八年级上学期期末学业水平调研数学卷(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上学期期末学业水平调研数学卷(含答案) 一、选择题
1.已知一次函数y=kx +3(k≠0)的图象经过点A ,且函数值y 随x 的增大而增大,则点A 的坐标可能是( )
A .(﹣2,﹣4)
B .(1,2)
C .(﹣2,4)
D .(2,﹣1)
2.下列标志中属于轴对称图形的是( )
A .
B .
C .
D .
3.在3π-,3127-,7,227-,中,无理数的个数是( ) A .1个 B .2个
C .3个
D .4个 4.由四舍五入得到的近似数48.0110⨯,精确到( ) A .万位
B .百位
C .百分位
D .个位 5.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( )
A .
B .
C .
D . 6. 4的平方根是( )
A .2
B .±2
C .16
D .±16
7.如图(1),在四边形ABCD 中,AB CD ∥,90ABC ∠=︒,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,ABP ∆的面积为y ,如果y 关于x 的函数图象如图(2)所示,则BCD ∆的面积是( )
A .6
B .5
C .4
D .3
8.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )
A .2
B .32
C .52
D .1
9.如图,直线y mx n =+与y kx b =+的图像交于点(3,-1),则不等式组
,0mx n kx b mx n +≥+⎧⎨+≤⎩的解集是( )
A .3x ≤
B .n x m ≥-
C .3n x m -≤≤
D .以上都不对
10.计算2263y y x x
÷的结果是( ) A .3
318y x B .2y x C .2xy D .2
xy 二、填空题
11.写出一个比4大且比5小的无理数:__________.
12.将一次函数34y x =-的图象向上平移3个单位长度,相应的函数表达式为_____.
13.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1米),却踩伤了花草.
14.公元前3世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全等的直角三角形(两直角边长分别为a 、b 且a <b )拼成的边长为c 的大正方形,如果每个直角三角形的面积都是313b -a =____.
15.一次函数y =kx +b 的图像如图所示,则关于x 的不等式kx -m +b >0的解集是____.
16.计算222m m m
+--的结果是___________ 17.在△ABC 中,已知AB =15,AC =11,则BC 边上的中线AD 的取值范围是____.
18.若函数(y x a a =-为常数)与函数2(y x b b =-+为常数)的图像的交点坐标是(2, 1),则关于x 、y 的二元一次方程组2x y a x y b -=⎧
⎨+=⎩的解是________.
19.如图,△ABC 中,BD 平分∠ABC ,交AC 于D ,DE ⊥AB 于点E ,△ABC 的面积是42cm 2,AB =10cm ,BC =14cm ,则DE =_____cm .
20.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.
三、解答题
21.一次函数()0y kx b k =+≠的图像为直线l .
(1)若直线l 与正比例函数2y x =的图像平行,且过点(0,−2),求直线l 的函数表达式;
(2)若直线l 过点(3,0),且与两坐标轴围成的三角形面积等于3,求b 的值.
22.如图,四边形OABC 是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA =10,OC =8,在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处.
(1)求CE 的长;
(2)求点D 的坐标.
23.如图,在7×7网格中,每个小正方形的边长都为1.
(1)建立适当的平面直角坐标系后,若点A(1,3)、C(2,1),则点B的坐标为______;
(2)△ABC的面积为______;
(3)判断△ABC的形状,并说明理由.
24.如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.
(1)求证:△ADE≌△BEC;
(2)若AD=3,AB=9,求△ECD的面积.
25.如图,平面直角坐标系中,每个小正方形边长都是1.
(1)按要求作图:
①△ABC关于x轴对称的图形△A1B1C1;
②将△A1B1C1向右平移7个单位得到△A2B2C2.
(2)△A2B2C2中顶点B2坐标为.
四、压轴题
26.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).
(1)点M 、N 从移动开始到停止,所用时间为 s ;
(2)当ABM ∆与MCN ∆全等时,
①若点M 、N 的移动速度相同,求t 的值;
②若点M 、N 的移动速度不同,求a 的值;
(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.
27.如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. (1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm . (2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;
(3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?
(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?
28.阅读下面材料,完成(1)-(3)题.
数学课上,老师出示了这样一道题:
如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现∠DFC的度数可以求出来.”
小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”
小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”
......
老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”
(1)求∠DFC的度数;
(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;
(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.
29.在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.
