2019年高三数学上期中第一次模拟试卷含答案(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高三数学上期中第一次模拟试卷含答案(2)
一、选择题
1.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则
A .111A
B
C ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形
C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形
D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形
2.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪
--≥⎨⎪--≤⎩
,若Z ax y =+的最大值为29a +,最小值为
2a +,则实数a 的取值范围是( ).
A .(,7]-∞-
B .[3,1]-
C .[1,)+∞
D .[7,3]--
3.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1
n n n
a b a +=
.若10112b b =,则21a =( )
A .92
B .102
C .112
D .122
4.已知,x y 满足0404x y x y x -≥⎧⎪
+-≥⎨⎪≤⎩
,则3x y -的最小值为( )
A .4
B .8
C .12
D .16
5.关于x 的不等式()2
10x a x a -++<的解集中,恰有3个整数,则a 的取值范围是( )
A .[)(]3,24,5--⋃
B .()()3,24,5--⋃
C .(]4,5
D .(4,5)
6.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( ) A .23,5⎛⎫-
+∞ ⎪⎝⎭
B .23,15⎡⎤
-
⎢⎥⎣⎦
C .()1,+∞
D .23,
5⎛

-∞ ⎥⎝⎦
7.已知数列{an}的通项公式为an =2
()3
n
n 则数列{an}中的最大项为( ) A .89
B .23
C .
6481
D .
125
243
8.设等差数列{}n a 的前n 项和为n S ,且()*1
1
n n nS S n N n +>∈+.若870a a +<,则( ) A .n S 的最大值是8S
B .n S 的最小值是8S
C .n S 的最大值是7S
D .n S 的最小值是7S
9.已知正项数列{}n a
*(1)
()2
n n n N ++=∈L ,则数列{}n a 的通项公式为( ) A .n a n =
B .2
n a n =
C .2
n n
a =
D .2
2
n n a =
10.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c
,若sin 2sin 0b A B +=

