 L3), as well as the magnetizing characteristics of the core, which is modeled by a linear (Rm Lm) branch.
该模型考虑到了绕组电阻( R1,R2 ,R3)和泄漏电感( L1,L2, L3 )以及铁心的磁化特性,铁心的磁化特性是由线性支路(Rm Lm) 模拟。

The Per Unit Conversion标幺值转换
In order to comply with industry, the block allows you to specify the resistance and inductance of the windings in per unit (pu). The values are based on the transformer rated power Pn , in VA,nominal frequency fn, in Hz, and nominal voltage Vn, in Vrms, of the corresponding winding. For each winding, the per unit resistance and inductance are defined as
为了符合行业标准,模块准许你以标幺值具体指定绕组的电阻和电感。

该数值是根据变压器每个绕组的额定功率Pn(单位是VA)、额定频率fn(单位是Hz)和额定电压Vn(单位是Vrms)来指定的。

对于每个绕组,电阻和电感标幺值被定义为
The base impedance, base resistance, base reactance, and base inductance used for each winding are用于每个绕组的基准阻抗, 基准电阻, 基准电抗, 基准电感是
For the magnetization resistance Rm and inductance Lm, the pu values are based on the transformer rated power and on the nominal voltage of winding 1.
对于磁化电阻Rm和磁化电感Lm,标幺值数值是由变压器的额定功率和一次绕组的额定电压决定的。

For example, the default parameters of winding 1 specified in the dialog box section give the following bases:
例如,在对话框部分指定的一次绕组的默认参数按如下基准值设置:
Suppose that the winding 1 parameters are R1 = 4.32 Ω and L1 = 0.4586 H; the corresponding values to be entered in the dialog box are假设一次绕组参数为R1 = 4.32 Ω, L1 = 0.4586 H ;在对话框中输入相应的值
To specify a magnetizing current of 0.2% (resistive and inductive) based on nominal current, you must enter per unit values of 1/0.002 = 500 pu for the resistance and the inductance of the magnetizing branch. Using the base values calculated previously, these per unit values correspond to Rm = 1.08e6 ohms and Lm = 2866 henries.
要指定一个0.2%额定电流的磁化电流(阻性和感性),你必须为励磁支路的电阻和电抗输入500单位的标幺值数值。

根据先前计算的基准值,这些对应的数值为电阻是1.08e6 欧姆,电抗是2866亨利。

Modeling an Ideal Transformer理想变压器建模
To implement an ideal transformer model, set the winding resistances and inductances to 0, and the magnetization resistance and inductance (Rm Lm) to inf.
为了建立一个理想的变压器模型,设置绕组的电阻和电感为0,磁阻和磁感为无穷大。

Dialog Box and Parameters对话框和参数
Units单位
Specify the units used to enter the parameters of the Linear Transformer block. Select pu to use per unit. Select SI to use SI units. Changing the Units parameter from pu to SI, or from SI to pu, will automatically convert the parameters displayed in the mask of the block. The per unit
conversion is based on the transformer rated power Pn in VA, nominal frequency fn in Hz, and nominal voltage Vn, in Vrms, of the windings.
指定用于输入的线性变压器的模块参数的单位。

pu表示标幺值。

SI表示国际
单位制。

改变单位参数,模块面板上显示的参数将自动转换。

标幺值转换依赖
于变压器绕组的额定功率(单位是VA)、额定频率(单位是Hz)和额定电压(单
位是Vrms)。

Nominal power and frequency额定功率和频率
The nominal power rating Pn in volt-amperes (VA) and frequency fn, in hertz (Hz), of the transformer. Note that the nominal parameters have no impact on the transformer model when the Units parameter is set to SI. 变压器的额定功率Pn以VA为单位,频率以HZ为单位。

须注意的是,当单位
参数设置为SI时,额定参数对变压器模型没有影响。

Winding 1 parameters一次绕组参数
The nominal voltage V, in volts RMS, resistance, in pu or ohms, and leakage inductance, in pu or henries. The pu values are based on the nominal power Pn and on V1. Set the winding resistances and inductances to 0 to implement an ideal winding.
额定电压V是有效值,单位伏特,电阻单位是标幺值或欧姆,漏感单位是标幺
值或亨利。