(1)如图1,求证:△ADB≌△AEC
(2)如图2,当∠BAC=∠DAE=90°时,试猜想线段AD,BD,CD之间的数量关系,并写出证明过程;
(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)
30.如图已知ABC 中,,8B C AB AC ∠=∠==厘米,6BC =厘来,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,设运动时间为t (秒).
(1)用含t 的代数式表示线段PC 的长度;
(2)若点,P Q 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由; (3)若点,P Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP 全等?
(4)若点Q 以(3)中的运动速度从点C 出发,点v 以原来的运动速度从点B 同时出发,都顺时针沿三边运动,求经过多长时间,点P 与点Q 第一次在ABC 的哪条边上相遇?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
先根据一次函数的增减性判断出k 的符号,再对各选项进行逐一分析即可.
【详解】
∵一次函数y=kx+2(k≠0)的函数值y 随x 的增大而增大,
∴k>0.
A. ∵当x=-2,y=-4时,-2k+3=-4,解得k=3.5>0,∴此点符合题意,故本选项正确;
B. ∵当x=1,y=2时, k+3=2,解得k=-1<0,∴此点不符合题意,故本选项错误;
C. ∵当x=-2,y=4时,-2k+3=4,解得k=−0.5<0,∴此点不符合题意,故本选项错误;
D. ∵当x=2,y=−1时,2k+3=−1,解得k=-2<0,∴此点不符合题意,故本选项错误. 故答案选A.
.
【点睛】
本题考查的知识点是一次函数图像上点的坐标特征,解题的关键是熟练的掌握一次函数图像上点的坐标特征.
2.C
解析:C
【解析】
【分析】
根据对称轴的定义,关键是找出对称轴即可得出答案.
【详解】
解:根据对称轴定义
A 、没有对称轴,所以错误
B 、没有对称轴,所以错误
C 、有一条对称轴,所以正确
D 、没有对称轴,所以错误
故选 C
【点睛】
此题主要考查了对称轴图形的判定,寻找对称轴是解题的关键.
3.B
解析:B
【解析】
【分析】
根据无理数的定义判断即可.
【详解】
解:3π-1-3 ,227-可以化成分数,不是无理数. 故选 B
【点睛】
此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数.
4.B
解析:B
【解析】
【分析】
由于48.0110⨯=80100,观察数字1所在的数位即可求得答案.
【详解】
解:∵48.0110⨯=80100,数字1在百位上,
∴ 近似数48.0110⨯精确到百位,
故选 B.
【点睛】
此题主要考查了近似数和有效数字,熟记概念是解题的关键.
5.C
解析:C
【解析】
【分析】
对于各选项:先通过一次函数的性质确定m 、n 的符合,从而得到mn 的符合,然后根据正比例函数的性质对正比例函数图象进行判断,从而可确定该选项是否正确.
【详解】
A 、由一次函数图象得m >0,n >0,所以mn >0,则正比例函数图象过第一、三象限,所以A 选项错误;
B 、由一次函数图象得m >0,n <0,所以mn <0,则正比例函数图象过第二、四象限,所以B 选项错误;
C 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以C 选项正确;
D 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以D 选项错误.
故选:C .
【点睛】
本题考查了正比例函数图象:正比例函数y =kx 经过原点,当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限.也考查了一次函数的性质.
6.B
解析:B
【解析】
【分析】
根据平方根的意义求解即可,正数a 有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
【详解】
∵(±2)2=4,
∴4的平方根是±2,即
2±.
故选B.
【点睛】
本题考查了平方根的意义,如果个一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的
平方根.
7.D
解析:D
【解析】
【分析】
根据图1可知,可分P 在BC 上运动和P 在CD 上运动分别讨论,由此可得BC 和CD 的值,进而利用三角形面积公式可得BCD ∆的面积.
【详解】
解:动点P 从直角梯形ABCD 的直角顶点B 出发,沿BC ,CD 的顺序运动,
当P 在BC 段运动,△ABP 面积y 随x 的增大而增大;
当P 在CD 段运动,因为△ABP 的底边不变,高不变,所以面积y 不变化.
由图2可知,当0<x<2时,y 随x 的增大而增大;当2<x<5时,y 的值不随x 变化而变化. 综上所述,BC=2,CD=5-2=3, 故1123322BCD
S CD BC ∆.
故选:D .