b =,则c
a
的值为( )
A .1
B
C
D
11.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且
723
n n S n T n +=+,则220
715
a a
b b +=+( )
A .
49
B .
378
C .
7914
D .
149
24
12.若正数,x y 满足40x y xy +-=,则3
x y
+的最大值为 A .
13
B .38
C .
37
D .1
二、填空题
13.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,2a =,且
()()()2sin sin sin b A B c b C +-=-,则ABC ∆面积的最大值为______.
14.在△ABC 中,2a =,4c =,且3sin 2sin A B =,则cos C =____.
15.某校数学课外小组在坐标纸上为学校的一块空地设计植树方案为:第K 棵树种植在点
(),k k k P x y 处,其中11x =,11y =,当2K ≥时,
111215551255k k k k k k x x T T k k y y T T --⎧⎡⎤--⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨
--⎛⎫⎛⎫⎪=+- ⎪ ⎪⎪⎝⎭⎝⎭⎩
()T a 表示非负实数a 的整数部分,例如()2.62T =,()0.20T =.按此方案第2016棵树种植点的坐标应为_____________.
16.已知12
0,0,
2a b a b
>>+=,2+a b 的最小值为_______________. 17.设数列{a n }的首项a 1=
3
2
,前n 项和为S n ,且满足2a n +1+S n =3(n ∈N *),则满足
2188177
n n S
S <<的所有n 的和为________. 18.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,5
cos
2C =
,且cos cos 2a B b A +=,则ABC ∆面积的最大值为 .
19.定义11222n n n a a a H n
-+++=L 为数列{}n a 的均值,已知数列{}n b 的均值1
2n n H +=,
记数列{}n b kn -的前n 项和是n S ,若5n S S ≤对于任意的正整数n 恒成立,则实数k 的取值范围是________. 20.设等差数列{}n
a 的前n 项和为n S .若35a =,且1S ,5S ,7S 成等差数列,则数列
{}n a 的通项公式n a =____.
三、解答题
21.为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD .其中AB =3百米,AD =5百米,且△BCD 是以D 为直角顶点的等腰直角三角形.拟修建两条小路AC ,BD (路的宽度忽略不计),设∠BAD=θ,θ∈(
2
π
,π).
(1)当cos θ=5
5
-
时,求小路AC 的长度; (2)当草坪ABCD 的面积最大时,求此时小路BD 的长度. 22.在ABC V 中,5cos 13A =-
,3cos 5
B =. (1)求sin
C 的值;
(2)设5BC =,求ABC V 的面积.
23.已知数列{}n a 是公差为2-的等差数列,若1342,,a a a +成等比数列. (1)求数列{}n a 的通项公式;
(2)令1
2n n n b a -=-,数列{}n b 的前n 项和为n S ,求满足0n S ≥成立的n 的最小值.
24.在等比数列{}n b 中,公比为()01q q <<,13511111,,,,,,50322082b b b ∈⎧⎫
⎨⎬⎩
⎭. (1)求数列{}n b 的通项公式;
(2)设()31n n c n b =-,求数列{}n c 的前n 项和n T .
25.已知函数()sin 2cos (0)f x m x x m =+>的最大值为2. (Ⅰ)求函数()f x 在[0,]π上的单调递减区间; (Ⅱ)ABC ∆中,()()46sin sin 44
f A f B A B π
π
-
+-=,角,,A B C 所对的边分别是
,,a b c ,且060,3C c ==,求ABC ∆的面积.
26.已知数列{}n a 的前n 项和()
2*
,,n S pn qn p q n =+∈∈R N ,且143,24.a S ==
(1)求数列{}n a 的通项公式;
(2)设2n a
n b =,求数列{}n b 的前n 项和n T .
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】 【分析】 【详解】
111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角
形,由
,得21
2121
2
{2
2
A A
B B
C C πππ=
-=
-=
-,那么,2222
A B C π
++=,矛
盾,所以222A B C ∆是钝角三角形,故选D.
2.B
解析:B 【解析】 【分析】
作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.
作出不等式组110750310x y x y x y +-≤⎧⎪
--≥⎨⎪--≤⎩
对应的平面区域(如图阴影部分),
目标函数z ax y =+的几何意义表示直线的纵截距,即y ax z =-+,
(1)当0a <时,直线z ax y =+的斜率为正,要使得z 的最大值、最小值分别在,C A 处取得,
则直线z ax y =+的斜率不大于直线310x y --=的斜率, 即3a -≤,
30a ∴-≤<.
(2)当0a >时,直线z ax y =+的斜率为负,易知最小值在A 处取得,
要使得z 的最大值在C 处取得,则直线z ax y =+的斜率不小于直线110x y +-=的斜率 1a -≥-, 01a ∴<≤.
(3)当0a =时,显然满足题意. 综上:31a -≤….
故选:B . 【点睛】
本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.
3.B
解析:B 【解析】 【分析】
由已知条件推导出a n =b 1b 2…b n-1,由此利用b 10b 11=2,根据等比数列的性质能求出a 21.
数列{a n }的首项a 1=1,数列{b n }为等比数列,且1
n n
n
a b a +=, ∴3212212a a b a b a a ==
,=4312341233
a
a b b b a b b b a ∴=∴=,,=,, …101211011211220120219101122n n a b b b b b a b b b b b b b b b -=⋯=∴=⋯=⨯⨯⋯⨯=Q ,
,()()() . 故选B . 【点睛】
本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.
4.A
解析:A 【解析】 【分析】
作出可行域,变形目标函数并平移直线3y x =,结合图象,可得最值. 【详解】
作出x 、y 满足0
404x y x y x -≥⎧⎪
+-≥⎨⎪≤⎩
所对应的可行域(如图ABC V ),
变形目标函数可得3y x z =-,平移直线3y x =可知, 当直线经过点(2,2)A 时,截距z -取得最大值, 此时目标函数z 取得最小值3224⨯-=. 故选:A.
【点睛】
本题考查简单线性规划,准确作图是解决问题的关键,属中档题.
5.A
解析:A
【分析】
不等式等价转化为(1)()0x x a --<,当1a >时,得1x a <<,当1a <时,得
1<<a x ,由此根据解集中恰有3个整数解,能求出a 的取值范围。

【详解】
关于x 的不等式()2
10x a x a -++<,
∴不等式可变形为(1)()0x x a --<,
当1a >时,得1x a <<,此时解集中的整数为2,3,4,则45a <≤; 当1a <时,得1<<a x ,,此时解集中的整数为-2,-1,0,则32a -≤<- 故a 的取值范围是[)(]3,24,5--⋃,选:A 。

