扫描隧道显微镜(STM)
扫描隧道显微镜STM
单原子、单分子操纵在化学上一个极具诱惑力的潜在应用是可能实现 “选键化学”──对分子内的化学键进行选择性的加工。虽然这是一个 极具挑战性的目标,但现在已有一些激动人心的演示性的结果。在康奈 尔大学Lee和Ho的实验中,STM被用来控制单个的CO分子与Ag(110)表 面的单个Fe原子在13K的温度下成键,形成FeCO和Fe(CO)2分子。同 时,他们还通过利用STM研究C-O键的伸缩振动特性等方法来确认和研 究产物分子。他们发现CO以一定的倾角与Fe-Ag(110)系统成键(即CO分 子倾斜地立在Fe原子上),这被看成是Fe原子局域电子性质的体现。
5
2.STM的原理
图是STM的基本原理 图,其主要构成有:顶部 直径约为50—100nm的极 细金属针尖(通常是金属钨 制的针尖),用于三维扫描 的三个相互垂直的压电陶 瓷(Px,Py,Pz),以及用 于扫描和电流反馈的控制 器(Controller)等。
6
2.STM的原理
扫描隧道显微镜的基本 原理是将原子线度的极细 探针和被研究物质的表面 作为两个电极,当样品与 针尖的距离非常接近 (通常 小于1nm) 时,在外加电场 的作用下,电子会穿过两 个电极之间的势垒流向另 一电极。
16
溶液中固/液界面的原子和分子化学反应示意图
4.STM的工作环境
溶液条件
17
图是有机分子苯在Rh(111)—3x3(铑)表面 上的单层吸附结果。实验时,在0.01M(摩 尔)的HF(氢氟酸)溶液里含有0.25mM (毫 摩尔)浓度的有机分子苯。
图是另一种有机分子卟啉在I-Au(111)(碘-金) 表面上的单层吸附结果。实验时,在0.1M 的HClO4(高氯酸)溶液里含有0.57uM(微摩 尔)浓度的有机分子卟啉。
扫描隧道显微镜实验报告
扫描隧道显微镜实验报告扫描隧道显微镜实验报告引言:扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)是一种重要的纳米尺度观测仪器,它通过利用量子隧穿效应来实现对表面原子的成像。
本实验旨在通过使用STM来观察和研究不同样品表面的原子结构和性质,以及探索STM在纳米科学和纳米技术领域的应用前景。
实验方法:1. 样品制备:选择不同材料的样品,如金属、半导体或绝缘体,并进行表面处理,如抛光或清洗,以确保表面平整和干净。
2. STM装置设置:将STM装置连接至计算机,并进行相关设置,如校准扫描范围和调整扫描速度等参数。
3. 样品安装:将样品固定在样品台上,并确保其与STM探针的接触良好。
4. 扫描图像获取:通过控制STM探针的运动,以及调整扫描电压和电流等参数,获取样品表面的原子级分辨率图像。
5. 数据分析:利用专业的STM图像处理软件对所获得的图像进行分析和处理,以提取样品表面的结构和性质信息。
实验结果与讨论:通过对不同样品进行STM观察,我们可以得到高分辨率的原子图像。
以金属样品为例,我们观察到了其表面的原子排列规律,如金属晶体的晶格结构。
通过测量原子之间的间距,我们可以获得样品的晶格常数,并进一步研究其晶体结构和晶体缺陷等特性。
在半导体样品的观察中,我们可以发现其表面的原子排列存在一定的有序性,但与金属样品相比,半导体样品的表面结构更为复杂。
通过对半导体晶体表面的原子分布进行分析,我们可以了解其晶体生长过程中的缺陷形成机制,并为半导体器件的制备和性能优化提供重要参考。
此外,我们还观察到了绝缘体样品的表面结构。
与金属和半导体样品不同,绝缘体样品的表面原子排列更为松散和无序。
通过对绝缘体样品表面的原子间隙进行测量,我们可以得到绝缘体材料的晶格参数和晶体结构信息,为其性质研究和应用提供基础。
扫描隧道显微镜不仅可以提供原子级分辨率的表面图像,还可以通过在不同扫描位置测量电流变化来研究样品的电子态密度分布。
扫描隧道显微镜 原理
扫描隧道显微镜原理
扫描隧道显微镜(STM)的工作原理是基于量子力学的隧穿效应,利用一根金属针尖作为探针,与样品表面形成两个电极。
当针尖与样品表面的距离非常接近(通常小于1nm)时,电子云重叠,并在它们之间施加电压,此时电子会穿过两个电极之间的势垒流向另一电极,形成隧道电流。
隧道电流的大小与针尖到样品表面的距离呈指数关系,因此当针尖沿物质表面扫描时,由于表面原子凹凸不平,使探针与物质表面间的距离不断改变,从而导致隧道电流不断变化。
这种电流变化反映了样品表面的原子级凹凸形态,将电流的这种变化图像化即可显示出原子水平的凹凸形态。
扫描隧道显微镜具有超高的分辨率,横向分辨率达0.1nm,纵向分辨率达0.01nm,使人类第一次在实空间观测到样品表面的原子排布状态。
它对表面科学、纳米科学、生物医学等科学技术的研究和发展具有里程碑式的意义,被公认为上世纪八十年代世界十大科技成就之一。
扫描隧道显微镜原理