【点睛】
本题考查动点问题的函数图象,动点的图象问题是中考的常考题型,做此类题需要弄清横纵坐标的代表量,并观察确定图象分为几段,弄清每一段自变量与因变量的变化情况及变化的趋势,主要是正负增减及变化的快慢等. 匀速变化呈现直线段的形式,平行于x 轴的直线代表未发生变化. 8.D
解析:D
【解析】
【分析】
图中直线y=x+b 与x 轴负半轴,y 轴正半轴分别交于A ,B 两点,可以根据两点的坐标得出OA=OB ,由此可证明△AOD ≌△OBE ,证出OC=AD ,BE=OD ,在Rt △OBE 中,运用勾股定理可求出BE 的长,再根据线段的差可求出DE 的长.
【详解】
直线y=x+b(b >0)与x 轴的交点坐标A 为(-b ,0)与y 轴的交点坐标B 为(0,-b ), 所以,OA=OB ,
又∵AD ⊥OC ,BE ⊥OC ,
∴∠ADO=∠BEO=90°,
∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,
∴∠DAO=∠DOB ,
在△DAO 和△BOE 中,
DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴△DAO ≌EOB ,
∴OD=BE.AD=OE ,
∵AD=4,
∴OE=4,
∵BE+BO=8,
∴B0=8-BE ,
在Rt △OBE 中,222BO BE OE =+,
∴222
(8)BE BE OE -=+
解得,BE=3,
∴OD=3,
∴ED=OE-OD=4-3=1.
【点睛】
此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键. 9.C
解析:C
【解析】
【分析】 首先根据交点得出
3b n m k -=-,判定0,0m k <>,然后即可解不等式组. 【详解】
∵直线y mx n =+与y kx b =+的图像交于点(3,-1)
∴31,31m n k b +=-+=-
∴33m n k b +=+,即3b n m k
-=- 由图象,得0,0m k <>
∴mx n kx b +≥+,解得3x ≤
0mx n +≤,解得n x m
≥- ∴不等式组的解集为:3n x m -
≤≤ 故选:C.
【点睛】
此题主要考查根据函数图象求不等式组的解集,利用交点是解题关键.
10.D
解析:D
【解析】
【分析】
利用分式的除法法则,将分式的除法转化为乘法再约分即可.【详解】
解:原式
22
3
62
y x xy
x y
==.
故选:D.
【点睛】
本题主要考查了分式的除法,熟练掌握分式的除法运算是解题的关键.
二、填空题
11.答案不唯一,如:
【解析】
【分析】
根据无理数的定义即可得出答案.
【详解】
∵42=16,52=25,∴到之间的无理数都符合条件,如:.
故答案为答案不唯一,如:.
【点睛】
本题考查了无理数的
解析:
【解析】
【分析】
根据无理数的定义即可得出答案.
【详解】
∵42=16,52=25.
故答案为.
【点睛】
本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
12.【解析】
【分析】
根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可. 【详解】
解:一次函数的图象向上平移3个单位长度可得:.
故答案为:
【点睛】
本题考查了函数图像平移,解决本
解析:31y x =-
【解析】
【分析】
根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.
【详解】
解:一次函数34y x =-的图象向上平移3个单位长度可得:34331y x x =-+=-. 故答案为:31y x =-
【点睛】
本题考查了函数图像平移,解决本题的关键是熟练掌握函数图像的平移规律,要与点的坐标平移区别开.
13.8
【解析】
【分析】
先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.
【详解】
解:由题意得,斜边长AB===10米,
则少走(6+8-10)×
2=8步路, 故答案为8.
【点睛】
本
解析:8
【解析】
【分析】
先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.
【详解】
解:由题意得,斜边长米,
则少走(6+8-10)×2=8步路,
故答案为8.
【点睛】
本题考查的是勾股定理的应用,属于基础应用题,只需学生熟练掌握勾股定理,即可完成.
14.1
【解析】
【分析】
观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正
方形的面积,进而求出答案.
【详解
解析:1
【解析】
【分析】
观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知
c =,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.
【详解】
解:根据题意,可知,
∵c =,
132ab =, ∴221()42b a ab c -+⨯
=,213c =, ∴2()13431b a -=-⨯=,
∴1b a -=±;
∵a b <,即0b a ->,
∴1b a -=;
故答案为:1.