【点睛】
本题难点在于分类讨论解含参的二次不等式,由于二次不等式对应的二次方程的根大小不确定,所以要对a 和1的大小进行分类讨论。

其次在观察a 的范围的时候要注意范围的端点能否取到,防止选择错误的B 选项。

6.A
解析:A 【解析】 【分析】
利用分离常数法得出不等式2a x x >
-在[]15x ∈,上成立,根据函数()2
f x x x
=-在[]15x ∈,上的单调性,求出a 的取值范围
【详解】
关于x 的不等式220x ax +->在区间[]
1,5上有解
22ax x ∴>-在[]15
x ∈,上有解 即2
a x x
>
-在[]15x ∈,上成立, 设函数数()2
f x x x
=
-,[]15x ∈,
()22
10f x x
∴'=-
-<恒成立 ()f x ∴在[]15x ∈,上是单调减函数
且()f x 的值域为2315⎡⎤
-⎢⎥⎣⎦
, 要2a x x >
-在[]15x ∈,上有解,则235
a >-
即a 的取值范围是23,5⎛⎫
-+∞ ⎪⎝⎭
故选A 【点睛】
本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.
7.A
解析:A 【解析】
解法一 a n +1-a n =(n +1)
n +1
-n
n
=·
n

当n <2时,a n +1-a n >0,即a n +1>a n ; 当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,
所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×
2
=.故选A.
解法二 ==


>1,解得n <2;令=1,解得n =2;令
<1,解得n >2.又a n >0,
故a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,
所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×
2
=.故选A.
8.D
解析:D 【解析】 【分析】
将所给条件式变形,结合等差数列前n 项和公式即可证明数列的单调性,从而由
870a a +<可得7a 和8a 的符号,即可判断n S 的最小值.
【详解】
由已知,得()11n n n S nS ++<, 所以
1
1
n n S S n n +<+, 所以()()()
()
1111221n n n a a n a a n n ++++<+, 所以1n n a a +<,
所以等差数列{}n a 为递增数列.
又870a a +<,即
8
7
1a a <-, 所以80a >,70a <,
即数列{}n a 前7项均小于0,第8项大于零, 所以n S 的最小值为7S , 故选D. 【点睛】
本题考查了等差数列前n 项和公式的简单应用,等差数列单调性的证明和应用,前n 项和最值的判断,属于中档题.
9.B
解析:B 【解析】 【分析】
()()
1122
n n n n +-=
-
的表达式,可得出数列{}n a 的通项公式. 【详解】
(1)(1)
,(2)22
n n n n n n +-=
-=≥
1=
,所以2,(1),n n n a n =≥= ,选B.
【点睛】
给出n S 与n a 的递推关系求n a ,常用思路是:一是利用1,2n n n a S S n -=-≥转化为n a 的递推关系,再求其通项公式;二是转化为n S 的递推关系,先求出n S 与n 之间的关系,再求n a . 应用关系式11,1
{
,2
n n n S n a S S n -==-≥时,一定要注意分1,2n n =≥两种情况,在求出
结果后,看看这两种情况能否整合在一起.
10.D
解析:D 【解析】
分析:由正弦定理可将sin2sin 0b A B =
化简得cosA =,由余弦定理可得222227a b c bccosA c =+-=,从而得解.
详解:由正弦定理,sin2sin 0b A B +=
,可得sin2sin 0sinB A B +=,
即2sin sin 0sinB AcosA B = 由于:0sinBsinA ≠,
所以cosA 2
=-
:, 因为0<A <π,所以5πA 6
=

又b =,由余弦定理可得22222222337a b c bccosA c c c c =+-=++=. 即227a c =
,所以7
c a =
. 故选:D .
点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.
11.D
解析:D 【解析】 【分析】
根据等差数列的性质前n 项和的性质进行求解即可. 【详解】
因为等差数列{}n a 和{}n b ,所以
2201111
7151111
22a a a a b b b b +==+,又211121S a =,211121T b =, 故令21n =有2121721214921324S T ⨯+==+,即1111211492124a b =,所以1111
149
24a b = 故选:D. 【点睛】
本题主要考查等差数列的等和性质:
若{}n a 是等差数列,且(,,,*)m n p q m n p q N +=+∈,则m n p q a a a a +=+ 与等差数列{}n a 前n 项和n S 的性质*
21(21),()n n S n a n N -=-∈
12.A
解析:A 【解析】 【分析】
分析题意,取3x y +倒数进而求3
x y
+的最小值即可;结合基本不等式中“1”的代换应用即
可求解。