扫描隧道显微镜原理扫描隧道显微镜(STM)是一种利用量子隧穿效应进行成像的显微镜,它是由德国物理学家格尔德·宝尔和海因里希·罗尔夫·霍尔斯特于1981年发明的。
STM是一种非常重要的显微镜,它可以在原子尺度上观察表面的原子结构,被广泛应用于物理、化学、材料科学等领域。
本文将介绍扫描隧道显微镜的原理及其工作过程。
扫描隧道显微镜的原理是基于量子力学的隧穿效应。
当一个尖端探针靠近样品表面时,尖端探针和样品表面之间会存在一个微小的隧穿电流。
这个电流的大小和探针与样品之间的距离有关,当探针移动时,电流的大小也会发生变化。
通过测量这个隧穿电流的变化,可以得到样品表面的拓扑结构信息。
在STM中,尖端探针被放置在一个能够微小移动的臂上,可以在样品表面来回扫描。
当探针靠近样品表面时,由于隧穿效应,会产生隧穿电流。
探针和样品之间的距离非常小,通常在纳米尺度,这使得STM能够观察到原子尺度的表面结构。
通过控制探针的位置和测量隧穿电流的大小,可以得到样品表面的原子结构信息。
扫描隧道显微镜的工作过程可以简单描述为,首先,将尖端探针放置在样品表面附近,然后通过控制尖端探针的位置,使其在样品表面上来回扫描。
在扫描的过程中,测量隧穿电流的大小,并将这些数据转换成图像,就可以得到样品表面的拓扑结构信息。
通过对这些图像的分析,可以得到样品表面的原子结构、晶格结构等重要信息。
扫描隧道显微镜具有高分辨率、原子尺度的观测能力,可以在原子尺度上观察样品表面的结构。
它在材料科学、物理、化学等领域有着广泛的应用,可以帮助科学家们更深入地理解物质的性质和行为。
同时,随着技术的不断进步,STM的分辨率和稳定性也在不断提高,为科学研究提供了强大的工具。
总之,扫描隧道显微镜是一种基于量子力学的显微镜,利用隧穿效应可以在原子尺度上观察样品表面的结构。
它具有高分辨率、原子尺度的观测能力,被广泛应用于物理、化学、材料科学等领域。
扫描隧道显微镜(STM)
图9-4
返回
图9-5
返回
二、原子力显微镜的微悬臂及其变形的检测 方法
(一)微悬臂(力传感器) (二)微悬臂变形的检测方法
返回
(一)微悬臂(力传感器)
原子力显微镜所研究的力其数值很小。要实现力的高灵敏度测量,首 先要求力的感知件——微悬臂对微小力的变化具有足够高的灵敏度。
(1)弹性系数k值应在10 -2~10 2 N/m范围。极低的弹性系数 可满足极其灵敏地检测出零点几个nN
品表面之间的作用力,一般针尖曲率半径为30 nm
下一页 返回
(二)微悬臂变形的检测方法
原子力显微镜的图像是通过扫描时测量微悬臂受力后弯曲形变的程度 获得的,并利用Hooke定律来确定操作时的样品与针尖的作用力。
1 2 3 4
上一页 返回
三、原子力显微镜的成像模式
(一)接触成像模式 (二)非接触成像模式 (三)轻敲成像模式
返回
一、扫描隧道显微镜的基本原理
与光学显微镜和电子显微镜不同,STM不采用任何光学或电子透镜 成像,而是当尖锐金属探针在样品表面扫描时,利用针尖〖CD*2〗 样品间纳米间隙的量子隧道效应引起隧道电流与间隙大小呈指数关系, 获得原子级样品表面形貌特征图像,其基本原理如图9-1所示。
顶部有一直径约50~100 nm的极细金属探针(通常是金属钨制作 的针尖),功能是在其与样品互相作用时,可根据样品性质的不同 (如表面原子的几何结构和电子结构)产生变化的隧道电流。在扫描 隧道显微镜工作时,针尖与样品表面距离一般约为0.3~1.0 nm, 此时针尖和样品之间的电子云互相重叠。当在它们之间施加一偏压时, 电子就因量子隧道效应由针尖(或样品)转移到样品(或针尖);金 属探针安置在三个相互垂直的压电陶瓷〖WTBX〗(P x、P y、 P z)架上,当在压电陶瓷器件上施加一定电压时,由于压电陶瓷 器件产生变形,便可驱动针尖在样品表面实现三维扫描;控制器是用 STM
STM扫描隧道显微镜
STM扫描隧道显微镜几十年来,人类研制成功了许多用于表面结构分析的现代仪器.例如光学显微镜、电子显微镜、离子显微镜、电子探针、衍射仪、能谱仪等等。
这些物理技术在表面科学研究领域都起着重要的作用;但它们的物理原理不同,作用范围、精度、环境条件等都不尽相同。
也就是说,每一种技术对表面微观结构观察与分析都有它自己的特长与意义,但每一种技术都必然受着自身原理的条件限制,只能在一定的领域内开展工作。
例如光学显微镜受其分辩率的影响无法分辩出表面的原子;高分辩率的透射电子显微镜(TEM)主要用于薄层样品的体相和界面研究。
X射线的光电子能谱等只能提供空间平均电子的电子结构信息;有的技术只能获得间接结果,还需要用试差模型来拟合等等。
虽然人们早就知道物质是由分子和原子组成的,但这大多是通过实验间接验证的。
1982年,国际商业机器公司苏黎世实验室的Binning和Rohrer博士研制成世界上第一台扫描隧道显微镜(STM)。