【点睛】
此题主要考查了勾股定理、完全平方公式、四边形和三角形面积的计算,利用数形结合的思想是解题的关键.
15.【解析】
【分析】
先根据一次函数y=kx+b 的图象经过点(,m )可知,由图像可知,当时,,即可得出结论.
【详解】
解:有图像可知,一次函数y=kx+b 经过点(,m ),
则当时,,
由图像可知,
解析:3x <-
【解析】
【分析】
先根据一次函数y=kx+b 的图象经过点(3-,m )可知,由图像可知,当x 3<-时,kx b m +>,即可得出结论.
【详解】
解:有图像可知,一次函数y=kx+b 经过点(3-,m ),
则当x 3=-时,kx b m +=,
由图像可知,
当x 3<-时,kx b m +>,
∴0kx m b -+>的解集是:3x <-;
故答案为:3x <-.
【点睛】
本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.
16.-1.
【解析】
【分析】
原式变形后,利用同分母分式的减法法则计算即可得到结果.
【详解】
=
故答案为-1.
【点睛】
此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分
解析:-1.
【解析】
【分析】
原式变形后,利用同分母分式的减法法则计算即可得到结果.
【详解】
222m m m +--=222 1.2222
m m m m m m m ---==-=----- 故答案为-1.
【点睛】
此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母. 17.2<AD<13
【解析】
【分析】
延长AD 至E ,使得DE=AD ,连接CE ,然后根据“边角边”证明△ABD 和△ECD 全等,再根据全等三角形对应边相等可得AB=CE ,然后利用三角形任意两边之和大于第三
解析:2<AD <13
【解析】
【分析】
延长AD至E,使得DE=AD,连接CE,然后根据“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得AB=CE,然后利用三角形任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,从而得解.
【详解】
解:如图,延长AD至E,使得DE=AD,连接CE,
∵AD是△ABC的中线,
∴BD=CD,
在△ABD和△ECD中,
∵AD=DE,∠ADB=∠EDC,BD=CD
∴△ABD≌△ECD(SAS),
∴AB=CE,
∵AB=15,
∴CE=15,
∵AC=11,
∴在△ACE中,15-11=4,15+11=26,
∴4<AE<26,
∴2<AD<13;
故答案为:2<AD<13.
【点睛】
本题既考查了全等三角形的性质与判定,也考查了三角形的三边的关系,解题的关键是将中线AD延长得AD=DE,构造全等三角形,然后利用三角形的三边的关系解决问题.18.【解析】
【分析】
根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.
【详解】
解:因为函数y=x-a(a为常数)与函数y=-2x+b(b为常数)的图像的交点坐标是(2, 1),
所以
解析:
2
1 x
y
=⎧
⎨
=⎩
【解析】
【分析】 根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.
【详解】
解:因为函数y=x-a(a 为常数)与函数y=-2x+b(b 为常数)的图像的交点坐标是(2, 1), 所以方程组2x y a x y b -=⎧⎨+=⎩ 的解为21x y =⎧⎨=⎩ . 故答案为21
x y =⎧⎨
=⎩. 【点睛】 本题考查一次函数与二元一次方程(组):满足函数解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
19.【解析】
【分析】
作DF⊥BC 于F ,如图,根据角平分线的性质得到DE=DF ,再利用三角形面积公式得到×10×DE+×14×DF=42,则5DE+7DE=42,从而可求出DE 的长.
【详解】
作D
解析:72
【解析】
【分析】
作DF ⊥BC 于F ,如图,根据角平分线的性质得到DE =DF ,再利用三角形面积公式得到12×10×DE +12
×14×DF =42,则5DE +7DE =42,从而可求出DE 的长. 【详解】
作DF ⊥BC 于F ,如图所示:
∵BD 平分∠ABC ,DE ⊥AB ,DF ⊥BC ,
∴DE =DF ,
∵S △ADB +S △BCD =S △ABC ,
∴12×10×DE +12
×14×DF =42, ∴5DE +7DE =42,
∴DE =72
(cm ). 故答案为
72
. 【点睛】 此题主要考查角平分线的性质,解题关键是利用三角形面积公式构建方程,即可解题. 20.50
【解析】
【分析】
利用数据的总数=该组的频数÷该组的频率解答即可.
【详解】
解:该班级的人数为:10÷
0.2=50. 故答案为:50.
