波函数及其物理意义
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
A
2 b
(2)求出归一化的波函数和几率密度 几率密度为:
W ( x, t ) ( x, t ) 0
2
2
( x b / 2), x b / 2)
2 2 x W ( x, t ) ( x, t ) cos ( ) (b / 2 x b / 2) b b
结论:自由粒子的物质波是单色平面波。
一个频率为、波长为沿x方向传播的单色平面波 x 的表达式为:
( x, t ) A cos 2 (t
利用波粒二象性的关系式,用描述粒子性的物理 量来代替描述波动性的物理量,有:
3
)
2 ( x, t ) 0 cos ( Et px ) h
P
单缝1使通过它的电 子处于1态;单缝2 使其处于2态。
13
量子力学中态的叠加原理导致了叠加态下观测结果的 不确定性,出现了干涉图样。
它是由微观粒子波粒两象性所决定的。 态迭加原理还有下面的含义:当粒子处于态1和2的 线性迭加态时,粒子是既处于1 ,又处于态2 。
量子力学中态的迭加,虽然在数学上与经典波的迭 加原理相同,但在物理本质上却有根本的不同:量子 态的迭加是指一个粒子的两个态的迭加,其干涉也是 自己与自己的干涉,决不是两个粒子互相干涉。而且 这种态的迭加将导致在迭加态下测量结果的不确定性。
10
2.归一化条件 由于粒子必定要在空间中的某一点出现,所以任 意时刻,在整个空间发现粒子的总几率应是1。所以 2 应有: | | dV 1
V
V | 0 | dV 1
2
这称为波函数的归一化条件。
量子力学中的波函数具有一个独特的性质:波 函数与波函数/=c(c为任意常数)所描写的是 粒子的同一状态。 原因:粒子在空间各点出现的几率只决定于波函数 在空间各点的相对强度,而不决定于强度的绝对大 小。如果把波函数在空间各点的振幅同时增大一倍, 并不影响粒子在空间各点的几率。所以将波函数乘 上一个常数后,所描写的粒子的状态并不改变。 如果波函数对整个空间的积分值是有限的,但不 为零,则可以适当选取波函数的系数,使这积分值 为1,这个过程称为波函数的归一化过程。
2 波函数模的平方| (r , t ) | 代表时刻 t 、在r 处
粒子出现的几率密度。
根据波恩的解释,波函数本身并没有直接的物理 意义,有物理意义的是波函数模的平方。从这点来说, 物质波在本质上与电磁波、机械波是不同的,物质波 是一种几率波,它反映微观粒子运动的统计规律。
7
附近找到粒子的几率除和波 函数平方值大小有关外,还和这个区域的大小有关。
*
| |2 为粒子在某点附近单位体积内粒子 由此可见, 出现的几率,称为几率密度。即: | |2
波函数不仅把粒子与波统一起来,同时以几率幅(几 率密度幅)的形式描述粒子的量子运动状态。
8
根据波函数的统计解释可说明电子单缝衍射实验。
播放动画
微观粒子的运动所遵循的是统计性规律,波函数 正是为描写粒子的这种统计行为而引入的。波函数的 概念也和通常的经典波的概念不同,它既不代表介质 运动的传播过程,也不是那种纯粹经典的场量,而是 一种比较抽象的几率波。波函数既不描述粒子的形状, 也不描述粒子运动的轨迹,它只给出粒子运动的几率 分布。
可以认为在一个很小的体积元范围内波函数是相 同的,这样,有: 实物粒子的波函数在给定时刻,在空间某点的模 (振幅)的平方 ||2 与该点邻近体积元 dV的乘积, 正比于该时刻在该体积元内发现该粒子的概率 W。
注意:在空间某处r
W | | dV dV
2 *
是 的共轭复数。
如图所示,在 区间(b/2,b/2)以 外找不到粒子。在 x=0处找到粒子的 几率最大。