【详解】
因为40x y xy +-=,化简可得4x y xy +=,左右两边同时除以xy 得
14
1y x
+= 求
3x y +的最大值,即求
333
x y x y
+=+ 的最小值 所以1413333x y x y y x ⎛⎫
⎛⎫⎛⎫+⨯=+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
4143333
x y y x =
+++
1433
≥+ 3≥,当且仅当
433x y y x
=时取等号 所以
3x y +的最大值为1
3
所以选A 【点睛】
本题考查了基本不等式的简单应用,关键要注意“1”的灵活应用,属于基础题。

二、填空题
13.【解析】【分析】根据正弦定理将转化为即由余弦定理得再用基本不等式法求得根据面积公式求解【详解】根据正弦定理可转化为化简得由余弦定理得因为所以当且仅当时取所以则面积的最大值为故答案为:【点睛】本题主要
【解析】 【分析】 根据正弦定理将
()()()2sin sin sin b A B c b C +-=-转化为
()()()a b a b c b c +-=-,即2
2
2
b c a bc +-=,由余弦定理得2221cos 22b c a A bc +-==,
再用基本不等式法求得4bc ≤,根据面积公式1
sin 2
ABC S bc A ∆=求解. 【详解】 根据正弦定理
()()()2sin sin sin b A B c b C +-=-可转化为
()()()a b a b c b c +-=-,化简得2
22b
c a bc +-=
由余弦定理得2221
cos 22
b c a A bc +-=
=
sin 2
==
A 因为2222+=+≥b c a bc bc 所以4bc ≤,当且仅当b c =时取""=
所以1sin 4244
∆=
=≤=ABC S bc A
则ABC ∆
【点睛】
本题主要考查正弦定理,余弦定理,基本不等式的综合应用,还考查了运算求解的能力,属于中档题.
14.【解析】在△中且故故答案为:点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数属于简单题对余弦定理一定要熟记两种形式:(1);(2)同时还要熟练掌握运用两种形式的条件另外在解与三角
解析:14
- 【解析】
在△ABC 中,2a =,4c =,且3sin 2sin A B =,故
2221
32,3,cos .24
a b c a b b c ab +-=∴===-
故答案为:1
4
-
. 点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题. 对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)
222
cos 2b c a A bc
+-=
,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o
o
o
等特殊角的三角函数值,以便在解题中直接应用.
15.【解析】【分析】根据题意结合累加法求得与再代值计算即可【详解】由题意知故可得解得当时;当时故第棵树种植点的坐标应为故答案为:【点睛】本题考查数列新定义问题涉及累加法求通项公式属中档题
解析:()4031,404. 【解析】 【分析】
根据题意,结合累加法,求得k x 与k y ,再代值计算即可. 【详解】
由题意知11x =,11y =
211015555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,211055y y T T ⎛⎫⎛⎫
=+- ⎪ ⎪⎝⎭⎝⎭
322115555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,322155y y T T ⎛⎫⎛⎫
=+- ⎪ ⎪⎝⎭⎝⎭
433215555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,433255y y T T ⎛⎫⎛⎫
=+- ⎪ ⎪⎝⎭⎝⎭
L
11215555k k k k x x T T ---⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,11255k k k k y y T T ---⎛⎫⎛⎫
=+- ⎪ ⎪⎝⎭⎝⎭
故可得12121105555k k k x x x x x x k T T --⎛⎫⎛⎫
+++=+++++-
⎪ ⎪⎝⎭⎝⎭
L L
12121?10155k k k y y y y y y T T --⎛⎫⎛⎫
+++=+++++- ⎪ ⎪⎝⎭⎝⎭
L L
解得155k k x k T -⎛⎫
=+
⎪⎝⎭
,当2016k =时,2016201654034031x =+⨯=; 115k k y T -⎛⎫
=+ ⎪⎝⎭
,当2016k =时,20161403404y =+=. 故第2016棵树种植点的坐标应为()4031,404. 故答案为:()4031,404. 【点睛】
本题考查数列新定义问题,涉及累加法求通项公式,属中档题.
16.【解析】【分析】先化简再利用基本不等式求最小值【详解】由题得当且仅当时取等故答案为:【点睛】本题主要考查基本不等式求最值意在考查学生对这些知识的掌握水平和分析推理能力解题的关键是常量代换
解析:
9
2
【解析】 【分析】 先化简1112
2(2)2(2)()22a b a b a b a b +=⋅+⋅=⋅+⋅+,再利用基本不等式求最小值. 【详解】 由题得11121222(2)2(2)()(5)222a b a b a b a b a b b a
+=
⋅+⋅=⋅+⋅+=++
19
(522