它的出现,使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关物理、化学性质。
而且在其测量过程中不会对样品形成任何损伤。
其惊人的原子分辩能力已被广泛地应用于材料科学、微电子科学、纳米加工技术等领域。
[实验原理]扫描隧道显微镜(STM)的工作原理是基于量子力学中的隧道效应。
见图1:图1当一粒子的动能E低于前方势垒的高度V0时,根据经典力学理论,粒子不可能穿过此势垒,即透射系数等于零。
但按照量子力学原理,粒子越过势垒区而出现在另一边的几率不为零,这个现象称为隧道效应。
实验中,将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm)见图2:在外加电场作用下,电子会穿过两个电极之间的势垒流向另一电极。
隧道电流I是电子波函数重叠的量度。
与针尖和样品之间距离S 和平均功函数Φ有关: )21exp(S A b V I Φ−∝(1) b V 是加在针尖和样品之间的偏置电压,平均功函数),21(21Φ+Φ⋅≈Φ1Φ和2Φ分别为针尖和样品表面的功函数。
扫描隧道显微镜的操作流程
扫描隧道显微镜的操作流程操作流程扫描隧道显微镜(Scanning Tunneling Microscope,STM)是一种常用于原子级表面观测和纳米尺度制造的仪器。
本文将介绍STM的操作流程,包括样品准备、仪器调试和数据采集等步骤。
一、样品准备1. 清洗样品:将待观察的样品通过超声波清洗仪清洗数分钟,去除表面污染物,如灰尘、油脂等。
2. 热处理样品:将样品放入高真空炉中,进行热处理。
热处理温度的选择根据具体的实验目的而定,一般在几百摄氏度到一千摄氏度之间。
3. 离子轰击样品:使用离子轰击仪对样品表面进行轰击,以去除表面氧化物、有机物以及其他杂质。
轰击时间和能量的选择取决于样品的材料和质量。
二、仪器调试1. 真空泵抽气:将STM放入真空环境中,打开真空泵进行抽气,将压力降低到合适的范围,通常是10^-9帕以下。
2. 针尖制备:使用聚焦离子束法制备STM探针针尖。
将探针放入离子束中,通过离子束的刻蚀作用,使针尖变得尖锐。
3. 标定扫描:将STM的探针放置在标定样品上,根据标定样品上已知的原子尺寸或结构进行扫描,调整STM的参数直至获得清晰的图像。
三、数据采集1. 调整扫描参数:根据实验要求,调整STM的扫描速度、扫描范围和增益等参数,以获得所需的图像细节。
2. 预扫描:在待观察样品的区域进行预扫描,观察样品的整体特征。
根据预扫描的结果,选择感兴趣的区域进行进一步的扫描。
3. 原子分辨扫描:选择感兴趣的区域进行高分辨扫描,以获取样品表面的原子级分辨图像。
根据扫描结果,可以进一步研究样品的表面形貌、晶格结构等特征。
4. 数据分析:采集到的图像可以通过图像处理软件进行数据分析和处理,如测量原子间距、表面粗糙度等物理参数。
四、实验结束1. 数据保存:将采集到的数据进行保存和备份,以便后续数据分析和报告撰写。
2. 仪器关闭:在实验完毕后,将STM的电源关闭,并进行仪器的清理和维护工作。
3. 实验记录:详细记录实验过程和观察结果,包括样品信息、仪器参数、扫描图像等内容。
扫描隧道电子显微镜
扫描隧道电子显微镜编辑锁定本词条由“科普中国”百科科学词条编写与应用工作项目审核。
扫描隧道电子显微镜(scanning tunneling microscope,STM)是一种利用量子理论中的隧道效应探测物质表面结构的仪器,利用电子在原子间的量子隧穿效应,将物质表面原子的排列状态转换为图像信息的。
中文名扫描隧道电子显微镜外文名scanning tunneling microscop简称STM发明者格尔德·宾宁目录1. 1 定义2. 2 背景3. 3 发展1. 4 原理2. 5 工作方式3. ▪恒流模式4. ▪恒高模式1. 6 应用2. 7 展望定义编辑扫描隧道电子显微镜(scanning tunneling microscope,STM)是一种利用量子理论中的隧道效应探测物质表面结构的仪器,利用电子在原子间的量子隧穿效应,将物质表面原子的排列状态转换为图像信息的。
在量子隧穿效应中,原子间距离与隧穿电流关系相应。
通过移动着的探针与物质表面的相互作用,表面与针尖间的隧穿电流反馈出表面某个原子间电子的跃迁,由此可以确定出物质表面的单一原子及它们的排列状态。
背景编辑透射电子显微镜在观察物质的整体结构方面是很有用的,但在表面结构的分析上却较困难,这是因为透射电子显微镜是由高能电透过样品来获得信息的,反映的是样品物质的内部信息。
扫描电子显微镜(SEM)虽然能揭示一定的表面情况,但由于入射电子总具有一定能量,会穿入样品内部,因此分析的所谓“表面” 总在一定深度上,而且分辫率也受到很大限制。
场发射电子显微镜(FEM)和场离子显微镜(FIM)虽然能很好地用于表面研究,但是样品必须特殊制备,只能置于很细的针尖上,并且样品还需能承受高强电场,这样就使它的应用范围受到了限制。