18
2 ( x, t )
( x, t )
-b/2
o
b/2
x
例2: 已知一L为势阱宽度,n为量子数(n=1,2,)。 L n 1 求:(1)粒子在0 x 区间出现的几率;并对 4 和 n 的情况算出概率值。 L (2)在 n ? 的量子态上,粒子在 x 区 4 间出现的概率密度最大。 L 解: (1)粒子在 0 x 区间出现的几率: 4
2 ( x, t ) 0 cos ( Et px ) h
根据尤金公式,有:
0
( x, t ) 0e
i
2 ( Et Px) h
为波函数的振幅。
这个波函数既包含有反映波动性的波动方程的 形式,又包含有体现粒子性的物理量E和P,因此它 描述了微观粒子具有波粒二象性的特征。
6
同样,这种观点对实物粒子衍射来说,在衍射极 大值处,找到粒子的几率最大,衍射极小值处,找到 粒子的几率最小。 综合以上的波动和粒子观点,得到:在某时刻 t,在空间某处 ,波函数 的平方正比 r (r , t ) 于粒子在该时刻、该地点出现的几率。 玻恩在这个基础上,提出了关于波函数的统计解释:
例1: 设粒子在一维空间运动,其状态可用波函数描 述为: ( x, t ) 0 ( x b / 2, x b / 2)
iE x ( x, t ) A exp( t ) cos( ) (b / 2 x b / 2) b
其中A为任意常数,E和b均为确定的常数。 求:归一化的波函数;几率密度W?
波函数为:
对三维空间,沿矢径 r
方向传播的自由粒子的
4
根据波动理论,波函数的强度正比于02。 利用复指数函数的运算法则,有:
0 | |
2
*
2
*
为的复共轭函数。
注意:微观粒子物质波的波函数只能用复数形式来 表达。不能用实数形式来表达。
在一般情况下,粒子的波函数不是单色平面波的 形式,而是空间和时间和复杂函数。 下面要研究的问题是如何理解波和它所描写的粒子 之间的关系。
12
i 1
i
P1
S
1 D 2
A B
W C 1 C 2 C1C2 ( 2 1 ) * * 相干项 W1 W2 C1C2 (1 2 21 )
2 1 * 1 2 2 * 2 * 1 * 2
当双缝同时打 P2 开时,一个电 子同时处在1 C11 C2 2 态和2态。双 2 2 处于两态的几率分别为:| C11 | , | C2 2 | 缝同时诱导的 双缝同时打开时,电子的几率分布为: 状态是它们的 2 线性组合态。 W | |
2 L 1 1 n 2 nx 4 ( x) dx sin dx sin L 0 L 4 2n 2
2
L 2 2 n n ( ) sin 4 L 4
n 1 其最大值对应于 sin 4
9
3.波函数应满足的条件 1.标准条件 粒子在某一个时刻t,在空间某点上粒子出现的 几率应该是唯一的、有限的,所以波函数必须是单 值的、有限的;又因为粒子在空间的几率分布不会 发生突变,所以波函数还必须是连续的。 波函数必须满足“单值、有限、连续”的条件, 称为波函数的标准条件。也就是说,波函数必须连 续可微,且一阶导数也连续可微。
微观粒子遵循的是统计规律,而不是经典的决定性规律。 牛顿说:只要给出了初始条件,下一时刻粒子的轨迹是已知的, 决定性的。 量子力学说:波函数不给出粒子在什么时刻一定到达某点,只 给出到达各点的统计分布;即只知道||2大的地方粒子出现 的可能性大,||2小的地方几率小。一个粒子下一时刻出现 在什么地方,走什么路径是不知道的(非决定性的)。
i Et
定态波函数所描写的状态称为“定态”。 如果粒子处于定态,则有:
i Et 2 2 2 | (r , t ) | | (r )e | | (r ) |
15
粒子在空间某处出现的几率不随时间而改变 ——这是定态的一个重要性质。