+=.
当且仅当2212
2
3222a b a b
a b ⎧+=⎪==⎨⎪=⎩
即时取等. 故答案为:9
2
【点睛】
本题主要考查基本不等式求最值,意在考查学生对这些知识的掌握水平和分析推理能力.解题的关键是常量代换.
17.7【解析】由2an +1+Sn =3得2an +Sn -1=3(n≥2)两式相减得2an +1-2an +an =0化简得2an +1=an(n≥2)即=(n≥2)由已知求出a2=易得=所以数列{an}是首项为a1
解析:7 【解析】
由2a n +1+S n =3得2a n +S n -1=3(n≥2),两式相减,得2a n +1-2a n +a n =0,化简得2a n +1=
a n (n≥2),即1n n a a +=12(n≥2),由已知求出a 2=3
4
,易得21a a =12,所以数列{a n }是首项为a 1
=32,公比为q =12的等比数列,所以S n =311221
12
n
⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢
⎥⎣⎦-=3[1-(12)n ],S 2n =3[1-(12)2n ]代入1817<
2n n S S <8
7,可得117<(12
)n <17,解得n =3或4,所以所有n 的和为7. 18.【解析】试题分析:外接圆直径为由图可知当在垂直平分线上时面积取得最大值设高则由相交弦定理有解得故最大面积为考点:解三角形【思路点晴】本题主要考查解三角形三角函数恒等变换二倍角公式正弦定理化归与转化的
【解析】
试题分析:cos
23
C =
,21cos 2cos 129C C =-=
,sin 9C =,cos cos 2a B b A c +==
,外接圆直径为2sin c R C =
=
,由图可知,当C 在AB 垂直平分线上时,面积取得最大值.设高CE x =
,则由相交弦定理有1x x ⎫
-=⎪⎪⎝⎭
,解得
2
x =
,故最大面积为12222S =⋅⋅=
.
考点:解三角形.
【思路点晴】本题主要考查解三角形、三角函数恒等变换、二倍角公式、正弦定理,化归与转化的数学思想方法,数形结合的数学思想方法.一开始题目给了C 的半角的余弦值,我们由二倍角公式可以求出单倍角的余弦值和正弦值.第二个条件cos cos 2a B b A +=我们结合图像,很容易知道这就是2c =.三角形一边和对角是固定的,也就是外接圆是固定的,所以面积最大也就是高最大,在圆上利用相交弦定理就可以求出高了.
19.【解析】【分析】因为从而求出可得数列为等差数列记数列为从而将对任意的恒成立化为即可求得答案【详解】故则对也成立则数列为等差数列记数列为故对任意的恒成立可化为:;即解得故答案为:【点睛】本题考查了根据
解析:712
[,]35
【解析】 【分析】
因为1112222n n n b b b n -+++⋯+=⋅,2121()2212n n
n b b b n --++⋯+=-⋅,从而求出
2(1)n b n =+,可得数列
{}n b kn -为等差数列,记数列{}n b kn -为{}n c ,从而将5n S S ≤对任
意的*(N )n n ∈恒成立化为50c ≥,60c ≤,即可求得答案. 【详解】
Q 1
112222n n n n b b b H n
-++++==L ,
∴ 1112222n n n b b b n -++++=⋅L ,
故2121()(22212)n n
n b b n b n --⋅++=-≥+L ,
∴112212()n n n n b n n -+=⋅--⋅1()2n n =+⋅,
则2(1)n b n =+,对1b 也成立,
∴2(1)n b n =+,
则()22n b kn k n -=-+,
∴数列{}n b kn -为等差数列,
记数列{}n b kn -为{}n c .
故5n S S ≤对任意的*
N ()n n ∈恒成立,可化为:50c ≥,60c ≤;
即5(2)206(2)20k k -+≥⎧⎨-+≤⎩
,解得,71235k ≤≤,
故答案为:712
[,]35
. 【点睛】
本题考查了根据递推公式求数列通项公式和数列的单调性,掌握判断数列前n 项和最大值的方法是解题关键,考查了分析能力和计算能力,属于中档题.
20.【解析】设等差数列的公差为d ∵且成等差数列∴解得 ∴ 解析:21n -
【解析】
设等差数列{}n a 的公差为d , ∵35a =,且1S ,5S ,7S 成等差数列,
∴111125,7211020a d a a d a d +=⎧⎨++=+⎩解得11
,2a d =⎧⎨
=⎩ ∴21n a n =- 三、解答题
21.(1
)AC =2
)BD =
【解析】 【分析】
(1)在△ABD 中,由余弦定理可求BD 的值,利用同角三角函数基本关系式可求sinθ,根据正弦定理可求sin∠ADB 3
5
=
,进而可求cos∠ADC 的值,在△ACD 中,利用余弦定理可求AC 的值.
(2)由(1)得:BD 2=14﹣
可求.S ABCD =7152+
sin (θ﹣φ),结合题意当θ﹣φ2
π
=时,四边形ABCD 的面积最大,即θ=φ2
π
+,此时
cosφ=
,sinφ=,从而可求BD 的值.
【详解】
(1)在ABD ∆中,由2222cos BD AB AD AB AD θ=+-⋅,
得214BD θ=-
,又cos 5
θ=-
,∴BD =
∵,