标幺值数值依据变压器的额定功率Pn和一次绕组的额定电压设
定。

绕组的电阻和电感设置为0,可以实现一个理想的绕组。

Winding 2 parameters二次绕组参数
The nominal voltage V2 in volts RMS, resistance, in pu or ohms, and leakage inductance, in pu or henries. The pu values are based on the nominal power Pn and on V2. Set the winding resistances and inductances to 0 to implement an ideal winding.
额定电压V2是有效值,单位伏特,电阻单位是标幺值或欧姆,漏感单位是标幺值或亨利。

标幺值数值依据变压器的额定功率和二次绕组的额定电压设定。

绕组的电阻和电感设置为0,可以实现一个理想的绕组.
Three windings transformer三绕组变压器
If selected, implements a linear transformer with three windings; otherwise, it implements a two-windings transformer.
如果选择,可以实现三个绕组的线性变压器,否则,它实现一个双绕组变压器。

Winding 3 parameters三次绕组参数
The Winding 3 parameters parameter is not available if the Three windings transformer parameter is not selected.
如果没有选择三绕组变压器,那么三次绕组的参数设定是不可用的。

The nominal voltage in volts RMS (Vrms), resistance, in pu or ohms, and leakage inductance in pu or henries. The pu values are based on the nominal power Pn and on V3. Set the winding resistances and inductances to 0 to implement an ideal winding.
额定电压V3是有效值,单位伏特,电阻单位是标幺值或欧姆,漏感单位是标幺值或亨利。

标幺值数值依据变压器的额定功率和三次绕组的额定电压设定。

绕组的电阻和电感设置为0,可以实现一个理想的绕组.
Magnetization resistance and inductance 磁化电阻和磁化电感
The resistance and inductance simulating the core active and reactive losses. When selected, the pu values are based on the nominal power Pn and on V1. For example, to specify 0.2% of active and reactive core losses, at nominal voltage, use Rm = 500 pu and Lm = 500 pu.
磁化电阻和磁化电感模拟了铁心有功和无功损耗。

当选择三绕组变压器时,标幺值数值根据变压器的额定功率和一次绕组的额定电压决定。

例如,在额定电
压下,指定铁心有功和无功损耗的0.2%,需要设置Rm = 500 pu and Lm = 500 pu.。

Measurements 测量
Select Winding voltages to measure the voltage across the winding terminals of the Linear Transformer block.
选择“绕组电压”,通过线性变压器模块的绕组端子来测量电压。

Select Winding currents to measure the current flowing through the windings of the Linear Transformer block.
选择“绕组电流”,测量通过线性变压器模块绕组的电流。

Select Magnetization current to measure the magnetization current of the Linear Transformer block.
选择“磁化电流”,测量通过线性变压器模块的磁化电流。

Select All voltages and currents to measure the winding voltages and currents plus the magnetization current.
选择“所有的电压和电流”,测量绕组电压、电流和磁化电流。

Place a Multimeter block in your model to display the selected measurements during the simulation.
将万用表块放置在你的模型中,在模拟过程中会显示要测的量。

In the Available Measurements list box of the Multimeter block, the measurements are identified by a label followed by the block name.
在万用表的可测量的列表框中,测量值由模块名称加标签来标识。

Limitations限制因数
Windings can be left floating (that is, not connected to the rest of the circuit). However, an internal resistor is automatically added between the floating winding and the main circuit. This internal connection does not affect voltage and current measurements.
绕组可以悬空(即不连接到电路的其余部分)。

然而,悬浮绕组和主电路之间会自动添加内部电阻。

这种内部连接不影响电压和电流测量。

Due to limitations inherent to graph theory and its application to electric network theory as implemented in SimPowerSystems software, the following topologies are unsolvable:
由于图论的固有局限性,其在电网络理论及其在SimPowerSystems 软件中的应用实现,都无法解决下面的拓扑结构:
Loops containing only ideal transformer secondary windings (for example, delta-connected ideal secondary windings of three-phase transformer). To solve this topology issue, you can add a small impedance in series with the loop.
回路仅仅包含理想变压器的次级绕组(例如,三相变压器的三角形连接的理想的次级绕组)。