在解决实际问题中,感兴趣的不是波函数本身, 而是它的模的平方。 如果粒子处于定态,求出波函数的空间部分 (x,y,z) 一般来说已完全够用了,而不必再去考虑时 间因子。因此,我们通常把 (x,y,z) 称为“振幅波函 数”,甚至干脆称为“定态波函数”。
5
2.波函数的物理意义 为人们所接受的对于波函数的解释是由玻恩首先 提出来的。 光的单缝衍射和电子的单缝衍射的比较: 1)从波动性看,对光的衍射,空间某处光强与光波在 该处振幅平方成正比,衍射极大值 对应光振动振幅平 方的极大值,衍射极小值对应振幅平方的极小值。 用这种观点分析实物粒子衍射实验,可以看到在 衍射极大值处,波函数的振幅平方*具有极大值, 在衍射极小值处,波函数的振幅平方*具有极小值。 2)从粒子的观点看,对光的衍射现象,光的衍射极 大值处找到光子的几率最大,极小值处找到光子的 几率最小。
2 nx sin (0 x L) L l
Wn
19
L 4 0
2 1 1 n 2 nx ( x) dx sin dx sin L L 4 2n 2
L 4 0
2
Wn
L 4 0
1 1 9% 当 n 1时 W1 4 2 1 当n 时 W 25% 4 L (2)粒子在 x 区间出现的概率密度为: 4 2
一维自由粒子的波函数可以写为:
( x, t ) Ae (r , t ) Ae
16
i ( Et px )
Ae
i i px Et
e
三维自由粒子的波函数可以写为:
i ( Et pr )
Ae
i i pr Et
e
可见,自由粒子的波函数所描述的是定态。
解:由归一化条件,有:
A
2
x 即:A cos ( )dx 1 b / 2 b
2 b/2 2
b / 2
| ( x, t ) | dx
2
b/2
b / 2
| ( x, t ) | dx | ( x, t ) | dx 1
2 2 b/ 2
17
b A 1 2
11
量子力学中描述微观粒子状态的方式与经典力学 中同时用坐标和动量的确定值来描述质点的状态完全 不同。这种差别来源于微观粒子的波粒二象性。
波函数的统计解释是波粒二象性的一个表现,微 观粒子的波粒二象性还通过量子力学中关于状态的另 一个基本原理—态迭加原理表现出来。 3.态迭加原理
如果1,2,,n所描写的都是体系可能实现的状 n 态,那么它的线性迭加 ci i (c 为任意常数) 所描写的也是体系的一个可能的状态。 用电子双缝衍射说明量子力学中态的叠加导致了在 叠加态下观测结果的不确定性。
在一维空间量,波函数写成 ( x, t ) 间里写成 (r , t ) 。
2
,在三维空
1.自由粒子的波函数 自由粒子是不受外力作用的粒子,它在运动过程中 作匀速直线运动(设沿X轴),其能量和动量保持不变。
h E 对应的德布罗意波具有频率和波长: , h P
自由粒子物质波的频率和波长也是保持不变的。
14
4.定态波函数 如果波函数可以表示为一个空间坐标的函数 ( x, y, z ) 与一个时间函数的乘积,并且整个波函数随时间的改 i 变由因子 Et 决定,
e
这个波函数就称为“定态波函数”。它可表示为:
( x, y, z, t ) ( x, y, z )e
i Et
或
( r , t ) ( r )e
第二节
波函数及其 物理意义
1
经典理论在解释光和实物粒子、原子光谱及原子 能级时遇到了困难,德布罗意、薛定谔、海森伯、玻 恩、狄拉克等人建立了反映微观粒子规律的量子力学。 量子力学:研究物质波和物质相互作用的学科。
一、波函数
电磁波可以用电场强度和磁场强度在时间和空间 的变化来描述,机械波可以用质点的位移随时间变化 来描述。 物质波也可以用一个随时间和空间变化的函数来 描述,这个函数称为波函数,通常用来表示。