【点睛】
本题考查了频数与频率,熟练掌握数据的总数与
解析:50
【解析】
【分析】
利用数据的总数=该组的频数÷该组的频率解答即可.
【详解】
解:该班级的人数为:10÷0.2=50.
故答案为:50.
【点睛】
本题考查了频数与频率,熟练掌握数据的总数与频数、频率的关系是解题的关键.
三、解答题
21.(1)y=2x-2;(2)b=2或-2.
【解析】
【分析】
(1)因为直线l 与直线2y x =平行,所以k 值相等,即k=2,又因该直线过点(0,−2),所以就有-2=2×0+b ,从而可求出b 的值,于是可解;
(2)直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),然后根据三角形面积公式列方程求解即可.
【详解】
解:(1)∵直线l 与直线2y x =平行,
∴k=2,
∴直线l 即为y=2x+b .
∵直线l 过点(0,−2),
∴-2=2×0+b ,
∴b=-2.
∴直线l 的解析式为y=2x-2.
(2)∵直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),
∴直线l 与两坐标轴围成的三角形面积=132
b ⨯⋅. ∴
132
b ⨯⋅=3, 解得b=2或-2.
【点睛】 本题考查了一次函数的有关计算,两条直线平行问题,直线与两坐标轴围成的三角形面积等,难度不大,关键是掌握两条直线平行时k 值相等及求直线与两坐标轴的交点坐标.
22.(1)4 (2)(0,5)
【解析】
【分析】
(1)根据轴对称的性质以及勾股定理即可求出线段C 的长;
(2)在Rt △DCE 中,由DE =OD 及勾股定理可求出OD 的长,进而得出D 点坐标.
【详解】
解:(1)依题意可知,折痕AD 是四边形OAED 的对称轴,
∴在Rt △ABE 中,AE =AO =10,AB =8,
∴BE =22221086AE AB -=-=,
∴CE =BC ﹣BE =4;
(2)在Rt △DCE 中,DC 2+CE 2=DE 2,
又∵DE =OD ,
∴()2
2284OD OD -+=,
∴OD =5, ∴()05D ,
.
【点睛】
本题主要考查勾股定理及轴对称的性质,关键是根据轴对称的性质得到线段的等量关系,然后利用勾股定理求解即可.
23.(1)(-2,-1);(2)5;(3)△ABC 是直角三角形,∠ACB=90°.
【解析】
【分析】
(1)首先根据A和C的坐标确定坐标轴的位置,然后确定B的坐标;
(2)利用矩形的面积减去三个直角三角形的面积求解;
(3)利用勾股定理的逆定理即可作出判断.
【详解】
解:(1)
则B的坐标是(-2,-1).
故答案是(-2,-1);
(2)S△ABC=4×4-1
2
×4×2-
1
2
×3×4-
1
2
×1×2=5,
故答案是:5;
(3)∵AC2=22+12=5,BC2=22+42=20,AB2=42+32=25,
∴AC2+BC2=AB2,
∴△ABC是直角三角形,∠ACB=90°.
【点睛】
本题考查了平面直角坐标系确定点的位置以及勾股定理的逆定理,正确确定坐标轴的位置是关键.
24.(1)见解析;(2)45 2
【解析】
【分析】
(1)根据已知可得到∠A=∠B=90°,DE=CE,AD=BE从而利用HL判定两三角形全等;(2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC=90°,由已知我们可求得BE、AE的长,再利用勾股定理求得ED的长,利用三角形面积公式解答即可.【详解】
(1)∵AD∥BC,∠A=90°,∠1=∠2,
∴∠A=∠B=90°,DE=CE.
∵AD=BE,
在Rt△ADE与Rt△BEC中
AD BE DE CE =⎧⎨=⎩
, ∴Rt △ADE ≌Rt △BEC (HL )
(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .
∴∠AED +∠BEC =∠BCE +∠BEC =90°.
∴∠DEC =90°.
又∵AD =3,AB =9,
∴BE =AD =3,AE =9﹣3=6.
∵∠1=∠2,
∴ED =EC =22AE AD +=2263+=35,
∴△CDE 的面积=
145353522
⨯⨯=. 【点睛】 此题主要考查全等三角形的判定与性质的运用,熟练掌握,即可解题.
25.(1)①详见解析;②详见解析;(2)(1,﹣1).