为了解决这个拓扑问题,你可以在回路中串联一个小电阻。

Loops containing only ideal transformer secondary windings and ideal voltage sources. To solve this topology issue, you can add a small impedance in series with the loop.
回路仅仅包含理想变压器的次级绕组和理想电压源。

为了解决这个拓扑问题,你可以在回路中串联一个小电阻。

Loops containing only ideal transformer secondary windings and capacitors. To solve this topology issue, you can add a small impedance in series with the loop.
回路仅仅包含理想变压器的次级绕组和电容器。

为了解决这个拓扑问题,你可以在回路中串联一个小电阻。

All topologies where an ideal transformer primary has at least one of its nodes that is connected to elements consisting only of ideal transformer primary windings or current sources (for example, wye-connected three-phase primary windings with floating common point). To resolve this circuit topology, you connect a small resistance to problematic node.
一个理想变压器最初至少有一个节点,它的所有拓扑结构都一些元素关联,这些元素仅仅包含理想变压器的初级绕组和电流源(例如,中性点未接地的星形连接的三相初级绕组)。

为了解决这个回路拓扑问题,你可以在问题节点处接入一个小阻抗。

Load Flow Bus 潮流母线
Identify and parameterize load flow bus 识别和参数化潮流母线
Library 库
Measurements 测量元件
Description 说明
The Load Flow Bus block is used in three-phase models to specify the bus locations and parameters in order to solve a load flow. The load flow is solved by
the Powergui Load Flow tool. You normally connect this block on any phase (A, B, or C) of a three-phase load flow block. Load flow blocks are SimPowerSystems blocks where power and voltage can be specified. They are:
潮流总线模块用在三相模型中,用来指定母线的位置和参数,以解决负载流
量。

潮流由PowerGUI的潮流工具解决。

通常,你可以将潮流母线模块连接到
三相潮流模块的任意一相(A,B或C),这个潮流模块指的是功率和电压可以
指定的SimPowerSystems模块。

它们分别是:
●Asynchronous Machine异步电动机
●Simplified Synchronous Ma chine 简化同步电动机
●Synchronous Machine同步电动机
●Three-Phase Dynamic Load 三相动态负载
●Three-Phase Parallel RLC Load 三相RLC并联负载
●Three-Phase Programmable Voltage Source 三相可编程电压源
●Three-Phase Series RLC Load 三相RLC串联负载
●Three-Phase Source 三相电源
Once the load flow is solved, the bus voltage magnitude and phase angle are displayed below the Load Flow Bus blocks as block annotations. The Load Flow tool lists, for each bus, the active and reactive power transferred to other buses. 潮流一旦得到解决,母线电压幅值和相角将作为注释显示在潮流母线模块下
方。

每个总线的潮流的工具列表将有功和无功转移到其他母线上。

When several load flow blocks are connected together at the same bus, only one Load Flow Bus block is required. You can also connect the Load Flow Bus block at a location where you are interested in monitoring the load flow, even if no load flow blocks are connected at that location. In such a case, the Load Flow Bus block must be connected to any phase of a three-phase block (Three-Phase Breaker, Three-Phase PI Section Line, Three-Phase Transformer, and so on).
当几个潮流模块连接到同一条母线上时,只需一个潮流母线模块。

你也可以在
感兴趣监测潮流的地方连接潮流母线模块,即使此处没有潮流模块。

在这种情
况下,潮流母线模块必须连接到三相模块(三相断路器、三相π型线路、三相
变压器等)的任何一相上。

Implicit Buses 隐含的母线
If you omit to connect a Load Flow Bus block to a load flow block, the Load Flow tool will automatically define an implicit (internal) load flow bus for that block. The bus base voltage of this implicit bus is set to the same value as the nominal voltage of the load flow block. When several load flow blocks are connected together, one nominal voltage is arbitrarily selected among the blocks. 如果你在潮流模块上遗漏了潮流母线模块,潮流母线模块会自动为此模块定义
一个隐藏(内部)的潮流母线模块。