A
2 b
(2)求出归一化的波函数和几率密度 几率密度为:
W ( x, t ) ( x, t ) 0
2
2
( x b / 2), x b / 2)
2 2 x W ( x, t ) ( x, t ) cos ( ) (b / 2 x b / 2) b b
结论:自由粒子的物质波是单色平面波。
一个频率为、波长为沿x方向传播的单色平面波 x 的表达式为:
( x, t ) A cos 2 (t
利用波粒二象性的关系式,用描述粒子性的物理 量来代替描述波动性的物理量,有:
3
)
2 ( x, t ) 0 cos ( Et px ) h
P
单缝1使通过它的电 子处于1态;单缝2 使其处于2态。
13
量子力学中态的叠加原理导致了叠加态下观测结果的 不确定性,出现了干涉图样。
它是由微观粒子波粒两象性所决定的。 态迭加原理还有下面的含义:当粒子处于态1和2的 线性迭加态时,粒子是既处于1 ,又处于态2 。
量子力学中态的迭加,虽然在数学上与经典波的迭 加原理相同,但在物理本质上却有根本的不同:量子 态的迭加是指一个粒子的两个态的迭加,其干涉也是 自己与自己的干涉,决不是两个粒子互相干涉。而且 这种态的迭加将导致在迭加态下测量结果的不确定性。
10
2.归一化条件 由于粒子必定要在空间中的某一点出现,所以任 意时刻,在整个空间发现粒子的总几率应是1。所以 2 应有: | | dV 1
V
V | 0 | dV 1
2
这称为波函数的归一化条件。
量子力学中的波函数具有一个独特的性质:波 函数与波函数/=c(c为任意常数)所描写的是 粒子的同一状态。 原因:粒子在空间各点出现的几率只决定于波函数 在空间各点的相对强度,而不决定于强度的绝对大 小。如果把波函数在空间各点的振幅同时增大一倍, 并不影响粒子在空间各点的几率。所以将波函数乘 上一个常数后,所描写的粒子的状态并不改变。 如果波函数对整个空间的积分值是有限的,但不 为零,则可以适当选取波函数的系数,使这积分值 为1,这个过程称为波函数的归一化过程。
2 波函数模的平方| (r , t ) | 代表时刻 t 、在r 处
粒子出现的几率密度。
根据波恩的解释,波函数本身并没有直接的物理 意义,有物理意义的是波函数模的平方。从这点来说, 物质波在本质上与电磁波、机械波是不同的,物质波 是一种几率波,它反映微观粒子运动的统计规律。
7
附近找到粒子的几率除和波 函数平方值大小有关外,还和这个区域的大小有关。
*
| |2 为粒子在某点附近单位体积内粒子 由此可见, 出现的几率,称为几率密度。即: | |2
波函数不仅把粒子与波统一起来,同时以几率幅(几 率密度幅)的形式描述粒子的量子运动状态。
8
根据波函数的统计解释可说明电子单缝衍射实验。
播放动画
微观粒子的运动所遵循的是统计性规律,波函数 正是为描写粒子的这种统计行为而引入的。波函数的 概念也和通常的经典波的概念不同,它既不代表介质 运动的传播过程,也不是那种纯粹经典的场量,而是 一种比较抽象的几率波。波函数既不描述粒子的形状, 也不描述粒子运动的轨迹,它只给出粒子运动的几率 分布。
可以认为在一个很小的体积元范围内波函数是相 同的,这样,有: 实物粒子的波函数在给定时刻,在空间某点的模 (振幅)的平方 ||2 与该点邻近体积元 dV的乘积, 正比于该时刻在该体积元内发现该粒子的概率 W。
注意:在空间某处r
W | | dV dV
2 *
是 的共轭复数。
如图所示,在 区间(b/2,b/2)以 外找不到粒子。在 x=0处找到粒子的 几率最大。
18
2 ( x, t )
( x, t )
-b/2
o