扫描隧道电子显微镜(STM)的工作原理完全不同,它不是通过电子束作用于样品(如透射和扫描电子显微镜)来获得关于样品物质的信息,也不是通过高电场使样品中的电子获得大于脱出功的能量而形成的发射电流成象(如场发射电子显微镜),并以此来研究样品物质,它是通过探测样品表面的隧道电流来成象,从而对样品表面进行研究。
扫描隧道显微镜与原子力显微镜原理及应用介绍
扫描隧道显微镜与原子力显微镜原理及应用介绍扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)和原子力显微镜(Atomic Force Microscope,简称AFM)是近代纳米科技研究中最常用的两种显微镜。
它们的工作原理基于量子力学和原子间相互作用的特性,能够在原子尺度上对材料进行高分辨率的观察和测量。
本文将对这两种显微镜的原理和应用进行详细介绍。
一、扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)STM是由布特和罗人于1982年发明的一种高分辨率的表面形貌和电子性质的检测仪器。
它的工作原理基于电子的量子隧穿效应。
当一个金属探针在纳米尺度上与样品表面非常靠近时,由于量子隧穿效应的存在,探针上的电子会通过真空隧穿到样品表面,形成一晶格单位长度上的隧穿电流。
通过控制探针和样品之间的距离,并测量隧穿电流的变化,就可以在纳米尺度上对样品表面的形貌和电导率进行高分辨率的成像。
STM的应用非常广泛。
首先,它可以用于表面形貌的观察和测量。
利用STM的纳米尺度分辨率,可以研究材料表面的形貌结构,比如晶体表面、纳米颗粒的形貌等。
其次,STM可以用于电子能级的探测。
通过测量隧穿电流的大小和变化,可以了解样品的电子性质,比如导体与绝缘体的电子分布、局域缺陷的电子能级等。
另外,STM还可以用于表面化学反应的研究。
通过在STM系统中加入气体环境和局部加热等手段,可以直接观察表面化学反应的过程和反应产物等。
二、原子力显微镜(Atomic Force Microscope,简称AFM)AFM是由盖柏勒(Gerd Binnig)和罗隆德(Heinrich Rohrer)于1986年发明的一种非接触式的力学检测器。
它的工作原理基于探针尖端与表面之间的力的相互作用。
AFM采用非接触的方式,将探针尖端靠近样品表面,并通过测量探针向上弯曲或偏移的程度,来推测表面的形貌和性质。
扫描隧道电子显微镜
三维扫描控制器
减震系统
电子学控制系统
离线数据分析软件
主要特点
• 扫描隧道显微镜具有以下特点∶ • 1、高分辨率 扫描隧道显微镜具有原子级的空间分辨率,其横向空间分辨率为 l Å , 纵向分辨率达0.1 Å. 可以观察单个原子层的局部表面结构,而不是体相或整个表面 的平均性质,因而可直接观察到表面缺陷、表面重构、表面吸附体的形态和位置以 及由吸附体引起的表面重构等。 • 2、扫描隧道显微镜可直接探测样品的表面结构,绘出立体三维结构图像。并且可 用于具有周期性或不具备周期性的表面结构的研究,这种可实时观察的性能可用于 表面扩散等动态过程的研究。 • 3、扫描隧道显微镜可在真空、常压、空气、甚至溶液中探测物质的结构,它的优 点是三态(固态、液态和气态)物质均可进行观察,而普通电镜只能观察制作好的 固体标本,由于没有高能电子束, 对表面没有破坏作用(如辐射,热损伤等),所以 能对生理状态下生物大分子和活细胞膜表面的结构进行研究,样品不会受到损伤而 保持完好。 • 4、扫描隧道显微镜的扫描速度快,获取数据的时间短,成像也快,有可能开展生 命过程的动力学研究。 • 5、不需任何透镜, 体积小,有人称之为“口袋显微镜”(pocket microscope)。 • 6、配合扫描隧道谱(STS)可以得到有关表面电子结构的信息,例如表面不同层次 的态密度、表面电子阱、电荷密度波、表面势垒的变化和能隙结构等。
恒高度模式
• 在对样品进行扫描过程中保持针尖的绝 对高度不变;于是针尖与样品表面的局 域距离将发生变化,隧道电流 I 的大小也 随着发生变化;通过计算机记录隧道电 流的变化,并转换成图像信号显示出 来,,即得到了扫描隧道电子显微镜显微 图。这种工作方式仅适用于样品表面较 平坦、且组成成分单一。
什么是扫描隧道显微镜
什么是扫描隧道显微镜
扫描隧道显微镜(Scanning Tunneling Microscope,缩写为STM)是一种扫描探针显微术工具,它可以让科学家观察和定位单个原子,具有比同类原子力显微镜更高的分辨率。
STM在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。
扫描隧道显微镜利用量子力学中的隧道效应,当扫描针尖在样品表面上方沿z轴来回扫描时,由于针尖和样品之间的距离非常近,使得针尖和样品之间产生隧道效应,从而获得表面形貌的微细结构信息。