【解析】
【分析】
(1)①分别作出点A 、B 、C 关于x 轴的对称点,再首尾顺次连接即可;
②分别作出△A 1B 1C 1的3个顶点向右平移7个单位所得对应点,再首尾顺次连接即可得;
(2)由所作图形可得.
【详解】
(1)①如图所示,△A 1B 1C 1即为所求;
②如图所示,△A 2B 2C 2即为所求;
(2)由图知,△A 2B 2C 2中顶点B 2坐标为(1,﹣1),
故答案为:(1,﹣1).
【点睛】
本题主要考查作图-平移变换和轴对称变换,解题的关键是掌握平移变换和轴对称变换的定义和性质,并据此得出变换后的对应点.
四、压轴题
26.(1)20
3
;(2)①t=
8
3
;②a=
18
5
;(3)t=6.4或t=
10
3
【解析】
【分析】
(1)根据时间=路程÷速度即可求得答案;
(2)①由题意得:BM=CN=3t,则只可以是△CMN≌△BAM,AB=CM,由此列出方程求解即可;
②由题意得:CN≠BM,则只可以是△CMN≌△BMA,AB=CN=12,CM=BM,进而可得3t=10,求解即可;
(3)分情况讨论,当△CMN≌△BPM时,BP=CM,若此时P由A向B运动,则12-2t=20-3t,但t=8不符合实际,舍去,若此时P由B向A运动,则2t-12=20-3t,求得t
=6.4;当△CMN≌△BMP时,则BP=CN,CM=BM,可得3t=10,t=10
3
,再将t=
10
3
代入分别求得AP,BP的长及a的值验证即可.【详解】
解:(1)20÷3=20
3
,
故答案为:20
3
;
(2)∵CD∥AB,
∴∠B=∠DCB,
∵△CNM与△ABM全等,
∴△CMN≌△BAM或△CMN≌△BMA,①由题意得:BM=CN=3t,
∴△CMN≌△BAM
∴AB=CM,
∴12=20-3t,
解得:t=8
3
;
②由题意得:CN≠BM,
∴△CMN≌△BMA,
∴AB=CN=12,CM=BM,
∴CM=BM=1
2 BC,
∴3t=10,
解得:t=10 3
∵CN=at,
∴10
3
a=12
解得:a=18
5
;
(3)存在
∵CD∥AB,
∴∠B=∠DCB,
∵△CNM与△PBM全等,
∴△CMN≌△BPM或△CMN≌△BMP,
当△CMN≌△BPM时,则BP=CM,
若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,
∴12-2t=20-3t,
解得:t=8 (舍去)
若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,
∴2t-12=20-3t,
解得:t=6.4,
当△CMN≌△BMP时,则BP=CN,CM=BM,
∴CM=BM=1
2 BC
∴3t=10,
解得:t=10 3
当t=10
3
时,点P的路程为AP=2t=
20
3
,
此时BP=AB-AP=12-20
3
=
16
3
,
则CN=BP=16 3
即at=16
3
,
∵t=10
3
,
∴a=1.6符合题意
综上所述,满足条件的t的值有:t=6.4或t=10 3
【点睛】
本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.
27.(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3)15
4
;(4)经过
80
3
s点P
与点Q第一次相遇.
【解析】
【分析】
(1)速度和时间相乘可得BP、CQ的长;
(2)利用SAS可证三角形全等;
(3)三角形全等,则可得出BP=PC,CQ=BD,从而求出t的值;
(4)第一次相遇,即点Q第一次追上点P,即点Q的运动的路程比点P运动的路程多10+10=20cm的长度.
【详解】
解:(1)BP=3×1=3㎝,
CQ=3×1=3㎝
(2)∵t=1s,点Q的运动速度与点P的运动速度相等
∴BP=CQ=3×1=3cm,
∵AB=10cm,点D为AB的中点,
∴BD=5cm.
又∵PC=BC﹣BP,BC=8cm,
∴PC=8﹣3=5cm,
∴PC=BD
又∵AB=AC,
∴∠B=∠C,
在△BPD和△CQP中,
PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩
∴△BPD ≌△CQP(SAS)
(3)∵点Q 的运动速度与点P 的运动速度不相等,
∴BP 与CQ 不是对应边,
即BP≠CQ
∴若△BPD ≌△CPQ ,且∠B=∠C ,
则BP=PC=4cm ,CQ=BD=5cm ,
∴点P ,点Q 运动的时间t=
433BP =s , ∴154
Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得
154x=3x+2×10, 解得80x=
3 ∴经过803
s 点P 与点Q 第一次相遇. 【点睛】
本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.