b/2
x
例2: 已知一L为势阱宽度,n为量子数(n=1,2,)。 L n 1 求:(1)粒子在0 x 区间出现的几率;并对 4 和 n 的情况算出概率值。 L (2)在 n ? 的量子态上,粒子在 x 区 4 间出现的概率密度最大。 L 解: (1)粒子在 0 x 区间出现的几率: 4
2 ( x, t ) 0 cos ( Et px ) h
根据尤金公式,有:
0
( x, t ) 0e
i
2 ( Et Px) h
为波函数的振幅。
这个波函数既包含有反映波动性的波动方程的 形式,又包含有体现粒子性的物理量E和P,因此它 描述了微观粒子具有波粒二象性的特征。
6
同样,这种观点对实物粒子衍射来说,在衍射极 大值处,找到粒子的几率最大,衍射极小值处,找到 粒子的几率最小。 综合以上的波动和粒子观点,得到:在某时刻 t,在空间某处 ,波函数 的平方正比 r (r , t ) 于粒子在该时刻、该地点出现的几率。 玻恩在这个基础上,提出了关于波函数的统计解释:
例1: 设粒子在一维空间运动,其状态可用波函数描 述为: ( x, t ) 0 ( x b / 2, x b / 2)
iE x ( x, t ) A exp( t ) cos( ) (b / 2 x b / 2) b
其中A为任意常数,E和b均为确定的常数。 求:归一化的波函数;几率密度W?
波函数为:
对三维空间,沿矢径 r
方向传播的自由粒子的
4
根据波动理论,波函数的强度正比于02。 利用复指数函数的运算法则,有:
0 | |
2
*
2
*
为的复共轭函数。
注意:微观粒子物质波的波函数只能用复数形式来 表达。不能用实数形式来表达。
在一般情况下,粒子的波函数不是单色平面波的 形式,而是空间和时间和复杂函数。 下面要研究的问题是如何理解波和它所描写的粒子 之间的关系。
12
i 1
i
P1
S
1 D 2
A B
W C 1 C 2 C1C2 ( 2 1 ) * * 相干项 W1 W2 C1C2 (1 2 21 )
2 1 * 1 2 2 * 2 * 1 * 2
当双缝同时打 P2 开时,一个电 子同时处在1 C11 C2 2 态和2态。双 2 2 处于两态的几率分别为:| C11 | , | C2 2 | 缝同时诱导的 双缝同时打开时,电子的几率分布为: 状态是它们的 2 线性组合态。 W | |
2 L 1 1 n 2 nx 4 ( x) dx sin dx sin L 0 L 4 2n 2
2
L 2 2 n n ( ) sin 4 L 4
n 1 其最大值对应于 sin 4
9
3.波函数应满足的条件 1.标准条件 粒子在某一个时刻t,在空间某点上粒子出现的 几率应该是唯一的、有限的,所以波函数必须是单 值的、有限的;又因为粒子在空间的几率分布不会 发生突变,所以波函数还必须是连续的。 波函数必须满足“单值、有限、连续”的条件, 称为波函数的标准条件。也就是说,波函数必须连 续可微,且一阶导数也连续可微。
微观粒子遵循的是统计规律,而不是经典的决定性规律。 牛顿说:只要给出了初始条件,下一时刻粒子的轨迹是已知的, 决定性的。 量子力学说:波函数不给出粒子在什么时刻一定到达某点,只 给出到达各点的统计分布;即只知道||2大的地方粒子出现 的可能性大,||2小的地方几率小。一个粒子下一时刻出现 在什么地方,走什么路径是不知道的(非决定性的)。
i Et
定态波函数所描写的状态称为“定态”。 如果粒子处于定态,则有:
i Et 2 2 2 | (r , t ) | | (r )e | | (r ) |
15
粒子在空间某处出现的几率不随时间而改变 ——这是定态的一个重要性质。