扫描隧道显微镜具有原子级(埃级)的空间分辨率和优于500飞秒的时间分辨率,成为国内首套自主研制的太赫兹扫描隧道显微镜系统。
STM在原子级扫描、材料表面探伤及修补、引导微观化学反应、控制原子排列等领域广泛应用。
如需了解更多有关扫描隧道显微镜的信息,可以查阅相关的专业文献,或者咨询相关领域的专家学者。
扫描隧道显微镜
STM的原理及其应用摘要:近年来,人类在纳米科技领域内的研究取得了引人瞩目的成就。
而扫描隧道显微镜(STM)是纳米科技发展的重要基础。
STM系统的出现首次成功实现了对原子实际空间图像的观察,促进了人类对微观领域的认知,推动了纳米科技的发展。
本文主要介绍了STM的原理、系统结构极其应用。
1扫描隧道显微镜(STM)的概述[1,2,3]1.1扫描隧道显微镜(STM)的发展1982年,国际商业机器公司苏黎世实验室的葛·宾尼(Gerd Binnig)博士和海·罗雷尔(Heinrich Rohrer)博士及其同事们共同研制成功了世界第一台新型的表面分析仪器——扫描隧道显微镜(Scanning Tunneling Microscope,以下简称STM)。
它的出现,使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物理、化学性质,在表面科学、材料科学、生命科学等领域的研究中有着重大的意义和广阔的应用前景,被国际科学界公认为八十年代世界十大科技成就之一,为表彰STM的发明者们对科学研究的杰出贡献,1986年宾尼和罗雷尔被授予诺贝尔物理学奖。
而在1988年,白春礼成功研制了国内第一台计算机控制、有数据分析和图像处理系统的扫描隧道显微镜,这一科研成就使我国在表面研究领域一步跨入了“原子世界”。
1993年初,白春礼和超导专家赵忠贤合作退出了我国第一台STM,对于研究低温下材料的表面特性有重要的意义。
STM在表面吸附和实用材料的研究中占有特殊地位。
STM可以清晰观察到原子簇化合物和有机金属化合物在不同晶体的吸附和扩散;在实用材料的表面结构研究中,包括高温超导材料的表面原子排列和能谱的研究,金属卤化物的高分辨率表面结构的研究,晶体生长动力学的研究等等,STM都具有不可代替的作用。
尤其值得一提的是,利用STM技术实现了室温下单电子隧穿效应。
所谓电子隧穿就是让电子“排好队”,一个接着一个地通过介观尺度(指10-9—10-7的长度)的结构。
扫描隧道显微镜的组成
扫描隧道显微镜的组成
扫描隧道显微镜(STM)的组成主要包括以下部分:
1.针尖:这是STM最关键的部件之一,它由非常细的单晶金属丝(通常为钨或铂)制成,其尖端的曲率半径通常在几个埃(Angstroms)的范围内。
针尖的制备是STM制造中的一项关键技术,通常需要经过多道精密的加工和清洗步骤才能获得高质量的针尖。
2.扫描器:它由一组精密控制的马达和反馈系统组成,用于驱动针尖在样品表面进行精确的扫描。
扫描器通常包括X、Y和Z方向的控制器,以实现三维空间的扫描。
3.电子系统:STM的电子系统负责控制和调节隧道电流,以及处理和显示从STM获得的信号。
电子系统通常包括电源、信号发生器、放大器、控制器和显示器等部分。
4.样品台:样品台是放置样品的平台,它能够实现精确的移动和定位。
在实验过程中,样品台负责固定样品并对其进行扫描。
5.环境控制系统:为了保证STM的正常运行和延长其使用寿命,通常需要维持一定的环境条件,如温度、湿度和清洁度等。
环境控制系统负责监测和控制这些条件,以确保STM的正常运行。
总的来说,扫描隧道显微镜通过高精度的控制技术实现纳米级的观察能力,已经成为表面科学、凝聚态物理、纳米技术等领域中非常重要的研究工具。
扫描隧道显微镜(STM)单原子操纵技术
1985年
STM被授予诺贝尔物理学奖。
2000年
单原子操纵技术取得突破。
STM技术的应用领域
01
02
03
04
材料科学
研究表面结构、化学组成、电 子态等。
物理
研究表面物理现象,如表面量 子现象、表面相变等。
纳米科技
制造和操纵纳米结构,如纳米 电路、量子点等。
05 结论
STM和单原子操纵技术的重要性和意义
揭示物质表面结构和性质
STM通过测量隧道电流能够精确地探测物质表面的原子结构,而单原子操纵技术则能够实现对单个原子的精确操控, 这对于深入理解物质表面结构和性质具有重要意义。
促进纳米科技和材料科学的发展
STM和单原子操纵技术为纳米科技和材料科学领域的研究提供了强有力的工具,有助于推动相关领域的技术创新和 进步。
生物医学
研究生物分子结构和功能,如 蛋白质、DNA等。
02 STM的组成和工作原理
STM的组成
针尖
通常由钨或铂-铱合金制成,针尖的形状和 尺寸对STM的分辨率和成像质量至关重要。
扫描隧道显微镜主体
包括扫描隧道显微镜的控制器、扫描隧道显微镜的 信号处理系统、扫描隧道显微镜的电源系统等。