28.(1)60°;(2)EF=AF+FC ,证明见解析;(3)AF=EF+2DF ,证明见解析.
【解析】
【分析】
(1)可设∠BAD =∠CAD =α,∠AEC =∠ACE =β,在△ACE 中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC 的度数;
(2)在EC 上截取EG =CF ,连接AG ,证明△AEG ≌△ACF ,然后再证明△AFG 为等边三角形,从而可得出EF =EG +GF =AF +FC ;
(3)在AF 上截取AG =EF ,连接BG ,BF ,证明方法类似(2),先证明△ABG ≌△EBF ,再证明△BFG 为等边三角形,最后可得出结论.
【详解】
解:(1)∵AB=AC ,AD 为BC 边上的中线,∴可设∠BAD =∠CAD =α,
又△ABE 为等边三角形,
∴AE=AB=AC ,∠EAB=60°,∴可设∠AEC =∠ACE =β,
在△ACE 中,2α+60°+2β=180°,
∴α+β=60°,
∴∠DFC=α+β=60°;
(2)EF=AF+FC,证明如下:
∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,
∴CF=2DF,
在EC上截取EG=CF,连接AG,
又AE=AC,
∴∠AEG=∠ACF,
∴△AEG≌△ACF(SAS),
∴∠EAG=∠CAF,AG=AF,
又∠CAF=∠BAD,
∴∠EAG=∠BAD,
∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,
∴△AFG为等边三角形,
∴EF=EG+GF=AF+FC,
即EF=AF+FC;
(3)补全图形如图所示,
结论:AF=EF+2DF.证明如下:
同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,
∴∠CAE=180°-2β,
∴∠BAE=2α+180°-2β=60°,∴β-α=60°,
∴∠AFC=β-α=60°,
又△ABE为等边三角形,∴∠ABE=∠AFC=60°,
∴由8字图可得:∠BAD=∠BEF,
在AF上截取AG=EF,连接BG,BF,
又AB=BE,
∴△ABG≌△EBF(SAS),
∴BG=BF,
又AF垂直平分BC,
∴BF=CF,
∴∠BFA=∠AFC=60°,
∴△BFG为等边三角形,
∴BG=BF,又BC⊥FG,∴FG=BF=2DF,
∴AF=AG+GF=BF+EF=2DF+EF.
【点睛】
本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.
29.(1)见解析;(2)CD AD+BD,理由见解析;(3)CD+BD
【解析】
【分析】
(1)由“SAS”可证△ADB≌△AEC;
(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE AD,可得结论;
(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH,由AD=AE,
AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD AD+BD,即可解决问题;
【详解】
证明:(1)∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△ADB≌△AEC(SAS);
(2)CD AD+BD,
理由如下:∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△ADB≌△AEC(SAS);
∴BD=CE,
∵∠BAC=90°,AD=AE,
∴DE AD,
∵CD=DE+CE,
∴CD AD+BD;
(3)作AH⊥CD于H.
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△ADB≌△AEC(SAS);∴BD=CE,
∵∠DAE=120°,AD=AE,∴∠ADH=30°,
∴AH=1
2 AD,
∴DH22
AD AH
3
,
∵AD=AE,AH⊥DE,
∴DH=HE,
∴CD=DE+EC=2DH+BD3+BD,
故答案为:CD3+BD.
【点睛】
本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.
30.(1)6-2t;(2)全等,理由见解析;(3)8
3
;(4)经过24s后,点P与点Q第一
次在ABC的BC边上相遇
【解析】
【分析】
(1)根据题意求出BP,由PC=BC-BP,即可求得;
(2)根据时间和速度的关系分别求出两个三角形中,点运动轨迹的边长,由∠B=∠C,利用SAS判定BPD
△和CQP全等即可;
(3)根据全等三角形的判定条件探求边之间的关系,得出BP=PC,再根据路程=速度×时间公式,求点P的运动时间,然后求点Q的运动速度即得;
(4)求出点P、Q的路程,根据三角形ABC的三边长度,即可得出答案.
【详解】
(1)由题意知,BP=2t,则
PC=BC-BP=6-2t,
故答案为:6-2t;
(2)全等,理由如下:。