θπ⎛⎫

⎪⎝⎭ ∴sin θ===
由sin sin BD AB BAD ADB =∠∠3
sin
ADB
=
∠,解得:3sin 5
ADB ∠=,
∵BCD ∆是以D 为直角顶点的等腰直角三角形 ∴2
CDB π
∠=且CD BD ==∴3
cos cos sin 25
ADC ADB ADB π⎛⎫
∠=∠+
=-∠=- ⎪⎝
⎭ 在ACD ∆中,2222cos AC AD DC AD DC ADC =+-⋅∠
(
2
2
3
2375⎛⎫
=
+--= ⎪⎝⎭

解得:AC =
(2)由(1)得:214BD θ=-,
211
3sin 22ABCD ABD BCD S S S BD θ∆∆=+=⨯+⨯ 7sin 2θθ=+⨯-
)()157sin 2cos 7sin
22
θθθφ=+-=+-,此时sin φ=cos φ=,且0,
2πφ⎛

∈ ⎪⎝


2
π
θφ-=
时,四边形ABCD 的面积最大,即2
π
θφ=+
,此时sin θ=
,cos
θ=
∴2
141426
BD θ⎛=-=-= ⎝,即BD =
答:当cos θ=AC 百米;草坪ABCD 的面积最大时,小路
BD
【点睛】
本题主要考查了余弦定理,同角三角函数基本关系式,正弦定理,三角形面积公式,三角函数恒等变换的应用以及正弦函数的图象和性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题. 22.(1)1665;(2)83
. 【解析】
【分析】
(1)直接利用三角函数关系式的恒等变换求得结果;(2)利用正弦定理和三角形的面积公式
求出结果. 【详解】
(1)在ABC V 中,A B C π++=,
由5cos 13A =-,2A ππ<<,得12
sin 13
A =, 由3cos 5
B =
,02B π<<,得4sin 5
B =. 所以()16
sin sin sin cos cos sin 65
C A B A B A B =+=+=
; (2)由正弦定理
sin sin AC BC
B A
=, 解得:sin 13
sin 3
BC B AC A ⋅=
=,
所以ABC V 的面积:1113168
sin 5223653
S BC AC C =⋅⋅⋅=⋅⋅⋅=. 【点睛】
本题考查的知识点:三角函数关系式的恒等变换,三角形内角和定理,正弦定理的应用,三角形面积公式的应用及相关的运算问题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答。