计算机系统
用于控制STM的扫描、采集和显示图像。
扫描隧道显微镜(STM)单原子操纵 技术
contents
目录
• STM技术概述 • STM的组成和工作原理 • 单原子操纵技术 • STM在单原子操纵中的应用 • 结论
01 STM技术概述
STM技术的原理
隧道效应
当两个导电物体非常接近时,一 个带电粒子的隧道效应可以穿过 它们之间的势垒,从一导电体流 向另一导电体。
扫描隧道显微镜STM和原子力显微镜AFM分析技术
1
I Vb exp( A 2 S )
三、 扫描隧道显微镜的基本原理
尖锐金属探针在样品表面扫描,利用针尖-样 品间纳米间隙的量子隧道效应引起隧道电流与间 隙大小呈指数关系,获得原子级样品表面形貌特 征图象。
图 STM的基本原理图
4)分辨率高,扫描隧道显微镜在水平和垂直分 辨率可以分别达到0.1nm和0.01nm。因此可直接观 察到材料表面的单个原子和原子在材料表面上的三 维结构图像。
5)在观测材料表面结构的同时,可得到材料表 面的扫描隧道谱(STS),从而可以研究材料表面 化学结构和电子状态。
6)不能探测深层信息,无法直接观察绝缘体。
粒子可以穿过比它能量更高的势垒,这个 现象称为隧道效应。
隧道效应是由于粒子的波动性而引起的,只有 在一定的条件下,隧道效应才会显著。经计算,透 射系数T为:
T
16E(V0
E)
2a
0-E)以及粒子的质量 m有着很敏感的关系。随着势垒厚(宽)度a的增加,
2. 机械设计(扫描控制)
机械设计应满足:
1)Z方向伸缩范围≥1μm,精度约为 0.001nm;
2)X、Y方向扫描范围≥1μm ×1μm,精度约 为0.01nm;
3)Z方向机械调节精度高于0.1μm ,精度至少 应在压电陶瓷驱动器Z方向变化范围,机械调节范 围>1mm;
4)能在较大范围内选择感兴趣的区域扫描; 5)针尖与样品间距离d具有高的稳定性。
隧道电流的变化曲线
∆Z有0.1nm的变化; ∆ IT即有数量级的变化
隧道电流的变化曲线
四、 扫描隧道显微镜的工作模式
根据针尖与样品间相对运动方式的不同,STM有 两种工作模式:恒电流模式(a)和恒高模式(b)。
扫描隧道显微镜原理
扫描隧道显微镜原理
扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)是一种利用隧道效应实现原子尺度分辨率的显微镜。
其原理基于尖端和样品之间存在的隧道电流。
STM主要由扫描探头和表面的样品组成。
探头的尖端通常由
金属制成,尖端尺寸非常小,只有几个原子大小。
样品表面通常是导体,如金属或半导体。
当探头与样品非常接近时,尖端和样品表面之间会产生一个微小的隧道间隙。
由于量子力学的量子隧道效应,即使隧道间隙非常窄,也可以允许电子从尖端隧道到样品表面。
为了保持探头和样品间的恒定隧道电流,STM中的探头是以
非常小的步长在样品表面进行扫描。
在每个位置,测量和控制系统会调整探头高度,以保持隧道电流的恒定。
根据隧道电流的变化情况,可以得到样品表面的形貌信息。
当尖端在不同的位置上进行扫描时,可以得到一个二维图像,显示出样品表面的原子排列情况。
由于STM的原理基于隧道电流,因此只有在样品表面是导体
的情况下才能使用。
此外,由于隧道电流十分微弱,所以要求实验环境必须非常安静并且稳定。
总之,扫描隧道显微镜通过利用隧道效应实现原子尺度的高分
辨率观测。
通过测量隧道电流的变化,可以得到样品表面的形貌信息,从而揭示出微观尺度下的材料特征。
1 扫描隧道显微镜(STM)
1 扫描隧道显微镜(STM)扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。
将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。
这种现象即是隧道效应。
隧道电流I 是电子波函数重叠的量度,与针尖和样品之间距离S 和平均功函数Φ 有关:V b是加在针尖和样品之间的偏置电压,平均功函数,分别为针尖和样品的功函数,A 为常数,在真空条件下约等于1。
扫描探针一般采用直径小于1mm的细金属丝,如钨丝、铂―铱丝等;被观测样品应具有一定导电性才可以产生隧道电流。
由上式可知,隧道电流强度对针尖与样品表面之间距非常敏感,如果距离S 减小0.1nm,隧道电流I 将增加一个数量级,因此,利用电子反馈线路控制隧道电流的恒定,并用压电陶瓷材料控制针尖在样品表面的扫描,则探针在垂直于样品方向上高低的变化就反映出了样品表面的起伏,见图1(a)。
将针尖在样品表面扫描时运动的轨迹直接在荧光屏或记录纸上显示出来,就得到了样品表面态密度的分布或原子排列的图象。
这种扫描方式可用于观察表面形貌起伏较大的样品,且可通过加在z 向驱动器上的电压值推算表面起伏高度的数值,这是一种常用的扫描模式。