这个隐藏母线的基准电压设置为潮流模块
的额定电压。

当几个潮流模块连接到同一条母线上时,基准电压可以为几个模
块的额定电压的任意一个。

Although the Load Flow tool can perform load flow on a model with no Load Flow Bus block in the model (working only with implicit buses), the recommended practice is to connect a Load Flow Bus block everywhere a load flow block exists.
尽管潮流工具在没有潮流母线模块的情况下(仅含有隐藏母线)也可以执行潮
流分析,但扒荐的做法是在任何含潮流模块的地方连接一个潮流母线模块。

Dialog Box and Parameters 对话框和参数
The Load Flow Bus parameters are used for model initialization only. They have no impact on the simulation performance.
潮流母线参数仅用于初始化模型,对仿真性能没有影响。

The block dialog box contains two tabs:
Parameters Tab 参数选项卡
Load Flow Tab 潮流选项卡
Parameters Tab 参数选项卡
Bus Identification 母线确认
Enter a meaningful alphanumeric string. The Bus Identification string appears below the block as a block annotation.
输入一个有效的字母数字字符串。

字符串作为注释出现在模块下方。

Base voltage (Vrms phase-phase) 基准电压(线电压)
The base voltage is usually the same as the nominal voltage of the load flow blocks connected to the Load flow Bus block. The Base voltage values appears below the block as a block annotation.
基准电压通常与连接在潮流母线模块上的潮流模块的额定电压相等。

基准电压值作为注释出现在模块下方。

Swing bus or PV bus voltage (pu) 摆幅母线或PV母线电压(标幺值)Specify the required bus voltage magnitude, in pu. Depending on the bus type of the load flow blocks connected at that bus, this voltage corresponds to the swing bus voltage or the PV bus voltage.
以标幺值指定规定的母线电压的幅值。

根据连接在负载潮流模块上的潮流母线的类型,这个电压对应的为摆幅母线电压或PV母线电压。

Swing bus voltage angle (degrees) 摆幅母线电压相角(度)
The swing bus voltage angle is used as a reference to compute voltage angles of all other buses in the model.
摆幅母线的电压相角作为计算模型中所有其他母线电压相角的参照。

Note 注意
The bus type (PV, PQ, or swing) is not defined in the mask of the Load Flow Bus block. The reason is that you may have several machines and voltage source blocks with different generator type parameters connected at the same bus. The Load Flow tool determines the resulting bus type.
母线的类型(Swing 、PV、PQ )由潮流工具决定。

(Powergui)
Load Flow Tab 潮流标签
Load flow solution: bus voltage V_LF (pu) 负载潮流的解决方案:母线电压
V_LF (pu)
Displays the resulting bus voltage, in pu, once the load flow is solved. This parameter is intentionally grayed out because it is updated automatically by the Load Flow tool. The parameter value appears below the block as a block annotation.
一旦负载流量得到解决,显示由此产生的母线电压,以标幺值。

此参数故意是灰色的,因为它是由潮流工具自动更新。

参数值作为注释出现在模块下方。

Load flow solution: bus voltage Vangle_LF (degrees)
负载潮流的解决方案:母线电压相角Vangle_LF (degrees)
Displays the resulting bus voltage angle, in degrees, once the load flow is solved. This parameter is intentionally grayed out because it is updated automatically by the Load Flow tool. The parameter value appears below the block as a block annotation.
一旦负载流量得到解决,显示由此产生的母线电压相角,单位是度。

此参数故意是灰色的,因为它是由潮流工具自动更新。

参数值作为注释出现在模块下方。

Example 举例
The power_turbine demo contains two Load Flow Bus blocks. The B1 block is connected to the 5 MW Three-Phase Parallel RLC Load and to the Synchronous Machine load flow blocks. The B2 block is connected to the 10 MW Three-Phase Parallel RLC Load and to the Three-Phase Source load flow blocks.
power_turbine示例包括两个潮流母线模块。

B1 模块连接在5 MW 的三相RLC 并联负载和同步电动机上。

B2 模块连接在10 MW的三相RLC并联负载和三
相电源上。

The two blocks display the bus voltages and angles resulting from a load flow solution previously saved with the model. The bus voltage at B1 bus displays 1 pu, -23.67 deg. Start the simulation, verify it starts in steady state, then zoom on the initial value of the measured voltage Va. You should read an initial voltage of about -0.4015 pu. At the MATLAB Command line, compute the angle of the measured voltage:
两个模块显示了由先前与模型一同保存的负载流量的解决方案而产生的母线电压和相角。