23.(1)92n a n =-;(2)5. 【解析】 【分析】
(1)根据等差数列{}n a 的公差为-2,且1342,,a a a +成等比数列列出关于公差d 的方程,解方程可求得d 的值,从而可得数列{}n a 的通项公式;(2)由(1)可知
1292n n b n -=-+,根据分组求和法,利用等差数列与等比数列的求和公式可得结果.
【详解】
(1)1342,,a a a +Q 成等比数列,()()()2
111426a a a ∴-=+-, 解得:17a =,92n a n ∴=-. (2)由题可知(
)()0121
2222
75392n n S n -=++++-++++-L L ,
()
212812
n
n n -=--- 2281n n n =+--,
显然当4n ≤时,0n S <,580S =>,又因为5n ≥时,n S 单调递增, 故满足0n S ≥成立的n 的最小值为5. 【点睛】
本题主要考查等差数列的通项公式与求和公式以及等比数列的求和公式,利用“分组求和法”求数列前n 项和,属于中档题. 利用“分组求和法”求数列前n 项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减.
24.(1)12n
n b ⎛⎫= ⎪⎝⎭ (2)()15352n
n T n ⎛⎫=-+⋅ ⎪⎝⎭
【解析】 【分析】
(1)由公比01q <<结合等比数列的性质得出11
2b =,318b =,5132
b =,再确定公比,即可得出数列{}n b 的通项公式; (2)利用错位相减法求解即可. 【详解】
(1)因为公比为()01q q <<的等比数列{}n b 中,13511111,,,,,,50322082b b b ∈⎧⎫
⎨⎬⎩
⎭ 所以由135,,b b b 成等比数列得出,当且仅当11
2b =,318b =,5132
b =时成立. 此时公比2
311
4b q b =
=,12
q = 所以12n n b ⎛⎫= ⎪⎝⎭
. (2)因为()1312n
n c n ⎛⎫=-⋅ ⎪⎝⎭
所以123...n n T c c c c =++++
()1
2
3
1111258...312222n
n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
∴()()2
3
1
1111125...343122222n
n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
∴()1231
11111123...31222222n n n T n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫
=⨯+⨯+++--⋅⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣

()1
1
11113131222n n n -+⎡⎤⎛⎫
⎛⎫=+⨯---⋅⎢⎥ ⎪
⎪⎝⎭
⎝⎭⎢⎥⎣⎦
5135
222
n
n +⎛⎫=-⋅
⎪⎝⎭ 故数列{}n c 的前n 项和()15352n
n T n ⎛⎫=-+⋅ ⎪⎝⎭
【点睛】
本题主要考查了求等比数列的通项公式以及利用错位相减法求数列的和,属于中档题. 25.(Ⅰ)(Ⅱ)
【解析】 【分析】 【详解】
(1)由题意,f(x)2m 2+,2m 2 2.+=而m>0,于是2,f(x)=2sin(x+
4
π).由正弦函数的单调性可得x 满足32k x 2k (k Z)242πππ
ππ+≤+≤+∈,即
52k x 2k (k Z).4
4
ππππ+≤≤+∈所以f(x)在[0,π]上的单调递减区间为,.4
ππ[]
(2)设△ABC 的外接圆半径为R ,由题意,得c 3
2R 2 3.sin?C sin60=
==︒
化简f (A )f (B )46sinAsin?B 44
ππ
-+-=,得6sin Asin B.由正弦定理,得
()2R a b 26ab,a b 2ab.+=+=① 由余弦定理,得a 2+b 2-ab=9,即(a+b)2-3ab-9=0②
将①式代入②,得2(ab)2-3ab-9=0,解得ab=3或3
ab 2
=-
(舍去),故ABC 133S absinC 2∆=
= 26.(Ⅰ)21,n a n =+;(Ⅱ)8(41)
3
n n T -=
. 【解析】 【分析】
(Ⅰ)由题意可得1, 2.p q ==则2
2n S n n =+,利用通项公式与前n 项和的关系可得
21,n a n =+
(Ⅱ) 由(1)可知212n n b +=,结合等比数列前n 项和公式计算可得数列{}n b 的前n 项和
(
)841
3
n n T -=
.
【详解】
(Ⅰ)由14316424
S p q S p q =+=⎧⎨=+=⎩ 得21, 2.2.n p q S n n ===+ 所以当1n =时,1 3.a =
当2n ≥时,()()21121,n S n n -=-+-
所以()()()2
21212121,n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦
检验1 3.a =符合21,n a n =+
(Ⅱ) 由(1)可知21,n a n =+
所以2122n a n n b +==.设数列{}n b 的前n 项和为n T ,则:
()()()1211212424242424444414214841.?
3n n
n n n
n n T --=⨯+⨯++⨯+⨯=++++-=⨯
--=L L 所以数列{}n b 的前n 项和为()841
3n n
T -=.
【点睛】 本题主要考查数列通项公式与前n 项和公式的关系,等比数列前n 项和公式及其应用等知识,意在考查学生的转化能力和计算求解能力.。

相关文档
最新文档