对于起伏不大的样品表面,可以控制针尖高度守恒扫描,通过记录隧道电流的变化亦可得到表面态度的分布。
这种扫描方式的特点是扫描速度快,能够减少噪音和热漂移对信号的影响,但一般不能用于观察表面起伏大于1nm的样品。
(a)(b)从式可知,在V b和I 保持不变的扫描过程中,如果功函数随样品表面的位置而异,也同样会引起探针与样品表面间距S 的变化,因而也引起控制针尖高度的电压V z的变化。
如样品表面原子种类不同,或样品表面吸附有原子、分子时,由于不同种类的原子或分子团等具有不同的电子态密度和功函数,此时扫描隧道显微镜(STM)给出的等电子态密度轮廓不再对应于样品表面原子的起伏,而是表面原子起伏与不同原子和各自态密度组合后的综合效果。
扫描隧道显微镜(STM)PPT课件
Scanning Tunneling Microscope
一、简介 二、基本原理 三、STM的结构及关键技术 四、应用
1.表面形貌测量及分辨率 2.逸出功的测量 3. 扫描隧道谱 (STS)
1
五、原子力显微镜(AFM)
1.特点 2.工作原理 3.结构及关键技术
Δ 力传感器 Δ 微悬臂位移检测法 4.应用例举
如s↗ → I↘→ Pz上的电压↗→ Pz伸长 → s↘。 VPz(VPx,VPy)曲线为样品表面三维轮廓线。
9
△ XYZ位移器(样品位置细调〕 微小距离移动的精确控制
△ 样品粗调 使针尖与表面的距离,从光学可觉察的距离 (10- 100μm) 调整到100 Å 量级 - Louse 结构 - 精细螺旋机构
△ 防震系统分析 - 使由振动引起的隧道距离变化 0.001 nm (振动:针对重复性、连续的,通常频率在 1-100Hz)
10
四、扫描隧道显微镜的应用
1.表面形貌测量及其分辨率 假设样品表面存在陡变台阶,由于针尖半径R有 一定尺寸,针尖的轨迹将有一过渡区δ。δ与 R、 s 和 ko 有如下近似关系:
ΔI/Δs = 2Iko 若I保持不变 则:dI/ds ∝ ko∝φ1/2 工作方式: 扫描中保持I不变,使s有一交流调制, dI/ds 随x,y变化。dI/ds(x,y)平方后即为逸出功象。
3.扫描隧道谱(STS)
在表面的某个位置作I-V 或dI/dV-V,得有特征峰
的STS。在特征峰电压处,保持平均电流不变,使
例: 微杠杆由25μm金箔作成,重量10-10kg fd = 2kHz k = 2×10-2 N/m
因 STM 测的Δz可小至10-3-10-5 nm 则有:F = kΔz
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两边微分
Δ I/I = - 2 koΔ s
若保持隧道电流 I不变
Δ I/I 在±2%之内 (电路控制可达精度)
设 ko≈1Å
-1,则
Δ s ≈ 0.01 Å
表明:针尖至表面距离的控制精度可达0.01 Å
三、扫描隧道显微镜的结构
1. 技术关键
△ 微小距离的移动及控制-压电陶瓷
位移灵敏度在 5Å /V 量级 STM针尖半径R 3-10 Å
1986年获诺贝尔物理奖(G.Binnig and H.Rohrer)
二、基本原理
1.隧道电流 隧道结电流密度(对两平行金属)
s:有效隧道距离 VT:所加电压 k o: k o = φ :有效势垒高度 φ =1/2 (φ 1+φ 2)eV 对于真空是几个电子伏 对氧化物小于1电子伏
I-s有指数关系: I ∝ exp[-2kos] 隧道电流在10-9-10-6 A量级 当s增加Δ s时: I ∝ exp[-2kos]· exp[-2koΔ s] 设 则 Δ s =1 Å,ko≈1 Å-1 (φ ∼5eV) exp[-2koΔ s] = e-2 ≈ 1/8
光束反射法
(2)力传感器( 微悬臂和针尖 )
△ 低的力弹性常数 △ 高的力学共振频率
△ 高的横向刚性
△ 短的悬臂长度 △ 带有镜子或电极
△ 尽可能尖的尖端
利用弹性元件形变 F = kΔ z(虎克定理) F很小,k和Δ z也必须小。
但k小不符合刚性原则,
因此在降低k的同时,也要减小M。
例: 微杠杆由25μ m金箔作成,重量10-10kg
1-100Hz)
四、扫描隧道显微镜的应用
1.表面形貌测量及其分辨率 假设样品表面存在陡变台阶,由于针尖半径R 有一定尺寸,针尖的轨迹将有一过渡区δ 。δ 与 R、s 和 ko 有如下近似关系:
R:针尖半径 S:针尖至表面距离
Ko =
φ = (1/2)(φ 1+φ 2)
若 R = 3 Å, s = 2 Å, ko = 1 Å -1 则 δ ≈1.6 Å (分辨率) 只有在表面各处逸出功相同时,针尖在z方向的 位移才表示样品外形的起伏。
应用举例: Si (111) 面的 7×7 结构 STM △ 水平分辨率: 0.1 nm 纵向分辨率: 0.001 nm △ 信息中包含有形貌特性、逸出功及电子态分布 采用特殊的工作模式,可把后两者信息提取出来。 △ 对于非导体或针尖有沾污的情况,不能进行正确的测量