B1 模块显示了母线电压及其相角:1 pu, -23.67 deg。

开始模拟,验证它处于稳定状态,然后放大测量电压Va的初始值,你应该读出初始电压约
为-0.4015 PU。

在MATLAB命令行中,计算测量电压的角度:
asin(-0.4015)*180/pi
ans =
-23.672
You can also take a look at the power_LFnetwork_5bus model. In this model five Load Flow Bus blocks are used. The block labeled B120 is the swing bus.
Multimeter 万用表
Measure voltages and currents specified in dialog boxes of SimPowerSystems blocks
测量SimPowerSystems 模块对话框中的电压和电流
Library库
Measurements 测量元件
Description说明
This block measures the voltages and currents specified in the Measurements parameter of SimPowerSystems blocks in your model. Choosing voltages or currents through the Multimeter block is equivalent to connecting an internal voltage or current measurement block inside your blocks.
万用表模块测量在你的模型的SimPowerSystems模块的测量参数中指定的电压和电流。

通过万用表块选择电压或电流相当于在模块内部连接电压或电流测量元件。

Polarity of Measured Voltages and Currents 测量电压和电流的极性
The polarity of the measured voltages and current is determined by the + and - terminals of the measured SimPowerSystems blocks. The following table identifies the positive terminals of the SimPowerSystems blocks that do not have the + sign to identify block polarity.
所测电压和电流的极性是由被测量的SimPowerSystems模块的+和 - 端子决定。

下表列出SimPowerSystems模块的正极性端子(没有标“+”符号)以确定模块的极性。

Block Positive terminal(s)
Mutual Inductance 互感
Three-PhaseMutual Inductance Z1-Z0 三相互感 Z1-Z01 2 3 ABC
Three-Phase Series RLC Branch 三相串联RLC 支路
Three-Phase Parallel RLC Branch 三相并联RLC支路ABC ABC
Three-Phase
Breaker 三相断路器ABC
Breaker 断路器 1
For three-phase transformers, the voltage polarities and positive current directions are indicated by the signal labels used in the Multimeter block. For example, Uan_w2 = phase A-to-neutral voltage of the Y connected winding #2 and
Iab_w1 = winding current flowing from A to B in the delta-connected winding #1.
对于三相变压器,电压极性与正向电流的方向由万用表模块所使用的信号标签指示。

例如, Uan_w2 = A相到中性点电压(绕组2星形连接)Iab_w1 =从A相流向B相的绕组电流(绕组1三角形连接)
Dialog Box and Parameters 对话框和参数
Available Measurements 可测量的量
The Available Measurements list box shows the measurements in the Multimeter block. Use the >> button to select measurements from the Available Measurements list box. Click the Update button to refresh the list of available measurements.
万用表模块的有效测量列表框显示了可测量的量。

使用>>按钮,从有效测量列表框选择测量的量。

点击更新按钮来刷新可用测量列表。

The measurements in the list box are identified by the name of the block where the measurement is done. The type of measurement (voltage measurement, current measurement, or flux) is defined by a label preceding the block name. For more information, see the Measurements parameter description in the Dialog Box and Parameters section of blocks in your model.
测量完成时,列表框的测量量由测量模块的名称确定。

测量类型(电压测量、电流测量或磁通)由模块名称前的标签定义。

有关详细信息,请参阅模块的对话框测量参数说明和参数选择。

Selected Measurements 选定的测量量
The Selected Measurements list box shows the measurements sent to the output of the block. You can reorder the measurements by using the Up, Down, and Remove buttons. The +/– button allows you to reverse the polarity of any selected measurement.
选定测量列表框中显示的量会送到万用表模块的输出端。

使用上、下、移除按钮对测量量重新排序。

+/–按钮允许你改变测量量的极性。

Plot selected measurements 绘出测量图
If selected, displays a plot of selected measurements in a MATLAB® figure window. The plot is generated when the simulation stops.
如果选择,测量量的图会在MATLAB图形窗口中显示。

当仿真结束时,图形生成。

Output type 输出类型。

相关文档
最新文档