在解决实际问题中,感兴趣的不是波函数本身, 而是它的模的平方。 如果粒子处于定态,求出波函数的空间部分 (x,y,z) 一般来说已完全够用了,而不必再去考虑时 间因子。因此,我们通常把 (x,y,z) 称为“振幅波函 数”,甚至干脆称为“定态波函数”。
5
2.波函数的物理意义 为人们所接受的对于波函数的解释是由玻恩首先 提出来的。 光的单缝衍射和电子的单缝衍射的比较: 1)从波动性看,对光的衍射,空间某处光强与光波在 该处振幅平方成正比,衍射极大值 对应光振动振幅平 方的极大值,衍射极小值对应振幅平方的极小值。 用这种观点分析实物粒子衍射实验,可以看到在 衍射极大值处,波函数的振幅平方*具有极大值, 在衍射极小值处,波函数的振幅平方*具有极小值。 2)从粒子的观点看,对光的衍射现象,光的衍射极 大值处找到光子的几率最大,极小值处找到光子的 几率最小。
2 nx sin (0 x L) L l
Wn
19
L 4 0
2 1 1 n 2 nx ( x) dx sin dx sin L L 4 2n 2
L 4 0
2
Wn
L 4 0
1 1 9% 当 n 1时 W1 4 2 1 当n 时 W 25% 4 L (2)粒子在 x 区间出现的概率密度为: 4 2
一维自由粒子的波函数可以写为:
( x, t ) Ae (r , t ) Ae
16
i ( Et px )
Ae
i i px Et
e
三维自由粒子的波函数可以写为:
i ( Et pr )
Ae
i i pr Et
e
可见,自由粒子的波函数所描述的是定态。
解:由归一化条件,有:
A
2
x 即:A cos ( )dx 1 b / 2 b
2 b/2 2
b / 2
| ( x, t ) | dx
2
b/2
b / 2
| ( x, t ) | dx | ( x, t ) | dx 1
2 2 b/ 2
17
b A 1 2
11
量子力学中描述微观粒子状态的方式与经典力学 中同时用坐标和动量的确定值来描述质点的状态完全 不同。这种差别来源于微观粒子的波粒二象性。
波函数的统计解释是波粒二象性的一个表现,微 观粒子的波粒二象性还通过量子力学中关于状态的另 一个基本原理—态迭加原理表现出来。 3.态迭加原理
如果1,2,,n所描写的都是体系可能实现的状 n 态,那么它的线性迭加 ci i (c 为任意常数) 所描写的也是体系的一个可能的状态。 用电子双缝衍射说明量子力学中态的叠加导致了在 叠加态下观测结果的不确定性。
在一维空间量,波函数写成 ( x, t ) 间里写成 (r , t ) 。
2
,在三维空
1.自由粒子的波函数 自由粒子是不受外力作用的粒子,它在运动过程中 作匀速直线运动(设沿X轴),其能量和动量保持不变。
h E 对应的德布罗意波具有频率和波长: , h P
自由粒子物质波的频率和波长也是保持不变的。
14
4.定态波函数 如果波函数可以表示为一个空间坐标的函数 ( x, y, z ) 与一个时间函数的乘积,并且整个波函数随时间的改 i 变由因子 Et 决定,
e
这个波函数就称为“定态波函数”。它可表示为:
( x, y, z, t ) ( x, y, z )e
i Et
或
( r , t ) ( r )e
第二节
波函数及其 物理意义
1
经典理论在解释光和实物粒子、原子光谱及原子 能级时遇到了困难,德布罗意、薛定谔、海森伯、玻 恩、狄拉克等人建立了反映微观粒子规律的量子力学。 量子力学:研究物质波和物质相互作用的学科。
一、波函数
电磁波可以用电场强度和磁场强度在时间和空间 的变化来描述,机械波可以用质点的位移随时间变化 来描述。 物质波也可以用一个随时间和空间变化的函数来 描述,这个函数称为波函数,通常用来表示。