五、原子力显微镜(AFM) Atomic Force Microscope
针尖与表面距离
△ 防震
2-5 Å
2.结构 三维控制的压电陶瓷: Px和Py上加周期锯齿波电压,使针尖沿表 面作光栅扫描。 利用隧道结电流I反馈,控制加于Pz上的电 压来控制s,以保持I不变。 如s↗ → I↘→ Pz上的电压↗→ Pz伸长 → s↘。
VPz(VPx,VPy)曲线为样品表面三维轮廓线。
△ 表面原子间力的测量
扫描探针显微镜(SPM) 在STM基础上发展起来 AFM与样品有轻微接触(斥力状态),使样品有损伤。 SPM:压电陶瓷驱使微悬臂在接近共振频率处作强 迫振动,利用样品与针尖在10-100 nm 范围内的长程 力(如吸引的范德瓦尔力、磁力、静电力等),改变微
悬臂的振动情况,为保持振动情况不变所加的信号反
1.特点: △ △ 能测量绝缘体的表面形貌 (STM不能) 测量表面原子间的力 测量弹性、塑性、硬度等
2.AFM 的结构及工作原理
微悬臂一端固定,另一端有一微小针尖。
针尖与表面轻轻接触(斥力:10-8-10-6N)。 样品扫描,保持样品与针尖间作用力恒定(样品与针尖间距
离不变)。测得微悬臂对应于扫描各点的位置变化,从而获得样
△ XYZ位移器(样品位置细调〕 微小距离移动的精确控制 △ 样品粗调 使针尖与表面的距离,从光学可觉察的距离 (10- 100μ m) 调整到100 Å 量级 - Louse 结构 - 精细螺旋机构 △ 防震系统分析 - 使由振动引起的隧道距离变化 0.001 nm (振动:针对重复性、连续的,通常频率在
2.逸出功的测量 由 I ∝ exp[- 2 kos] Δ I/I = - 2 koΔ s Δ I/Δ s = 2Iko 若I保持不变 则:dI/ds ∝ ko∝φ 1/2 工作方式: 扫描中保持I不变,使s有一交流调制, dI/ds 随x,y变化。dI/ds(x,y)平方后即为逸出功象。 3.扫描隧道谱(STS) 在表面的某个位置作I-V 或dI/dV-V,得有特征 峰的STS。在特征峰电压处,保持平均电流不变,使 针尖在X、Y平面扫描,测dI/dV随x,y的变化,得扫 描隧道谱象。 表面的电子性质和化学性质表现在I-V 和 dI/dV-V 曲线中。
即:当s增加 1Å 时,I将减少一个数量级。
2.工作模式
△ 恒高模式
用隧道电流的大小来调制显象管的亮度 △ 恒电流模式
用电子学反馈的方法控制针尖与样品间
距离不变(保持隧道电流不变),用反馈调 制电压控制显象管亮度或画出表面形貌三
维图象。
精度控制估算:
由 I ∝ exp[- 2 kos] lnI = - 2 kos + 常数
品形貌信息。
利用了原子间的力
关键技术:微悬臂及其位移检测
3. 结构及关键技术 (振动隔离及样品移动等与STM相同) (1)AFM 微悬臂位移的检测方法 要求: 有纳米量级的检测灵敏度 测量对悬臂产生的作用力小到可忽略
方法:
隧道电流法(用STM) 光学检测法:干涉法 光束反射法 电容检测法
隧道电流法(用 STM)
映表面起伏。 激光力显微镜(LFM) 扫描热显微镜
磁力显微镜(MFM)
静电力显微镜(EFM) 弹道电子发射技术
扫描隧道电位仪
光子扫描隧道显微镜 扫描近场光学显微镜
扫描离子电导显微镜
搬迁分子、原子
单原子器件
纳米级加工与测量
优点: 高分辨率 实时动态过程检测 样品可以是晶体,亦可为非晶结构 无需特殊制样技术 对样品几乎无损伤 局限性: 表面起伏<1nm 不能观测样品内部
六、扫描探针显微镜(SPM)
一、简介
1.从光学显微镜→电子显微镜→场离子显微镜→ STM 分辨 200nm 几个nm Å 2.原理 3.独特优点: Δ 观察表面形貌达原子分辨 Δ 无需任何透镜,不存在象差 Δ 可在各种条件下测量: 真空、大气、水、油及液氮中 Δ 广泛的应用: 形貌、表面电位、电子态分布 原子力显微镜及原子探针显微镜 纳米技术、表面微细加工、搬动原子
扫描隧道显微镜 (STM)
Scanning Tunneling Microscope
一、简介
二、基本原理
三、STM的结构及关键技术
四、应用
1.表面形貌测量及分辨率 2.逸出功的测量
3. 扫描隧道谱 (STS)
五、原子力显微镜(AFM)
1.特点 2.工作原理 3.结构及关键技术 Δ 力传感器 Δ 微悬臂位移检测法 4.应用例举
fd = 2kHz k = 2பைடு நூலகம்10-2 N/m
因 STM 测的Δ z可小至10-3-10-5 nm
则有:F = kΔ z = 2×(10-14-10-16)N
用简洁的语言或图示的方法 说明 STM与 AFM工作原理之间 的差别
4. 应用例举 △ 绝缘样品、生物样品形貌测量
△
弹性和塑性测量